
The Complexity Landscape of Distributed Locally
Checkable Problems on Trees
Yi-Jun Chang
ETH Zürich, Switzerland
yi-jun.chang@eth-its.ethz.ch

Abstract
Recent research revealed the existence of gaps in the complexity landscape of locally checkable labeling
(LCL) problems in the LOCAL model of distributed computing. For example, the deterministic
round complexity of any LCL problem on bounded-degree graphs is either O(log∗ n) or Ω(log n)
[Chang, Kopelowitz, and Pettie, FOCS 2016]. The complexity landscape of LCL problems is now
quite well-understood, but a few questions remain open.

For bounded-degree trees, there is an LCL problem with round complexity Θ(n1/k) for each
positive integer k [Chang and Pettie, FOCS 2017]. It is conjectured that no LCL problem has round
complexity o(n1/(k−1)) and ω(n1/k) on bounded-degree trees. As of now, only the case of k = 2 has
been proved [Balliu et al., DISC 2018].

In this paper, we show that for LCL problems on bounded-degree trees, there is indeed a gap
between Θ(n1/(k−1)) and Θ(n1/k) for each k ≥ 2. Our proof is constructive in the sense that it offers
a sequential algorithm that decides which side of the gap a given LCL problem belongs to. We also
show that it is EXPTIME-hard to distinguish between Θ(1)-round and Θ(n)-round LCL problems on
bounded-degree trees. This improves upon a previous PSPACE-hardness result [Balliu et al., PODC
2019].

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, LOCAL model, locally checkable labeling

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.18

Related Version A full version of the paper is available at https://arxiv.org/abs/2009.09645.

1 Introduction

In this paper, we consider Linial’s LOCAL model of distributed computing [17, 21], where
the input graph G = (V,E) and the communication network are identical. Each vertex
v ∈ V corresponds to a processor, each edge e ∈ E corresponds to a communication link,
and the computation proceeds in synchronized rounds. There is no restriction on the local
computation power and the message size, and the main complexity measure for an algorithm
is the number of rounds. We assume that the number of vertices n = |V | and the maximum
degree ∆ = maxv∈V deg(v) are global knowledge.

There is a recent line of research [3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22] aiming to systematically
understand the round complexity of distributed graph problems, with a focus on the locally
checkable labelings (LCL) problems [19], which is the class of distributed problems whose
solution is locally verifiable by examining a constant-radius neighborhood of each vertex.
The class of LCL problems is sufficiently general that it encompasses many well-studied
problems in the LOCAL model, such as maximal matching, maximal independent set (MIS),
(∆ + 1)-vertex coloring, and sinkless orientation. For example, in the (∆ + 1)-vertex coloring
problem, the output of each vertex v is a color c(v) ∈ {1, 2, . . . ,∆ + 1}. The output is a
legal solution if c(u) 6= c(v) for each edge e = {u, v} ∈ E. Each vertex v can locally check
if it has a neighbor u ∈ N(v) with c(u) = c(v) by examining the output within its radius-1
neighborhood.

© Yi-Jun Chang;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0109-2432
mailto:yi-jun.chang@eth-its.ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://arxiv.org/abs/2009.09645
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

1.1 The Spectrum of Distributed Complexities
Different from the sequential setting such as the Turing machine or the RAM model, in
the complexity landscape of LCL problems in the LOCAL model, large gaps exist in the
complexity landscape.

log log∗ 𝑛1

DETERMINISTIC

RANDOMIZED

log log 𝑛

log 𝑛log∗ 𝑛

𝑇𝐿𝐿𝐿

DENSEDENSE

𝑛?

Figure 1 Complexity landscape of LCLs on bounded-degree general graphs.

General graphs. Chang, Kopelowitz, and Pettie [11] showed that for any LCL problem on
bounded-degree graphs, its deterministic round complexity is either O(log∗ n) or Ω(logn), and
its randomized round complexity is either O(log∗ n) or Ω(log logn). Chang and Pettie [12]
showed that any o(logn)-round randomized algorithm for an LCL problem can be accelerated
to run in O(TLLL) rounds, where TLLL is the randomized complexity of the distributed
constructive Lovász Local Lemma (LLL) [14] under a polynomial criterion pdc = O(1) for any
positive constant c. It was conjectured in [12] that TLLL = Θ(log logn). Chang and Pettie
also showed that the gap ω(1) – o(log log∗ n) can be derived using the approach of Naor and
Stockmeyer [19]. Balliu et al. showed that the two remaining regions [Θ(log log∗ n),Θ(log∗ n)]
and [Θ(logn),Θ(n)] are dense in that many round complexity functions within these ranges
can be realized by LCL problems [5]. See Figure 1 for an illustration of the complexity
landscape of LCLs on bounded-degree general graphs.

log log∗ 𝑛1 𝑛

𝑇𝐿𝐿𝐿 = log log 𝑛

log 𝑛log∗ 𝑛 𝑛1/2𝑛1/3𝑛1/4𝑛𝑜(1)

?
…

DETERMINISTIC

RANDOMIZED

NEW RESULTS

Figure 2 Complexity landscape of LCLs on bounded-degree trees.

Trees. The four gaps in the lower end of the spectrum [Θ(1),Θ(logn)] are the same as
the setting of general graphs. It was conjectured in [12] that the ω(1) – o(log log∗ n) gap on
bounded-degree trees can be extended to ω(1) – o(log∗ n). So far this conjecture was proved
only for the special case of homogeneous problems [6]. For the higher end of the spectrum
[Θ(logn),Θ(n)], it was proved in [12] that any distributed algorithm that takes no(1) rounds
can be accelerated to run in just O(logn) rounds, and there exists an LCL problem with
complexity Θ(n1/k) for each k ≥ 1. It was left as an open problem to decide if there are gaps

Y.-J. Chang 18:3

between them. Recently, Balliu et al. [3] showed that there is indeed a gap between Θ(
√
n)

and Θ(n), the other cases are still open. See Figure 2 for an illustration of the complexity
landscape of LCLs on bounded-degree trees.

New result. In this paper, we prove the existence of the gap ω(n1/k) – o(n1/(k−1)) of LCL
problems on bounded-degree trees, for each integer k ≥ 2.

I Theorem 1. For any integer k ≥ 2, for any LCL problem P on bounded-degree trees,
either one of the following holds.

The deterministic and randomized round complexities of P are Ω(n1/(k−1)).
The deterministic and randomized round complexities of P are O(n1/k).

Furthermore, there is a sequential algorithm that given an integer k ≥ 2 and a description of
P decides which side of the gap P belongs to.

The proof of Theorem 1 is obtained by unifying the approach of Balliu et al. [3] and the
approach of Chang and Pettie [12] using a generalized tree decomposition algorithm.

Theorem 1 implies that randomness does not help for LCL problems on bounded-degree
trees in the regime of polynomial round complexity.

1.2 The Complexity of Classification
The complexity gaps in Figures 1 and 2 classify the distributed problems into complexity
classes. A natural question to ask is whether this classification is decidable. Unfortunately,
even for grids and tori, it is undecidable whether a given LCL problem can be solved in
O(1) rounds [9, 19], since LCL on grids can be used to simulate a Turing machine. This
undecidability result does not apply to special graph classes such as paths, cycles, and trees.
In fact, the proof of the ω(logn) – no(1) gap on bounded-degree trees in [12] is constructive
in the sense that it gives us an algorithm that can decide whether a given LCL problem on
bounded-degree trees has complexity O(logn) or nΩ(1).

Much progress has recently been made in understanding to what extent the design of
distributed algorithms and the proof of distributed lower bounds can be automated [1,2, 7,
9, 13, 20]. On paths or cycles, with or without input labels, only three complexity classes
are possible: Θ(1), Θ(log∗ n), and Θ(n). Balliu et al. [1] showed that for any given LCL
problem P on paths or cycles, it is decidable to check which class P belongs to, and there is
a sequential algorithm that automates the design of an asymptotically optimal distributed
algorithm for P . For comparison, the previous proofs [11,12,19] establishing this classification
did not offer such results.

On the negative side, Balliu et al. [1] showed that the problem of determining the optimal
asymptotic distributed complexity is PSPACE-hard, even for paths and cycles with input
labels. Since trees can be used to encode input labels, the same PSPACE-hardness result
extends to the case of bounded-degree trees without input labels.

New result. Our proof of the existence of the gap ω(n1/k) – o(n1/(k−1)) offers a sequential
algorithm that decides which side of the gap a given LCL problem P belongs to. When
the locality radius r of the LCL is a constant independent of the description length N of
the LCL, the runtime 22NO(1)

of our sequential algorithm is doubly exponential in NO(1).
To complement this result, we show that this problem is inherently very hard by proving
that this problem is EXPTIME-hard. Specifically, we say that a round complexity function
T (n) is realizable if there exists an LCL problem P whose round complexity is Θ(T (n)) on
bounded-degree trees. We prove the following theorem.

DISC 2020

18:4 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

I Theorem 2. Let T1(n)� T2(n) be two realizable round complexity functions. Given an
LCL problem P that is promised to have round complexity either Θ(T1(n)) or Θ(T2(n)) on
bounded-degree trees, it is EXPTIME-hard to decide the round complexity of P.

1.3 Organization

In Section 2, we overview the basics of LCL problems and review the pumping lemma of
Chang and Pettie [12]. In Section 3, we review the proof of the ω(n1/2) – o(n) gap by Balliu
et al. [3]. In Section 4, we consider a generalized version of the tree decomposition of Miller
and Reif [18] that allows us to unify the approach of Balliu et al. [3] and the approach
of Chang and Pettie [12]. In Section 5, we prove Theorem 1 for the case of deterministic
algorithms. The complete proofs of Theorems 1 and 2 are left to the full version of the paper.

2 Preliminaries

In the deterministic variant of the LOCAL model, each vertex v has a distinct O(logn)-bit
identifier ID(v). In the randomized variant of the LOCAL model, there are no distinct
identifiers, but each vertex has access to a stream of unbiased random bits, and the maximum
tolerable global probability of failure is 1/n. Note that a t-round LOCAL algorithm can be
seen as a function that maps a radius-t subgraph centered at v to an output label assigned
to v.

2.1 Locally Checkable Labeling

A distributed graph problem is locally checkable if there is some constant r such that the
validity of a solution can be checked locally by having each vertex examine its radius-r
neighborhood. For example, the maximal independent set (MIS) problem is locally checkable
with locality radius r = 1, but the maximum independent set problem is not locally checkable.

Formal definition. Formally, an LCL problem P is specified by the following parameters:
the locality radius r, the set of input labels Σin, the set of output labels Σout, and the set of
allowed configurations C. Each member of C is a radius-r subgraph H centered at a specific
vertex v, where each vertex in H is assigned an input label from Σin and an output label
from Σout. Note that |Σin| = 1 corresponds to the special case where there is no input label.

An instance of an LCL problem P is a graph G = (V,E) where each vertex is assigned an
input label from Σin. A solution for P on G is a labeling function φout that assigns to each
vertex in G an output label from Σout. We say that φout is locally consistent for a vertex
v ∈ V if its radius-r neighborhood Nr(v) is an allowed configuration in C under the given
input labeling and the output labeling φout. The output labeling φout is legal if it is locally
consistent everywhere.

Graph terminology. Unless otherwise stated, all vertices in all graphs in this paper are
assigned input labels from Σin, and the term label refers to output label. An unlabeled graph
is a graph where no vertex is assigned an output label from Σout. A partially labeled graph is
a graph with a labeling function L that maps each vertex v to an element of Σout ∪ {⊥}. A
completely labeled graph or a labeled graph is a graph with a labeling function L that maps
each vertex v to an element of Σout.

Y.-J. Chang 18:5

Description length. We assume that any given LCL problem P is specified by representing C
as a truth table. Specifically, a centered graph is a graphG = (V,E) with a distinguished vertex
s ∈ V , and the radius of G is defined by maxv∈V dist(v, s). The truth table representation
of P is a mapping Gr,∆,Σin,Σout 7→ {0, 1}, where Gr,∆,Σin,Σout is the set of all centered graphs
G = (V,E) of radius at most r with maximum degree ∆ where each vertex v ∈ V is equipped
with an input label from Σin and an output label from Σout.

If the graph class under consideration is the set of trees of maximum degree ∆, then the
description length of P can be upper bounded by (1 + |Σin| · |Σout|)1+∆r

.
To derive this upper bound, consider the rooted tree Tr of height r where the root v has

∆ children, all vertices u with 1 ≤ dist(u, v) ≤ r − 1 have ∆ − 1 children, and all vertices
u with dist(u, v) = r are leaf vertices. The number of trees in Gr,∆,Σin,Σout is at most the
number of distinct labeling of the vertices in Tr by (Σin × Σout) ∪ {?}, where ? is a special
symbol indicating the non-existence of a vertex. Hence the description length can be upper
bounded by (1 + |Σin| · |Σout|)nr , where nr is the number of vertices in Tr. We have n0 = 1,
n1 = 1 + ∆, and nr = 1 + ∆ + ∆

∑r−1
i=1 (∆− 1)r−1 for each r ≥ 2. It is clear that nr ≤ 1 + ∆r

for all r.

Remarks on edge labeling and orientation. In general, an LCL might have edge labels
and edge orientation. It is straightforward to encode edge labels and edge orientation as
vertex labels. For example, given an input graph G, consider the following pre-processing.
For each edge e = {u, v} ∈ E, subdivide it into a length-3 path (u, xe,u, xe,v, v) by adding
two new vertices xe,u and xe,v. Each newly added vertex is assigned a special input label
e indicating that it represents a half of an edge. Now an edge orientation u → v can be
encoded as φ(xe,u) = 0 and φ(xe,v) = 1.

2.2 Pumping Lemma
We review the pumping lemma of Chang and Pettie [12], which plays a crucial role in
establishing complexity gaps on trees.

Notation for partially labeled graphs. A partially labeled graph G = (G,L) is a graph
G = (V,E) together with a function L : V → Σout ∪ {⊥}. The vertices in L−1(⊥) are
unlabeled. A complete labeling L′ : V (G)→ Σout for G is one that labels all vertices and is
consistent with G’s partial labeling, i.e., L′(v) = L(v) whenever L(v) 6=⊥. A legal labeling
is a complete labeling that is locally consistent for all v ∈ V (G), i.e., the labeled subgraph
induced by Nr(v) is consistent with the given LCL problem P. Here Nr(v) is the set of all
vertices within distance r of v. A subgraph of a partially labeled graph G = (G,L) is a pair
H = (H,L′) such that H is a subgraph of G, and L′ is L restricted to the domain V (H).
With a slight abuse of notation, we usually write H = (H,L).

An equivalence relation. A tree H with two distinguished vertices s, t ∈ V (H) is called a
bipolar tree. We call s and t the two poles of H. We consider the equivalence relation ?∼ on
bipolar trees defined in [12]. We write Type(H) to denote the equivalence class of the bipolar
tree H. The following property of ?∼ is crucial.

Suppose we are given the following.
G is any graph.

DISC 2020

18:6 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

H is a bipolar subtree of G with two poles s and t such that the removal of s and t
disconnects H from the rest of G.
H′ is another bipolar subtree with two poles s′ and t′ such that Type(H) = Type(H′).
L� is any complete legal labeling of G.

Define the graph G′ as the result of replacing the subgraph H of G with H′. Then there
exists a legal labeling L′ of H′ meeting the following conditions.

The following complete labeling L′� of G′ is a legal labeling.

L′�(v) =
{
L′(v) if v ∈ H,
L�(v) if v ∈ G \ H.

Such a labeling L′ of H′ can be computed solely from H′ and the given labeling L�
restricted to H.

In view of the above, the vertices in H′ can compute their L′-labels using only information
within H′ and the given labeling L� restricted to H, without communicating with the vertices
outside of H′. Intuitively, this allows us to reduce the task of finding a legal labeling L′ of G′
to the task of finding a legal labeling L� of G.

A pumping lemma for bipolar trees. The unique path (s = u1, u2, . . . , uk = t) connecting
the two poles s and t of a bipolar tree H is called the core path of H. The tree H can be
viewed as a string of subtrees T1, T2, . . . , Tk, where Ti is the subtree of H rooted at ui. For
the sake of convenience, we use the following string notation H = (T1, T2, . . . , Tk) to describe
a bipolar tree H. Viewing bipolar trees as strings, the following pumping lemma was proved
in [12].

There exists a number `pump depending only on the given LCL problem P such that as
long as k ≥ `pump, any bipolar tree H = (T1, T2, . . . , Tk) can be decomposed into three
substrings H = x ◦ y ◦ z meeting the following conditions.
|xy| ≤ `pump.
|y| ≥ 1.
Type(x ◦ yj ◦ z) = Type(H) for each non-negative integer j.

Intuitively, the pumping lemma allows us to extend the length of H = (T1, T2, . . . , Tk) to
arbitrarily long without changing its type, as long as k ≥ `pump.

3 A Review of the ω(n1/2) – o(n) Gap

We review the proof of the ω(n1/2) – o(n) gap by Balliu et al. [3]. Given an o(n)-round
randomized or deterministic LOCAL algorithm A for the given LCL problem P, the goal is
to design a new randomized or deterministic LOCAL algorithm A′ with round complexity
O(
√
n). Within this section, we only apply the pumping lemma on unlabeled graphs, but we

will see that when we extend the proof to other gaps, we need to deal with partially labeled
graphs.

Y.-J. Chang 18:7

The skeleton tree. Let the tree G = (V,E) be the underlying network. Let τ = Θ(
√
n) be a

threshold to be determined. Define the skeleton tree Gskel as the result of iteratively removing
all leaf vertices of G for τ iterations. Specifically, start with G0 = G, and let Gi be the result
of removing all leaf vertices of Gi−1 for each 1 ≤ i ≤ τ , and then we have Gskel = Gτ .

If Gskel is empty, then we are already done, since this implies that the diameter of G is
O(τ) = O(

√
n), so P can be solved trivially in O(

√
n) rounds. In subsequent discussion we

assume that Gskel is not empty. We will identify a set of disjoint paths P of Gskel meeting the
following conditions.
1. Each P = (v1, v2, . . . , vx) ∈ P satisfies the following requirements.

a. x ∈ [`pump, 2`pump].
b. Each vi is of degree-2 in Gskel.

2. Let G′ be the subgraph of Gskel resulting from removing all paths in P. Let S denote the
set of connected components in G′. Then each connected component S ∈ S in Gskel has
diameter O(

√
n).

The proof of the existence of P can be found in [3]. We will also provide a proof in Section 4.
In this section we only need to use the fact that the skeleton tree Gskel and the set of paths
P can be computed in O(

√
n) rounds on G.

Since Gskel is constructed by iteratively removing all leaf vertices of G for τ iterations,
each vertex v in G \Gskel is reachable to a unique vertex u in Gskel via the vertices G \Gskel.

For any vertex subset U in Gskel, we define U∗ ⊇ U as the set of vertices in G resulting
from adding to U all vertices in G \ Gskel reachable to U via the vertices in G \ Gskel. A
consequence of Condition 2 is that the diameter of S∗ is O(τ +

√
n) = O(

√
n), for each S ∈ S.

The virtual tree. Consider the virtual tree Gvirt defined as the result of applying the
pumping lemma on P ∗ for each P = (v1, v2, . . . , vx) ∈ P to the graph G. The definition of P ∗
is in the paragraph above. Here P ∗ is seen as a bipolar tree with the poles s = v1 and t = vx.
Specifically, the pumping lemma allows us to replace each bipolar tree P ∗ = (T1, T2, . . . , Tk)
is by some other bipolar tree P ′ = (T ′1, T ′2, . . . , T ′x′) such that Type(P ′) = Type(P ∗), and
x′ ∈ [w,w + `pump], where w is some very large number to be determined.

The O(
√

n)-round algorithm A′. We are ready to describe our O(
√
n)-round algorithm

A′. The first step of the algorithm is to compute the skeleton tree Gskel and the set of paths
P in O(

√
n) rounds. After that, we can simulate the virtual tree Gvirt by having the vertices

in each P ∈ P simulate the virtual bipolar tree P ′ resulting from the pumping lemma. We
compute a legal labeling Lvirt of Gvirt by a simulation of A on Gvirt. We will later see that
the simulation can also be done in O(

√
n) rounds. Finally, we will show that the labeling

Lvirt can be transformed into a legal labeling L of G using another O(
√
n) rounds.

Simulation of A on the virtual tree. It is clear that the number of vertices in Gvirt can be
upper bounded by O(n2w), since |P| ≤ n and the number of vertices in each P ′ is O(nw).
We simulate the given algorithm A on the virtual tree Gvirt assuming that the number of
vertices is n′ = O(n2w).

Since the round complexity of A on an n′-vertex graph is o(n′), by selecting w as a
sufficiently large number depending on n, the round complexity of A can be made much
smaller than 0.1w. Therefore, to simulate A on Gvirt, each vertex v in Gvirt only needs to
gather all information within radius 0.1w to v. We make the following observations.

For each S ∈ S, the subgraph S∗ has diameter O(
√
n).

DISC 2020

18:8 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

For each P ∈ P, the number of vertices in the core path of the bipolar subtree P ′ is
within [w,w + `pump].

By these facts, it is straightforward to see that each vertex v in Gvirt is able to gather all
information within radius 0.1w to v in O(

√
n) rounds of communication in the underlying

network G. For example, if v ∈ S∗ for some S ∈ S, then v only need to learn the following.
The subgraph induced by the set S∗.
The virtual bipolar tree P ′, for each path P ∈ P adjacent to S.

Remember that P ′ can be computed from P ∗. Since the diameter of S∗ (for each S ∈ S) and
the diameter of P ∗ (for each P ∈ P) are O(

√
n), this information gathering can be done in

O(
√
n) rounds in G.

Computing a legal labeling of G. Suppose we have computed a legal labeling Lvirt of Gvirt.
We show how to use this legal labeling Lvirt to obtain a legal labeling L of G in O(

√
n)

rounds. For each S ∈ S, the labeling of the vertices in S∗ is unchanged, i.e., L(v) = Lvirt(v).
For each path P ∈ P, the L-labels of the vertices in P ∗ are computed as follows.

Remember that Gvirt is the result of replacing P ∗ with P ′, for each P ∈ P, and the two
bipolar trees P ′ and P ∗ have the same type. In view of the property of ?∼ described in
Section 2.2, there exists a labeling L′ of P ∗ such that if we replace the bipolar subtree P ′
(labeled with Lvirt) by the bipolar subtree P ∗ (labeled with L′), the legality of the labeling
of the underlying graph is maintained. Moreover, such a labeling L′ of P ∗ can be computed
from the labeling Lvirt restricted to P ′, without using any information outside of P ′. Thus,
we can carry out this procedure, in parallel for each P ∈ P, and this takes O(

√
n) rounds,

since the diameter of P ∗ is at most 2τ + 2`pump − 1 = O(
√
n), for each P ∈ P. After that,

we obtain a desired legal labeling L of G.

4 A Generalized Tree Decomposition

Miller and Reif [18] considered the following decomposition algorithm. Start with a tree
G = (V,E); remove the vertices in V by repeatedly doing the following two operations
alternately: Rake (removing all leaf vertices) and Compress (removing all degree-2 vertices).
It is known that O(logn) iterations suffice to remove all vertices in the tree [18]. Variants of
this decomposition have turned out to be useful in the design of LOCAL algorithms [10,12].

In this section, we consider a generalized version of this decomposition, which allows us
to show the existence of P needed in Section 3, and to extend the proof idea in Section 3 to
other gaps.

We start with a formal definition of our decomposition, which is parameterized by two
integers ` ≥ 1 and γ ≥ 1, and it decomposes the vertices in the tree G into

V = V R
1 ∪ V C

1 ∪ V R
2 ∪ V C

2 ∪ V R
3 ∪ V C

3 ∪ · · · .

Let L denote the highest number i such that V C
i ∪ V R

i+1 ∪ V C
i+1 ∪ · · · is empty. We define

GC
i as the subgraph induced by the vertices

(⋃L
j=i+1 V

R
j

)
∪
(⋃L−1

j=i V
C
j

)
, which is the set of

all vertices that are in V C
i or higher layers. Similarly, we define GR

i as the subgraph induced
by the vertices

(⋃L
j=i V

R
j

)
∪
(⋃L−1

j=i V
C
j

)
.

We require the sets V R
i and V C

i to satisfy some requirements. Each connected component
of the subgraph induced by V R

i must be a rooted tree with height at most γ− 1, and only the
root can possibly have neighbors in V C

i ∪V R
i+1 ∪V C

i+1 ∪ · · · . Each connected component of the
subgraph induced by V C

i must be a path with x ∈ [`, 2`] vertices, and only the endpoints can

Y.-J. Chang 18:9

possibly have neighbors in V R
i+1 ∪ V C

i+1 ∪ V R
i+2 ∪ · · · . See Figure 3 for an illustration, where

each triangle represents a rooted tree. The precise requirements are as follows.

𝑉1
𝑅

𝑉1
𝐶

𝑉2
𝑅

𝑉2
𝐶

Figure 3 Top layers in a generalized tree decomposition.

Requirements for V R
i . Let S be a connected component of the subgraph induced by V R

i .
Then there is a root vertex z ∈ S such that the following conditions are met.

z has at most one neighbor in GC
i , and each v ∈ S \ {z} has no neighbor in GC

i .
Each v ∈ S \ {z} satisfies dist(v, z) ≤ γ − 1.

Note that for the special case of γ = 1, the set V R
i is an independent set.

Requirements for V C
i . Let S be a connected component of the subgraph induced by V C

i .
Then S is a path (u1, u2, . . . , ux) with x ∈ [`, 2`] such that the following is true for each
uj ∈ S.

For the case 1 < j < x (i.e., uj is an intermediate vertex), uj has no neighbor in GR
i+1.

Consider the case j = 1 or j = x (i.e., uj is an endpoint). If x ≥ 2, then uj has exactly
one neighbor in GR

i+1. If x = 1, then uj has exactly two neighbors in GR
i+1.

A decomposition V = V R
1 ∪V C

1 ∪V R
2 ∪V C

2 ∪V R
3 ∪V C

3 ∪· · · satisfying the above requirements
is called a (γ, `)-decomposition. We will see in Lemma 7 that for any positive integers k = O(1)
and ` = O(1), and for any

γ ≥ n1/k(`/2)1−1/k,

an (γ, `)-decomposition with L = k can be computed in O(n1/k) rounds deterministically.

4.1 The Decomposition Algorithm
Our algorithm constructing the above decomposition uses the following modified Rake and
Compress operations defined in [12]. Here U is a subset of V representing the set of vertices
that are not yet removed.
Rake: Each v ∈ U removes itself if one of the following conditions is met.

1. degU (v) = 0.
2. degU (v) = 1 and the unique neighbor u of v in U has degU (u) > 1.
3. degU (v) = 1 and the unique neighbor u of v in U has degU (u) = 1 and ID(v) > ID(u).

Compress: Each v ∈ U removes itself if v belongs to a path P such that |V (P)| ≥ ` and
degU (u) = 2 for each u ∈ V (P).

The purpose of Condition 3 in the Rake operation is to break tie for the special case
where v is in a component of U that is a length-1 path. This is to ensure that we remove an
independent set of vertices in a Rake operation.

DISC 2020

18:10 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

I Definition 3 ([12]). Let P be a path. A subset I ⊂ V (P) is called an (α, β)-independent
set if the following conditions are met: (i) I is an independent set that does not contain
either endpoint of P , and (ii) each connected component of the subgraph induced by V (P) \ I
has at least α vertices and at most β vertices, unless |V (P)| < α, in which case I = ∅.

It is a folklore that an (`, 2`)-independent set of a path graph can be computed in
O(log∗ n) rounds deterministically when ` = O(1) [1, 12,17].

The algorithm. The decomposition algorithm begins with U = V (G) and i = 1. In iteration
i, we do the following.
1. Do γ Rake operations.
2. Do one Compress operation.
3. Update the iteration number i← i+ 1.
Repeatedly do this until U = ∅, and then we proceed to the following post-processing step.

The post-processing step. Let Ri (resp., Ci) be the set of vertices removed during a
Rake (resp., Compress) operation in the ith iteration. For each path P that is a connected
component of the subgraph induced by Ci, Find an (`, 2`)-independent set IP of P . Define
C∗i as the subset of Ci that is the union of IP for each P that is a connected component
of the subgraph induced by Ci. Let L be the highest number i such that Ri ∪ Ci−1 6= ∅.
Then a partition V =

(⋃L
i=1 V

R
i

)
∪
(⋃L−1

i=1 V C
i

)
is defined by setting V R

i = Ri ∪ C∗i−1 and
V C
i = Ci \ C∗i . What we have done in the post-processing step is promoting each vertex in

the independent set IP to the next layer, and this ensures that the requirement on the size
of paths for V C

i is met.

Analysis. We analyze the decomposition V =
(⋃L

i=1 V
R
i

)
∪
(⋃L−1

i=1 V C
i

)
produced using

the above algorithm. The proofs of the following two lemmas follow immediately from the
description of the decomposition algorithm.

I Lemma 4 (Properties of V R
i). Let S be a connected component of the subgraph induced by

V R
i . Then there is a root vertex z ∈ S such that the following conditions are met.
z has at most one neighbor in GC

i , and each v ∈ S \ {z} has no neighbor in GC
i .

Each v ∈ S \ {z} satisfies dist(v, z) ≤ γ − 1.

Proof. The first case is when S contains a vertex u that is in IP for some P during the
post-processing step, we must have S = {u}, and u has no neighbor in GC

i . In this case,
setting z = u works.

The second case is when S ⊆ Ri. We select z ∈ S as the last vertex removed from U

during the decomposition algorithm, among all vertices in S. Since we do γ Rake operations
in each iteration, each v ∈ S \ {z} satisfies dist(v, z) ≤ γ − 1. It is straightforward to see
that z is the only vertex in S that may have a neighbor in GC

i ; and z can have at most one
such neighbor. J

I Lemma 5 (Properties of V C
i). Let S be a connected component of the subgraph induced by

V C
i . Then S is a path (u1, u2, . . . , ux) with x ∈ [`, 2`] such that the following is true for each
uj ∈ S.

For the case 1 < j < x (i.e., uj is an intermediate vertex), uj has no neighbor in GR
i+1.

Consider the case j = 1 or j = x (i.e., uj is an endpoint). If x ≥ 2, then uj has exactly
one neighbor in GR

i+1. If x = 1, then uj has exactly two neighbors in GR
i+1.

Y.-J. Chang 18:11

Proof. In view of the post-processing step and the definition of an (α, β)-independent set, S
is a path (u1, u2, . . . , ux) with x ∈ [`, 2`]. It is straightforward to verify that the conditions
specified in the lemma are met. J

Next, we analyze the round complexity of the decomposition algorithm and the number
L in the decomposition. We remark that the case of γ = 1 is considered and analyzed in [12].

I Lemma 6 ([12]). Suppose γ = 1 and ` ≥ 1 is a constant. An (γ, `)-decomposition with
L = O(logn) of a tree G can be computed in O(logn) rounds deterministically.

In this paper, we are only interested in the case of γ � 1.

I Lemma 7. Suppose γ ≥ n1/k(`/2)1−1/k, for some positive integers k = O(1) and ` =
O(1). An (γ, `)-decomposition with L = k of a tree G can be computed in O(n1/k) rounds
deterministically.

Proof. Consider an arbitrary vertex v ∈ V , and root the tree G at v. Define Si as the
connected component containing v in the subgraph induced by the set U at the beginning
of the ith iteration. Define S′i as the connected component containing v in the subgraph
induced by the set U at the beginning of the Compress operation during the ith iteration.
Note that S1 = V . To prove the lemma, it suffices to show that S′k = ∅.

Let A be the number of degree-2 vertices in S′i that are not removed during the ith
Compress. Let B be the number of vertices in S′i whose degree is not 2 at the beginning of
the ith Compress. Note that |Si+1| = A+B.

We observe that A ≤ (`− 1)(B − 1), as the degree-2 vertices in S′i that are not removed
during the ith Compress form connected components of at most `− 1 vertices. Specifically,
consider the tree T resulting from contracting each degree-2 vertex in S′i. The number
of vertices in T equals B, and the number of edges in T is at least A/(` − 1). Hence
A/(`− 1) ≤ (B − 1).

We also observe that the number of degree-1 vertices in S′i at the beginning of the ith
Compress is at least B/2. As each degree-1 vertex of S′i must be adjacent to a connected
component of Si \ S′i of size at least γ, we have |B|/2 < |Si|/γ. Therefore,

|Si+1| = A+B < `B <
`

2γ · |Si|.

In order to have S′k = ∅, it suffices that |Sk| ≤ γ. Indeed, we have

|Sk| ≤
(
`

2γ

)(k−1)
· n ≤ γ.

For the round complexity, the main part of the algorithm costs O((γ + `)k) = O(γ) =
O(n1/k) rounds. The post-processing step costs O(log∗ n) rounds, as ` = O(1). J

The set of paths P. We revisit the proof in Section 3 and prove that the required set of
paths P can be computed in O(

√
n) rounds. We run our algorithm for constructing a (γ, `)-

decomposition with the parameters γ = τ = n1/2(`/2)1/2 = Θ(
√
n) and ` = `pump = Θ(1).

Here τ is the parameter in the definition of the skeleton tree Gskel in Section 3. Remember
that Gskel is the result of iteratively removing all leaf vertices of G for τ iterations.

By Lemma 7, our (γ, `)-decomposition satisfies L = 2, and it decomposes V into three sets
V R

1 , V C
1 , and V R

2 , and the decomposition can be computed in O(
√
n) rounds. It is clear from

the description of the algorithm that Gskel = GC
1 is exactly the subgraph induced by V C

1 ∪V R
2 .

Selecting P as the set of all connected components of V C
1 satisfies all the requirements of P

stated in Section 3.

DISC 2020

18:12 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

5 Extension to Other Gaps

In this section, we prove Theorem 1 for the case of deterministic algorithms by extending
the proof of the ω(n1/2) – o(n) gap by Balliu et al. [3] described in Section 3. The complete
proof of Theorem 1 is left to the full version of the paper.

5.1 Proof Idea
The main idea of the proof of Theorem 1 is as follows. Let k be any positive constant,
To prove the existence of the gap ω(n1/k) – o(n1/(k−1)), for any given o(n1/(k−1))-round
deterministic algorithm A for a given LCL problem P, we need to be able to design a new
deterministic algorithm A′ with round complexity O(n1/k).

We compute a (γ, `)-decomposition, with γ = Θ(n1/k) and ` ≥ `pump to decompose
V into the subsets V R

1 , V
C
1 , V

R
2 , . . . , V

R
k−1, V

C
k−1, V

R
k , and then apply the pumping lemma to

extend each path in V C
1 , V

C
2 . . . , V C

k−1 to a path of length within [w,w + `pump], in order to
produce a virtual tree with O(wk−1) vertices, omitting the dependency on n. By Lemma 7,
such a decomposition can be computed in O(n1/k) rounds.

If we select w to be sufficiently large, the execution of a given o(n1/(k−1))-round algorithm
A takes less than 0.1w rounds on the virtual tree. As each connected component induced
by V R

i is a rooted tree with diameter O(n1/k), the simulation of A can be done in O(n1/k)
rounds in the underlying network G. Hence we obtain an O(n1/k)-round algorithm A′ for
the same problem.

This approach does not work immediately, as we will encounter some issues described
below, but these issues can be overcome using the graph operations defined in [12].

An issue in pumping bipolar subtrees. The reason that we can apply the pumping lemma
for V C

1 in Section 3 is that each connected component P of V C
1 is naturally associated with a

bipolar tree P ∗. We do not have this property for the connected components of V C
i for i > 1,

since each vertex v ∈ V R
1 ∪ V C

1 ∪ · · · ∪ V R
i = V (G) \ V (GC

i) might be reachable to more than
one connected component of V C

i via the vertices in V (G) \ V (GC
i). See Figure 3.

Let us recall the virtual tree construction in Section 3. Define G′ as the graph resulting
from pumping the paths in V C

1 . Formally, for each connected component P of V C
1 , replace P ∗

by a much longer bipolar tree P ′ with Type(P ∗) = Type(P ′), where P ∗ is the bipolar subtree
of G induced by the vertices in P and all vertices in V R

1 that are reachable to a vertex in P
via the vertices in V R

1 . Note that G′ is the same as the virtual tree Gvirt in Section 3, if we
use Gskel = GC

1 and let P be the set of connected components of V C
1 .

As we are in the k > 2 case, we would like to also pump the paths in V C
2 in this graph

G′ in a way similar to the case of V C
1 . As discussed above, a difference between V C

1 and V C
2

is that it is possible that a vertex v ∈ V (G′) \ V (GC
2) is reachable to multiple connected

components in V C
2 via the vertices in V (G′) \ V (GC

2), so we are unable to associate a bipolar
tree P ∗ to each connected component P of V C

2 .
Recall that in our high-level proof idea we will ultimately simulate an algorithm A on a

virtual tree, and the runtime of A will be less than 0.1w. Again consider the graph G′ and
one of its bipolar subtree P ′ resulting from pumping P ∗ for some connected component P of
V C

1 . The virtual bipolar tree P ′ separates the graph G′ into two parts, and the vertices in
one part does not need to communicate with the vertices in the other part in the simulation
of A, as its runtime is less than 0.1w. Recall that the core path of P ′ has at least w vertices.

Y.-J. Chang 18:13

Motivated by the above discussion, we consider the graph G′′ defined as the result of
applying the following operation on G′ for each virtual bipolar tree P ′. Let u and v be the
two vertices in V (G′) \V (P ′) adjacent to the two poles s and t of P ′ via the edges {u, s} and
{v, t}. We duplicate P ′ into two identical bipolar subtrees, one is attached to u via {u, s},
the other is attached to v via {v, t}. Note that this is the Duplicate-Cut operation defined
in [12]. See Figure 4 for an illustration.

𝑠 𝑡
𝑢 𝑣

𝑢 𝑣

Figure 4 The Duplicate-Cut operation.

Let P be a connected component of V C
2 in the graph G′′. With respect to G′′, we are

able to define P ∗ in the same way as the case of V C
1 . Specifically, we define P ∗ as the

bipolar subtree of G′′ induced by the vertices in P and all vertices in V (G′′) \V (GC
2) that are

reachable to a vertex in P via the vertices in V (G′′)\V (GC
2). Using this approach recursively,

we can pump the paths of all layers V C
1 , V

C
2 , . . . , V

C
k−1.

An issue caused by duplicating bipolar trees. The duplication of bipolar subtrees in
Duplicate-Cut also causes an issue. Consider the graphs G, G′, and G′′ defined above. As
discussed in Section 3, given a legal labeling of G′, we can obtain a legal labeling of G
using a property of ?∼ and the fact that pumping does not alter the type of a bipolar tree.
However, when we try to obtain a legal labeling L′ of G′ from a given legal labeling L′′ of
G′′, we encounter an issue that the two copies of a bipolar subtree P ′ resulting from applying
Duplicate-Cut in G′ might be labeled differently in L′′.

To resolve this issue, before the duplication of P ′ in the construction of G′′ from G′, we
let some vertices near the middle of P ′ to first commit to a certain labeling. Such a labeling
is computed by simulating the given o(n1/(k−1))-round algorithm A, pretending that the
number of vertices is O(wk−1), omitting the dependence on n. We can assume that the
runtime of A on P ′ is at most 0.1w by selecting w to be sufficiently large.

Specifically, let P ∗ be a bipolar tree that we would like to apply the pumping lemma.
We give a different way of constructing P ′ from P ∗. We write P ∗ as a string of subtrees
(T1, T2, . . . , Tx). Let (v1, v2, . . . , vx) be the core path of P ∗ and e = {vbx/2c, vbx/2c+1} be
the middle edge of the core path. Consider the decomposition P ∗ = X ◦ Y ◦ Z, where
Y = (Tbx/2c−r+1, . . . , Tbx/2c+r) is the middle part. We apply the pumping lemma on X and
Z to extend them to longer bipolar trees whose whose size of core path is within [w,w+`pump],
and then we assign output labels to the vertices in Nr−1(e) = Nr−1(vbx/2c)∪Nr−1(vbx/2c+1)
by simulating the algorithm A, whose runtime is less than 0.1w. The resulting partially
labeled bipolar tree is P ′. Note that this construction of P ′ from P ∗ is the same as the
one in [12] using the operations Label and Extend. In this paper, we call this operation
Label-Extend. See Figure 5 for an illustration.

DISC 2020

18:14 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

𝑋 𝑌 𝑍
𝑒

Pump(𝑋) 𝑌 Pump(𝑍)
𝑒

𝑁𝑟(𝑒) 𝑁0.1𝑤(𝑒)

Figure 5 The Label-Extend operation.

We briefly explain why doing this labeling of middle vertices resolves the issue. Suppose
Ga is the result of apply Duplicate-Cut to some bipolar subtree P ′ in Gb, where this bipolar
tree P ′ is constructed as above and its middle vertices have been assigned output labels. In a
given legal labeling of Ga, the two copies of P ′ might be labeled differently, but their middle
vertices must be labeled the same. We decompose P ′ = Ps ◦ Pt into two parts by cutting
along the middle edge e. The pole s is in Ps, and the other pole t is in Pt. We name the two
copies of P ′ in Ga by P ′s and P ′t based on the poles they use to connect to the rest of the
graph. To obtain a legal labeling of Gb from a given legal labeling of Ga, we simply label Ps
by adapting the labeling of P ′s in Ga, and label Pt by adapting the labeling of P ′t in Ga. The
legality of the resulting labeling of Gb is easy to verify.

See Figure 6 for an example. The top-left figure illustrates the bipolar subtree P ′ in Gb,
where its middle vertices have been assigned output labels. The top-right figure illustrates
the graph Ga, which results from applying Duplicate-Cut to P ′ in Gb. The down-right figure
illustrates the given legal labeling of Ga. The down-left figure shows the legal labeling of Gb
obtaining from the given legal labeling of Ga.

𝟏 𝟐 𝟏 𝟑

𝟏 𝟐 𝟏 𝟑

𝟏 𝟐 𝟏 𝟑

2 3 2 3 2 𝟏 𝟐 𝟏 𝟑 1 2 1 2 3

1 3 2 1 2 𝟏 𝟐 𝟏 𝟑 2 1 2 3 2
1

3

2 3 2 3 2 𝟏 𝟐 𝟏 𝟑 2 1 2 3 2
1 3

Figure 6 Obtaining a legal labeling.

5.2 A Sequence of Virtual Graphs
The approach discussed above naturally leads to a sequence of partially labeled virtual graphs
RR

1 ,RC
1 ,RR

2 ,RC
2 , . . . ,RR

k . Each virtual graph has a real and an imaginary part. Each real
vertex corresponds to a vertex in the underlying network G. The graph RR

i will have GR
i as

its real part, and the graph RC
i will have GC

i as its real part. The imaginary part of these
graphs are subtrees attached to the real vertices. In the actual distributed implementation,
the simulation of the imaginary subtrees attached to a real vertex v are handled by v in the
underlying network G.

Y.-J. Chang 18:15

Construction of RR
1. The graph RR

1 is unlabeled and it equals the underlying network G.

Construction of RC
1. The graph RC

1 is almost identical to G = RR
1 . In RC

1 , only the vertices
in GC

1 are real. For each connected component S of V R
1 = RR

1 \ GC
1 , there is at most one

vertex v ∈ GC
1 that is adjacent to S. If such a vertex v exists, then S becomes an imaginary

subtree stored in the real vertex v. Otherwise, S is not included in RC
1 .

Construction of RR
2. The graph RR

2 is the graph G′ in Section 5.1. Formally, the graph
RR

2 is constructed by applying the following operation to each connected component P =
(v1, v2, . . . , vx) of V C

1 in RC
1 . Let P ∗ = (T1, T2, . . . , Tx) be the bipolar subtree induced by P

and the imaginary subtrees therein. Replace P ∗ by the partially labeled bipolar tree P ′
which is the result of applying Label-Extend to P ∗, and then apply Duplicate-Cut to P ∗.

Construction of RC
2. The graph RC

2 is almost identical to RR
2 . In RC

2 , only the vertices in
GC

2 are real. Due to the Duplicate-Cut operation, for each connected component S of RR
2 \GC

2 ,
there is at most one vertex v ∈ GC

2 that is adjacent to S. If such a vertex v exists, then S
becomes an imaginary subtree stored in the real vertex v. Otherwise S is not included in RC

2 .

Construction of the other graphs. The rest of the partially labeled graphs RR
3 , RC

3 , RR
4 ,

RC
4 , . . ., RR

k are constructed analogously. In the end, RR
k is a virtual graph with O(wk−1)

vertices, omitting the dependence on n. It is straightforward to see that the sequence of
virtual graphs RR

1 ,RC
1 ,RR

2 ,RC
2 , . . . ,RR

k can be constructed in O(n1/k) rounds.

Completing the labeling. Recall that the partial labelings of RR
1 ,RC

1 ,RR
2 ,RC

2 , . . . ,RR
k are

computed using the operation Label-Extend, which is based on simulating A while assuming
that the number of vertices is n′ = O(wk−1), omitting the dependence on n. By the
correctness of A, each of these partial labelings can be completed into a complete legal
labeling. Since each connected component of the real part of RR

k has at most O(n1/k) vertices,
a complete legal labeling of RR

k can be found in O(n1/k) rounds by a brute-force information
gathering. Once we have a complete labeling of RR

k , we can start from this complete labeling
to obtain a complete legal labeling for RC

k−1,RR
k−1,RC

k−2, . . . ,RR
1 = G in O(n1/k) rounds in

view of the discussion in Section 5.1, as these graphs are constructed by applying Label-Extend
and then applying Duplicate-Cut to the bipolar trees resulting from Label-Extend.

The round complexity for finding a legal labeling of G = RR
1 using this approach is

O(n1/k) because the size of each connected component of V R
i is O(n1/k).

Hence we have the ω(n1/k) – o(n1/(k−1)) gap for LCL problems on bounded-degree trees
for the case of deterministic algorithms. That is, given a deterministic o(n1/(k−1))-round
algorithm A for P, we can construct another deterministic O(n1/k)-round algorithm A′.

A note about unique identifiers. A subtle issue about the simulation of A is that the sim-
ulation needs distinct identifiers. Specifically, to guarantee the correctness of a deterministic
τ -round algorithm for an LCL problem with locality radius r, it suffices that any two vertices
within distance 2τ + 2r have distinct identifiers [11].

We only simulate A when we apply Label-Extend. When we do the simulation of A, we
can locally generate distinct identifiers of length O(logn′) for all vertices in N0.1w+r(e),
where e is the middle edge of the core path of the bipolar tree on which we run A, and
n′ = O(wk−1), omitting the dependence on n. This partial ID assignment satisfies the
requirement that, for any two vertices u and v that are assigned identifiers and are within
distance 2 · 0.1w + 2r, their identifiers are distinct.

DISC 2020

18:16 The Complexity Landscape of Distributed Locally Checkable Problems on Trees

References
1 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka

Suomela. The distributed complexity of locally checkable problems on paths is decidable. In
Proceedings of the 38th ACM Symposium on Principles of Distributed Computing (PODC),
pages 262–271. ACM Press, 2019.

2 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proceedings of
the 34th International Symposium on Distributed Computing (DISC), 2020.

3 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global problems
in the LOCAL model. In Proceedings of the 32nd International Symposium on Distributed
Computing (DISC), 2018.

4 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does
randomness help with locally checkable problems? In Proceedings of the 39th Symposium on
Principles of Distributed Computing (PODC), pages 299–308. ACM, 2020.

5 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. New classes of distributed time complexity. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 1307–1318. ACM, 2018.

6 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC), pages 369–378, 2019.

7 Sebastian Brandt. An automatic speedup theorem for distributed problems. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing (PODC), pages 379–388,
2019.

8 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC),
pages 479–488, 2016.

9 Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R.J. Öster-
gård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznaundefinedski.
LCL problems on grids. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 101–110, 2017.

10 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive lovász local lemma. ACM Trans. Algorithms,
16(1), 2019.

11 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between ran-
domized and deterministic complexity in the local model. SIAM J. Comput., 48(1):122–143,
2019.

12 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. SIAM J. Comput.,
48(1):33–69, 2019.

13 Yi-Jun Chang, Jan Studený, and Jukka Suomela. Distributed graph problems through an
automata-theoretic lens. arXiv:2002.07659, 2020.

14 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. Distributed Computing, 30:261–280, 2017.

15 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász local
lemma with implications on complexity hierarchies. In Proceedings of the 31st International
Symposium on Distributed Computing (DISC), pages 18:1–18:16, 2017.

16 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proceedings of 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 662–673, 2018.

17 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

Y.-J. Chang 18:17

18 Gary L. Miller and John H. Reif. Parallel tree contraction–Part I: fundamentals. Advances in
Computing Research, 5:47–72, 1989.

19 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995.

20 Dennis Olivetti. Brief announcement: Round eliminator: A tool for automatic speedup
simulation. In Proceedings of the 39th Symposium on Principles of Distributed Computing
(PODC), pages 352–354. ACM, 2020.

21 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
22 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompos-

ition and distributed derandomization. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2020.

DISC 2020

	Introduction
	The Spectrum of Distributed Complexities
	The Complexity of Classification
	Organization

	Preliminaries
	Locally Checkable Labeling
	Pumping Lemma

	A Review of the omega(n^{1/2}) – o(n) Gap
	A Generalized Tree Decomposition
	The Decomposition Algorithm

	Extension to Other Gaps
	Proof Idea
	A Sequence of Virtual Graphs

