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Abstract
Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal
combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric
rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank
is an upper bound on the subrank of tensors and the independence number of hypergraphs. We
prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the
analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric
rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors,
matching Strassen’s well-known lower bound from 1987.
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1 Introduction

Tensors play a central role in computer science and mathematics. Motivated by problems
in algebraic complexity theory (e.g., the arithmetic complexity of matrix multiplication),
extremal combinatorics (e.g., the cap set problem and the Erdős–Szemerédi sunflower problem)
and quantum information theory (the resource theory of quantum entanglement), we introduce
and study a new tensor parameter called geometric rank. Like the many widely studied
notions of rank for tensors (rank, subrank, border rank, border subrank, flattening rank,
slice rank, analytic rank), geometric rank of tensors generalizes the classical rank of matrices.
In this paper, we:
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35:2 Geometric Rank of Tensors and Subrank of Matrix Multiplication

prove a number of basic properties and invariances of geometric rank,
develop several tools to reason about, and sometimes exactly compute, the geometric
rank,
show intimate connections between geometric rank and the other important notions of
rank for tensors,
and as a simple application of the above, we answer an old question of Strassen by showing
that the (border) subrank of m ×m matrix multiplication is at most d3m2/4e (this is
tight for border subrank; previously the border subrank of the matrix multiplication
tensor was known to lie between 3

4m
2 and (1− o(1))m2).

More generally, we believe that geometric rank provides an interesting new route to prove
upper bounds on subrank of tensors (and hence independence numbers of hypergraphs). Such
upper bounds are important in complexity theory in the context of matrix multiplication
and barriers to matrix multiplication, and combinatorics in the context of specific natural
hypergraphs (as in the cap set problem and the Erdős–Szemeredi sunflower problem).

1.1 Geometric rank
We define the geometric rank of a tensor as the codimension of the (possibly reducible)
algebraic variety defined by the bilinear forms given by the slices of the tensor. Here we use
the standard notions of dimension and codimension of affine varieties from algebraic geometry.
That is, for any tensor T = (Ti,j,k)i,j,k ∈ Fn1×n2×n3 with coefficients Ti,j,k in an algebraically
closed field F (e.g., the complex numbers C) and with 3-slices Mk = (Ti,j,k)i,j ∈ Fn1×n2 we
define the geometric rank GR(T ) as

GR(T ) = codim{(x, y) ∈ Fn1 × Fn2 | xTM1y = · · · = xTMn3y = 0}.

Viewing T as the trilinear map T : Fn1 × Fn2 × Fn3 → F : (x, y, z) 7→
∑
i,j,k Ti,j,k xiyjzk, we

can equivalently write the geometric rank of T as

GR(T ) = codim{(x, y) ∈ Fn1 × Fn2 | ∀z ∈ Fn3 : T (x, y, z) = 0}.

The definition of geometric rank is expressed asymmetrically in x, y and z. We will see,
however, that the codimensions of {(x, y) ∈ Fn1 × Fn2 | ∀z : T (x, y, z) = 0}, {(x, z) ∈
Fn1 × Fn3 | ∀y : T (x, y, z) = 0} and {(y, z) ∈ Fn2 × Fn3 | ∀x : T (x, y, z) = 0} coincide
(Theorem 4).

The motivation for this definition is a bit hard to explain right away. We arrived at it
while searching for a characteristic 0 analogue of the analytic rank of Gowers and Wolf [19]
(see Section 8).

I Example 1. We give an example of how to compute the geometric rank. Let T ∈ F2×2×2

be the tensor with 3-slices

M1 =
(

1 0
0 0

)
, M2 =

(
0 1
1 0

)
.

(This is sometimes called the W -tensor). One verifies that the algebraic variety V =
{(x, y) ∈ F2 × F2 | x1y1 = 0, x2y1 + x1y2 = 0} has the three irreducible components
{(x, y) ∈ F2×F2 | x1 = 0, x2 = 0}, {(x, y) ∈ F2×F2 | x1 = 0, y1 = 0} and {(x, y) ∈ F2×F2 |
y1 = 0, y2 = 0}. Each irreducible component has dimension 2 and thus V has dimension 2.
Hence GR(T ) = codimV = 4− 2 = 2. We will see more examples of geometric rank later
(Theorem 17).
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1.2 Overview: notions of tensor rank
Before discussing our results we give an introduction to some of the existing notions of rank
and their usefulness. Several interesting notions of rank of tensors have been studied in
mathematics and computer science, each with their own applications. As a warm-up we first
discuss the familiar situation for matrices.

Matrices

For any two matrices M ∈ Fm1×m2 and N ∈ Fn1×n2 we write M ≤ N if there exist matrices
A,B such that M = ANB. Defining the matrix rank R(M) of M as the smallest number r
such that M can be written as a sum of r matrices that are outer products (uivj)ij (i.e.,
rank-1 matrices), we see that in terms of the relation ≤ we can write the matrix rank as the
minimisation

R(M) = min{r ∈ N |M ≤ Ir},

where Ir is the r× r identity matrix. Matrix rank thus measures the “cost” of M in terms of
identity matrices. Let us define the subrank Q(M) of M as the “value” of M in terms of
identity matrices,

Q(M) = max{s ∈ N | Is ≤M}.

It turns out that subrank equals rank for matrices,

Q(M) = R(M).

Namely, if R(M) = r, then by using Gaussian elimination we can bring M in diagonal form
with exactly r nonzero elements on the diagonal, and so Ir ≤M . In fact, M ≤ N if and only
if R(M) ≤ R(N).

Tensors

For any two tensors S ∈ Fm1×m2×m3 and T ∈ Fn1×n2×n3 we write S ≤ T if there are matrices
A,B,C such that S = (A,B,C) · T where we define

(A,B,C) · T := (
∑
a,b,c

AiaBjbCkcTa,b,c)i,j,k.

Thus (A,B,C) · T denotes taking linear combinations of the slices of T in three directions
according to A, B and C. Let T ∈ Fn1×n2×n3 be a tensor. The tensor rank R(T ) of T is
defined as the smallest number r such that T can be written as a sum of r tensors that are
outer products (uivjwk)i,j,k. Similarly as for matrices, we can write tensor rank in terms of
the relation ≤ as the “cost” minimisation

R(T ) = min{r ∈ N |M ≤ Ir}

where Ir is the r × r × r identity tensor (i.e., the diagonal tensor with ones on the main
diagonal). Strassen defined the subrank of T as the “value” of T in terms of identity tensors,

Q(T ) = max{s ∈ N | Is ≤M}.

Naturally, since ≤ is transitive, we have that value is at most cost: Q(T ) ≤ R(T ). Unlike the
situation for matrices, however, there exist tensors for which this inequality is strict. One way
to see this is using the fact that a random tensor in Fn×n×n has tensor rank close to n2 whereas
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35:4 Geometric Rank of Tensors and Subrank of Matrix Multiplication

its subrank is at most n. Another way to see this is using the ranks R(i)(T ) := R(T (i))
of the matrices T (1) = (Ti,j,k)i,(j,k) ∈ Fn1×n2n3 , T (2) = (Ti,j,k)j,(i,k) ∈ Fn2×n1n3 , and
T (3) = (Ti,j,k)k,(i,j) ∈ Fn3×n1n2 obtained from T by grouping two of the three indices
together, since

Q(T ) ≤ R(i)(T ) ≤ R(T ).

Namely, it is not hard to find tensors T for which R(1)(T ) < R(2)(T ). We will now discuss two
upper bounds on the subrank Q(T ) that improve on the flattening ranks R(i)(T ). Then we will
discuss connections between subrank and problems in complexity theory and combinatorics.

Slice rank

In the context of the cap set problem, Tao [34] defined the slice rank of any tensor T as the
minimum number r such that T can be written as a sum of r tensors of the form (uiVjk)i,j,k,
(ujVik)i,j,k or (ukVij)i,j,k (i.e., an outer product of a vector and a matrix). In other words,
SR(T ) := min{R(1)(S1) + R(2)(S2) + R(3)(S3) : S1 + S2 + S3 = T}. Clearly slice rank is at
most any flattening rank, and Tao proved that slice rank upper bounds subrank,

Q(T ) ≤ SR(T ) ≤ R(i)(T ).

The lower bound connects slice rank to problems in extremal combinatorics, which we will
discuss further in Section 1.3. The slice rank of large Kronecker powers of tensors was studied
in [7] and [13], which lead to strong connections with invariant theory and moment polytopes,
and with the asymptotic spectrum of tensors introduced by Strassen [32].

Analytic rank

Gowers and Wolf [19] defined the analytic rank of any tensor T ∈ Fn1×n2×n3
p over the

finite field Fp for a prime p as AR(T ) := − logp bias(T ), where the bias of T is defined
as bias(T ) := E exp(2πi T (x, y, z)/p) with the expectation taken over all vectors x ∈ Fn1

p ,
y ∈ Fn2

p and z ∈ Fn3
p . The analytic rank relates to subrank and tensor rank as follows:

Q(T ) ≤ AR(T )
AR(I1) ≤ R(T )

where AR(I1) = − logp(1− (1− 1/p)2). The upper bound was proven in [6]. Interestingly,
the value of AR(T )/AR(I1) can be larger than maxi R(i)(T ) for small p. The lower bound
is essentially by Lovett [27]. Namely, Lovett proves that AR(T )/AR(I1) upper bounds the
size of the largest principal subtensor of T that is diagonal. (We will discuss this further in
Section 1.3.) Lovett moreover proved that AR(T ) ≤ SR(T ) and he thus proposes analytic
rank as an effective upper bound tool for any type of problem where slice rank works well
asymptotically. Lovett’s result motivated us to study other parameters to upper bound the
subrank, which led to geometric rank.

Another line of work has shown upper bounds on SR(T ) in terms of AR(T ). This was first
proven by Bhowmick and Lovett [5], with an Ackerman-type dependence. The dependence
was later improved significantly by Janzer [22]. Recently, Janzer [23] and Milićević [28]
proved polynomial upper bounds of SR in terms of AR. It is not known whether these
parameters can be related by a multiplicative constant.
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1.3 Connections of subrank to complexity theory and combinatorics
Arithmetic complexity of matrix multiplication and barriers

A well-known problem in computer science concerning tensors is about the arithmetic
complexity of matrix multiplication. Asymptotically how many scalar additions and mul-
tiplications are required to multiply two m × m matrices? The answer is known to be
between n2 and Cn2.37..., or in other words, the exponent of matrix multiplication ω is known
to be between 2 and 2.37... [26]. The complexity of matrix multiplication turns out to be
determined by the tensor rank of the matrix multiplication tensors 〈m,m,m〉 corresponding
to taking the trace of the product of three m×m matrices. Explicitly, 〈m,m,m〉 corresponds
to the trilinear map

∑m
i,j,k=1 xijyjkzki. In practice, upper bounds on the rank of the matrix

multiplication tensors are obtained by proving a chain of inequalities

〈m,m,m〉 ≤ T ≤ Ir

for some intermediate tensor T , which is usually taken to be a Coppersmith–Winograd tensor,
and an r that is small relatively to m. It was first shown by Ambainis, Filmus and Le Gall [3]
that there is a barrier for this strategy to give fast algorithms. This barrier was recently
extended and simplified in several works [7, 8, 2, 1, 14] and can be roughly phrased as follows:
if the asymptotic subrank of the intermediate tensor limn→∞Q(T⊗n)1/n is strictly smaller
than the asymptotic rank limn→∞R(T⊗n)1/n, then one cannot obtain ω = 2 via T . These
barriers rely on the fact that the asymptotic subrank of the matrix multiplication tensors is
maximal. Summarizing, the rank of the matrix multiplication tensors corresponds to the
complexity of matrix multiplication whereas the subrank of any tensor corresponds to the a
priori suitability of that tensor for use as an intermediate tensor. The upper bounds on the
asymptotic subrank used in the aforementioned results were obtained via slice rank or the
related theory of support functionals and quantum functionals [13].

Cap sets, sunflowers and independent sets in hypergraphs

Several well-known problems in extremal combinatorics can be phrased in terms of the
independence number of families of hypergraphs. One effective collection of upper bound
methods proceeds via the subrank of tensors. (For other upper bound methods, see e.g. the
recent work of Filmus, Golubev and Lifshitz [17].) A hypergraph is a a symmetric subset
E ⊆ V × V × V . An independent set of E is any subset S ⊆ V such that S does not induce
any edges in E, that is, E ∩ (S × S × S) = ∅. The independence number α(E) of E is
the largest size of any independence set in E. For any hypergraph E ⊆ [n] × [n] × [n], if
T ⊆ Fn×n×n is any tensor supported on E ∪ {(i, i, i) : i ∈ [n]}, then

α(E) ≤ Q(T ).

Indeed, for any independent set S of E the subtensor T |S×S×S is a diagonal tensor with
nonzero diagonal and T ≥ T |S×S×S . For example, the resolution of the cap set problem by
Ellenberg and Gijswijt [16], as simplified by Tao [34], can be thought of as upper bounding
the subrank of tensors corresponding to strong powers of the hypergraph consisting of the
edge (1, 2, 3) and permutations. The Erdős–Szemerédi sunflower problem for three petals
was resolved by Naslund and Sawin [29] by similarly considering the strong powers of the
hypergraph consisting of the edge (1, 1, 2) and permutations. In both cases slice rank was
used to obtain the upper bound. Another result in extremal combinatorics via analytic rank
was recently obtained by Briët [10].

CCC 2020



35:6 Geometric Rank of Tensors and Subrank of Matrix Multiplication

1.4 Our results
We establish a number of basic properties of geometric rank. These imply close connections
between geometric rank and other notions of rank, and thus bring in a new set of algebraic
geometric tools to help reason about the various notions of rank. In particular, our new
upper bounds on the (border) subrank of matrix multiplication follow easily from our basic
results.

Subrank and slice rank

We prove that the geometric rank GR(T ) is at most the slice rank SR(T ) of Tao [34] and at
least the subrank Q(T ) of Strassen [31] (see Theorem 6).

I Theorem 1. For any tensor T ,

Q(T ) ≤ GR(T ) ≤ SR(T ).

We thus add GR to the collection of tools to upper bound the subrank of tensors Q and in
turn the independence number of hypergraphs. We prove these inequalities by proving that
GR is monotone under ≤, additive under the direct sum of tensors, and has value 1 on the
trivial I1 tensor. We also give a second more direct proof of this inequality (Theorem 23).

Border subrank

We extend our upper bound on subrank to border subrank, the (widely studied) approximative
version of subrank.

The main ingredient in this extension is the following fact (which itself exploits the
algebraic-geometric nature of definition of GR): the set {T ∈ Fn×n×n | GR(T ) ≤ m} is
closed in the Zariski topology.1 In other words, geometric rank is lower-semicontinuous. This
implies that the geometric rank also upper bounds the border subrank Q(T ) (see Theorem 12).

I Theorem 2. For any tensor T ,

Q(T ) ≤ GR(T ).

As far as we know, GR is a new tensor parameter. We show that GR is not the same
parameter as Q, Q or SR (Remark 20 and Remark 22).

Matrix multiplication

In the study of the complexity of matrix multiplication, Strassen [31] proved that for the
matrix multiplication tensors 〈m,m,m〉 ∈ Fm2×m2×m2 the border subrank is lower bounded
by d 3

4m
2e ≤ Q(〈m,m,m〉). We prove that this lower bound is optimal by proving the

following (see Theorem 17).

I Theorem 3. For any positive integers e ≤ h ≤ `,

Q(〈e, h, `〉) = GR(〈e, h, `〉) =

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

In particular, we have Q(〈m,m,m〉) ≤ Q(〈m,m,m〉) = GR(〈m,m,m〉) = d 3
4m

2e for any
m ∈ N.

1 That is, the statement GR(T ) ≤ m is characterized by the vanishing of a finite number of polynomials.
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Our computation of GR here is a calcluation of the dimension of a variety. We do this
by studying the dimension of various sections of that variety, which then reduces to linear
algebraic questions about matrices (we are talking about matrix multiplication after all).

Our result improves the previously best known upper bound on the subrank of matrix
multiplication of Christandl, Lucia, Vrana and Werner [12], which was Q(〈m,m,m〉) ≤
m2 −m + 1. In fact, our upper bound on GR(〈e, h, `〉) exactly matches the lower bound
on Q(〈e, h, `〉) of Strassen [31], for any nonnegative integers e, h, and `. We thus solve the
problem of determining the exact value of Q(〈e, h, `〉).

Analytic rank

Finally, we establish a strong connection between geometric rank and analytic rank.
We prove that for any tensor T ∈ Zn1×n2×n3 ⊆ Cn1×n2×n3 with integer coefficients, the

geometric rank of T equals the liminf of the analytic rank of the tensors Tp ∈ Fn1×n2×n3
p

obtained from T be reducing all coefficients modulo p and letting p go to infinity over all
primes (see Theorem 24).

I Theorem 4. For every tensor T over Z we have

lim inf
p→∞

AR(Tp) = GR(T ).

This result is in fact the source of our definition of geometric rank. The analytic rank
of a tensor is defined as the bias of a certain polynomial on random inputs. By simple
transformations, computing the analytic rank over Fp reduces to computing the number of
solutions of a system of polynomial equations over Fp. Namely,

AR(Tp) = n1 + n2 − logp |{(x, y) ∈ Fn1
p × Fn2

p : Tp(x, y, ·) = 0}| .

This system of polynomial equations defines a variety, and it is natural to expect that the
dimension of the variety roughly determines the number of Fp-points of the variety. This
expectation is not true in general, but under highly controlled circumstances something like
it is true. This is how we arrived at the definition of geometric rank (which eventually turned
out to have very natural properties on its own, without this connection to analytic rank).

Actually establishing the above liminf result is quite roundabout, and requires a number
of tools from algebraic geometry and number theory. In particular, we do not know whether
this liminf can be replaced by a limit!

We stress that analytic rank is only defined for tensors over prime fields of positive
characteristic, whereas geometric rank is defined for tensors over any field. By the aforemen-
tioned result, geometric rank over the complex numbers can be thought of as an extension of
analytic rank to characteristic 0. Finding an extension of analytic rank beyond finite fields is
mentioned as an open problem by Lovett [27, Problem 1.10].

Organization of this paper
In the next section we formally define geometric rank. In Section 3, we give some alternative
definitions of geometric rank that help us reason about it. In Section 4 and Section 5 we show
the relationship between geometric rank, slice rank, subrank and border subrank. In Section 6
we use the established properties of geometric rank to give a proof of our upper bound on
the (border) subrank of matrix multiplication. In Section 7 we give a more direct proof of
the inequality between slice rank and geometric rank. Finally, in Section 8 we establish the
relationship between geometric and analytic ranks.

CCC 2020
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2 Geometric rank

In this section we set up some general notation and define geometric rank. Let F be an
algebraically closed field.

Dimension and codimension

The notion of dimension that we use is the standard notion in algebraic geometry, and is
defined as follows. Let V ⊆ Fn be a (possibly reducible) algebraic variety. The codimension
codimV is defined as n− dimV . The dimension dimV is defined as the length of a maximal
chain of irreducible subvarieties of V [21]. In our proofs we will use basic facts about
dimension: the dimension of a linear space coincides with the notion from linear algebra, the
dimension is additive under the cartesian product, the dimension of a locally open set equals
the dimension of its closure and dimension behaves well under projections (x, y) 7→ y.

Notation about tensors

Let Fn1×n2×n3 be the set of all three-dimensional arrays

T = (Ti,j,k)i∈[n1],j∈[n2],k∈[n3]

with Ti,j,k ∈ F. We refer to the elements of Fn1×n2×n3 as the n1×n2×n3 tensors over F. To
any tensor T ∈ Fn1×n2×n3 we associate the polynomial T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)
in F[x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 ] defined by

T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3) =
∑
i∈[n1]

∑
j∈[n2]

∑
k∈[n3]

Ti,j,k xiyjzk

and the trilinear map Fn1 × Fn2 × Fn3 → F defined by

T (x, y, z) = T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3).

Geometric rank

I Definition 2. The geometric rank of a tensor T ∈ Fn1×n2×n3 , written GR(T ), is the
codimension of the set of elements (x, y) ∈ Fn1 × Fn2 such that T (x, y, z) = 0 for all z ∈ Fn3 .
That is,

GR(T ) := codim{(x, y) ∈ Fn1 × Fn2 | ∀z ∈ Fn3 : T (x, y, z) = 0}.

For any (x, y) ∈ Fn2×Fn3 we define the vector T (x, y, ·) = (T (x, y, ek))n3
k=1, where e1, . . . , en3

is the standard basis of Fn3 . In this notation the geometric rank is given by

GR(T ) = codim{(x, y) | T (x, y, ·) = 0}.

For later use we also define the vectors T (x, ·, z) = T (x, ej , z)j and T (·, y, z) = T (ei, y, z)i,
and we define the matrices T (x, ·, ·) = T (x, ej , ek)j,k, T (·, y, ·) = T (ei, y, ek)i,k and T (·, ·, z) =
T (ei, ej , z)i,j.

We defined the geometric rank of tensors with coefficients in an algebraically closed field.
For tensors with coefficients in an arbitrary field we naturally define the geometric rank via
the embedding of the field in its algebraic closure.
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Computer software

One can compute the dimension of an algebraic variety V ⊆ Fn using computer software like
Macaulay2 [20] or Sage [30]. This allows us to easily compute the geometric rank of small
tensors. For example, for Example 1 in the introduction over the field F = C, one verifies in
Macaulay2 with the commands

R = CC[x1,x2,y1,y2];
dim ideal(x1*y1, x2*y1 + x1*y2)

or in Sage with the commands

A.<x1,x2,y1,y2> = AffineSpace(4, CC);
Ideal([x1*y1, x2*y1 + x1*y2]).dimension()

that dimV = 2.

Computational complexity

Koiran [24] studied the computational complexity of the problem of deciding whether the
dimension of an algebraic variety V ⊆ Cn is at least a given number. When V is given
by polynomial equations over the integers the problem is in PSPACE, and assuming the
Generalized Riemann Hypothesis the problem is in the Arthur–Merlin class AM. Thus the
same upper bounds apply to computing GR.

In the other direction, Koiran showed that computing dimension of algebraic varieties in
general is NP-hard. We know of no hardness results for computing GR.

Higher-order tensors

Our definition of geometric rank extends naturally from the set of 3-tensors Fn1×n2×n3 to
the set of k-tensors Fn1×···×nk for any k ≥ 2 by defining the geometric rank of any k-tensor
T ∈ Fn1×···×nk as

GR(T ) := codim{(x1, . . . , xk−1) ∈ Fn1×· · ·×Fnk−1 | ∀xk ∈ Fnk : T (x1, . . . , xk−1, xk) = 0}.

For k = 2 geometric rank coincides with matrix rank. Our results extend naturally to
k-tensors with this definition, but for clarity our exposition will be in terms of 3-tensors.

3 Alternative descriptions of geometric rank

We give two alternative descriptions of geometric rank that we will use later. The first descrip-
tion relates geometric rank to the matrix rank of the matrices T (x, ·, ·) = (T (x, ej , ek))j,k.
The second description shows that the geometric rank of T (x, y, z) is symmetric under
permuting the variables x, y and z. Both theorems rely on an understanding of the dimension
of fibers of a (nice) map.

I Theorem 3. For any tensor T ∈ Fn1×n2×n3 ,

dim{(x, y) | T (x, y, ·) = 0} = max
i

dim
{
x | dim{y | T (x, y, ·) = 0} = i

}
+ i

= max
i

dim
{
x | corank T (x, ·, ·) = i

}
+ i

and therefore

GR(T ) = codim{(x, y) | T (x, y, ·) = 0} = min
j

codim
{
x | rank T (x, ·, ·) = j

}
+ j.

CCC 2020
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Proof. Let V = {(x, y) | T (x, y, ·) = 0}. Let W = Fn1 . Let π : V → W map (x, y) to x.
Define the sets Wi = {x | corank(T (x, ·, ·)) = i}. The rank-nullity theorem for matrices
gives for any fixed x that corank(T (x, ·, ·)) = dim{y | T (x, y, ·) = 0}. The sets Wi are
locally closed, that is, each Wi is the intersection of an open set and a closed set. Let
Vi = π−1(Wi). The set Vi is also locally closed. We have that W = ∪iWi and so V = ∪iVi.
Therefore, dimV = maxi dimVi. We claim that dimVi = dimWi+ i. From this claim follows
dimV = maxi dimWi + i, which finishes the proof.

We prove the claim that dimVi = dimWi + i. For every x ∈ Wi the fiber dimension
dim π−1(x) equals i. Write Vi as a union of irreducible components Vij . LetWij be the closure
of π(Vij). We now apply Theorem 5 (see the end of this section) with X = Vi and X0 = Vij .
For any p = (x, y) ∈ X0 we have that π−1(π(p)) = {(x, y′) | T (x, y′, ·) = 0}. The set {y′ |
T (x, y′, ·) = 0} is a linear subspace and thus irreducible. Therefore, π−1(π(p)) is irreducible.
Then Theorem 5 gives that dimVij = dimWij + i. We have that maxj dimWij = dimWi,
so taking the j maximising dimWij gives dimVi ≤ dimWi + i. Also maxj dimVij = dimVi,
so taking the j maximising dimVij gives dimVi ≥ dimWi + i. J

I Theorem 4. For any tensor T ,

GR(T ) = codim{(x, y) | T (x, y, ·) = 0} = codim{(x, z) | T (x, ·, z) = 0}
= codim{(y, z) | T (·, y, z) = 0}.

Proof. We apply Theorem 3 to T and to T after swapping y and z to get that the codi-
mensions of {(x, y) | T (x, y, ·) = 0} and {(x, z) | T (x, ·, z) = 0} are equal to minj codim{x |
rank T (x, ·, ·) = j} + j. This proves the first equality. The second equality is proven
similarly. J

I Theorem 5 ([21, special case of Theorem 11.12]). Let X ⊆ Fn1 × Fn2 be the affine cone
over a quasi-projective variety, that is,

X = {(x, y) ∈ Fn1 × Fn2 | f1(x, y) = 0, . . . , fk(x, y) = 0, g1(x, y) 6= 0, . . . , gm(x, y) 6= 0}

where the fi and gi are homogeneous polynomials. Let π : X → Fn1 map (x, y) to x.
Let X0 ⊆ X be an irreducible component. Suppose that the fiber π−1(π(p)) is irreducible for
every p ∈ X0. Then

dimX0 = dim π(X0) + min
p∈X0

dim π−1(π(p)).

4 Geometric rank is between subrank and slice rank

Recall that the subrank Q(T ) of T is the largest number s such that Is ≤ T and the slice
rank SR(T ) is the smallest number r such that T (x, y, z) can be written as a sum of r
trilinear maps of the form f(x)g(y, z) or f(y)g(x, z) or f(z)g(x, y).

I Theorem 6. For any tensor T ,

Q(T ) ≤ GR(T ) ≤ SR(T ).

Theorem 6 will follow from the following basic properties of GR. We will give a more direct
proof of the inequality GR(T ) ≤ SR(T ) in Section 7. Recall from the introduction that for any
two tensors S ∈ Fm1×m2×m3 and T ∈ Fn1×n2×n3 we write S ≤ T if there are matrices A,B,C
such that S = (A,B,C) · T where we define (A,B,C) · T := (

∑
a,b,cAiaBjbCkcTa,b,c)i,j,k.
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I Lemma 7. GR is ≤-monotone: if S ≤ T , then GR(S) ≤ GR(T ).

Proof. Let T ∈ Fn1×n2×n3 . We claim that GR((Id, Id, C) ·T ) ≤ GR(T ) for any C ∈ Fm3×n3 ,
where Id denotes an identity matrix of the appropriate size. From this claim and the symmetry
of GR (Theorem 4), follows the inequalities GR((A, Id, Id) ·T ) ≤ T and GR((Id, B, Id) ·T ) ≤
GR(T ) for any matrices A ∈ Fm1×n1 and B ∈ Fm2×n2 . Chaining these three inequalities
gives that for any two tensors S and T , if S ≤ T , then GR(S) ≤ GR(T ).

We prove the claim. Let S = (Id, Id, C) · T . Let Mk = (Ti,j,k)ij be the 3-slices of T and
let Nk = (Si,j,k)ij be the 3-slices of S. Since S = (Id, Id, C) · T , the matrices N1, . . . , Nm3

are in the linear span of the matrices M1, . . . ,Mn3 . Thus V = {(x, y) | xTM1y = · · · =
xTMn3y = 0} is a subset of W = {(x, y) | xTN1y = · · · = xTNm3y = 0}. Therefore,
dimV ≤ dimW and it follows that GR(S) = codimW ≤ codimV = GR(T ). J

Let T1 ∈ Fm1×m2×m3 and T2 ∈ Fn1×n2×n3 be tensors with 3-slices Ak and Bk respectively.
The direct sum T1 ⊕ T2 ∈ F(m1+n1)×(m2+n2)×(m3+n3) is defined as the tensor with 3-slices
Ak ⊕ 0n1×n2 for k = 1, . . . ,m3 and 0m1×m2 ⊕ Bk for k = m3 + 1, . . . ,m3 + n3 where 0a×b
denotes the zero matrix of size a× b. In other words, T1 ⊕ T2 is the block-diagonal tensor
with blocks T1 and T2.

I Lemma 8. GR is additive under direct sums: GR(T1 ⊕ T2) = GR(T1) + GR(T2).

Proof. Let Ak be the 3-slices of T1 and let Bk be the 3-slices of T2. Let T = T1 ⊕ T2 be the
direct sum with 3-slices Mk. Then

V = {(x, y) | T (x, y, ·) = 0} = {(x, y) | xTM1y = · · · = xTMm3+n3y = 0}

is the cartesian product of

V1 = {(x, y) | xTA1y = · · · = xTAm3y = 0}

and

V2 = {(x, y) | xTB1y = · · · = xTBn3y = 0}.

Thus dimV = dimV1 + dimV2 [21, page 138]. Therefore, GR(T ) = GR(T1) + GR(T2). J

I Lemma 9. GR is sub-additive under element-wise sums: GR(S + T ) ≤ GR(S) + GR(T ).

Proof. Note that S+T ≤ S⊕T . Thus, GR(S+T ) ≤ GR(S⊕T ) = GR(S) + GR(T ), where
the inequality uses Lemma 7, and the equality uses Lemma 8. J

I Lemma 10. If SR(T ) = 1, then GR(T ) = 1.

Proof. It is sufficient to consider a tensor T ∈ F1×n×n with one nonzero slice. Then we have
that T (0,Fn,Fn) = 0, and so GR(T ) = 1 + n− n = 1. J

I Lemma 11. For every r ∈ N we have GR(Ir) = r.

Proof. We have SR(I1) = 1 and so GR(I1) = 1 (Lemma 10). Since Ir is a direct sum of r
copies of I1 and geometric rank is additive under taking the direct sum ⊕ (Lemma 9), we
find that GR(Ir) = rGR(I1) = r. J
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Proof of Theorem 6. We prove that GR(T ) ≤ SR(T ). Let r = SR(T ). Then there are
tensors T1, . . . , Tr so that T =

∑r
i=1 Ti and SR(Ti) = 1. Then also GR(Ti) = 1 (Lemma 10).

Subadditivity of GR under element-wise sums (Lemma 9) gives

GR(T ) ≤
r∑
i=1

GR(Ti) = r = SR(T ).

We prove that Q(T ) ≤ GR(T ). Let s = Q(T ). Then Is ≤ T . We know GR(Is) = s

(Lemma 11). By the ≤-monotonicity of GR (Lemma 7), we have

Q(T ) = s = GR(Is) ≤ GR(T ). J

5 Geometric rank is at least border subrank

In this section we extend the inequality Q(T ) ≤ GR(T ) (Theorem 6) to the approximative
version of subrank, called border subrank. To define border subrank we first define degenera-
tion E, which is the approximative version of restriction ≤. We write S E T , and we say S is
a degeneration of T , if for some e ∈ N we have

S + εS1 + ε2S2 + · · ·+ εeSe = (A(ε), B(ε), C(ε)) · T

for some tensors Si over F and for some matrices A(ε), B(ε), C(ε) whose coefficients are
Laurent polynomials in the formal variable ε. Equivalently, S E T if and only if S is in the
orbit closure G · T where G denotes the group GLn1×GLn2×GLn3 , G ·T denotes the natural
group action that we also used in the definition of ≤, and the closure is taken in the Zariski
topology [11, Theorem 20.24]. (When F = C one may equivalently take the closure in the
Euclidean topology.) Recall that the subrank of T is defined as Q(T ) = max{n ∈ N | In ≤ T}.
The border subrank of T is defined as

Q(T ) = max{n ∈ N | In E T}.

Clearly, Q(T ) ≤ Q(T ).

I Theorem 12. For any tensor T ,

Q(T ) ≤ GR(T ).

To prove Theorem 12 we use the following theorem on upper-semicontinuity of fiber
dimension.

I Theorem 13 ([21, special case of Corollary 11.13]). Let X be the zero set of bi-homogeneous
polynomials, that is,

X = {(a, b) ∈ Fm1 × Fm2 | f1(a, b) = · · · = fk(a, b) = 0}

where the fi(a, b) are polynomials that are homogeneous in both a and b. Let π : X → Fm2

map (a, b) to b. Let Y = π(X) be its image. For any q ∈ Y , let λ(q) = dim(π−1(q)).
Then λ(q) is an upper-semicontinuous function of q, that is, the set {q ∈ Y | λ(q) ≥ m} is
Zariski closed in Y .

I Lemma 14. GR is lower-semicontinuous: for any ni,m ∈ N the set {T ∈ Fn1×n2×n3 |
GR(T ) ≤ m} is Zariski closed.
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Proof. We define the set

X = {(T, x, y) ∈ Fn1×n2×n3 × Fn1 × Fn2 | T (x, y,Fn3) = 0}.

Let π : X → Fn1×n2×n3 map (T, x, y) to T . Let Y = π(X) = Fn1×n2×n3 be the image of π.
For any T ∈ Y let λ(T ) := dim(π−1(T )). Then λ(T ) is an upper-semicontinuous function
of T in the Zariski topology on Y by Theorem 13. This means that the set {T ∈ Fn1×n2×n3 |
λ(T ) ≥ m} is closed for every m ∈ N. It follows that {T ∈ Fn1×n2×n3 | GR(T ) ≤ m} is
closed for every m ∈ N. J

I Remark 15. A well-known example of a lower-semicontinuous function is matrix rank.
Indeed, the set of matrices of rank at most m is the zero set of the determinants of all
(m + 1) × (m + 1) submatrices. For geometric rank we do not know an explicit set of
generators for the vanishing ideal of {T ∈ Fn1×n2×n3 | GR(T ) ≤ m}. For slice rank the set
{T ∈ Fn1×n2×n3 | SR(T ) ≤ m} is also known to be Zariski closed and explicit vanishing
polynomials for this variety were recently obtained by Bläser, Ikenmeyer, Lysikov, Pandey
and Schreyer [9].

I Lemma 16. GR is E-monotone: if S E T , then GR(S) ≤ GR(T )

Proof. For all g ∈ G we have GR(g · T ) = GR(T ) by Lemma 7. The set {T ′ | GR(T ′) ≤
GR(T )} is Zariski closed by Lemma 14. It contains the orbit G · T and hence also its Zariski
closure G · T , that is,

{T ′ | T ′ E T} = G · T ⊆ {T ′ | GR(T ′) ≤ GR(T )}.

Therefore, GR(S) ≤ GR(T ). J

Proof of Theorem 12. Let n = Q(T ). Then InET by the definition of Q, and so n ≤ GR(T )
by Lemma 16. This proves the claim. J

6 The border subrank of matrix multiplication

In the context of constructing fast matrix multiplication algorithms, Strassen [31, Theorem 6.6]
proved that for any positive integers e ≤ h ≤ ` the border subrank of the matrix multiplication
tensor 〈e, h, `〉 is lower bounded by

Q(〈e, h, `〉) ≥

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

(1)

Here 〈e, h, `〉 is the tensor that corresponds to taking the trace of the product of an e× h
matrix, an h× ` matrix and an `× e matrix. We prove using the geometric rank that this
lower bound is optimal.

I Theorem 17. For any positive integers e ≤ h ≤ `

Q(〈e, h, `〉) = GR(〈e, h, `〉) =

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

In particular, we have Q(〈m,m,m〉) = GR(〈m,m,m〉) = d 3
4m

2e for any m ∈ N.
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Proof. Since Q(〈e, h, `〉) ≤ GR(〈e, h, `〉) (Theorem 12) and since we have the lower bound in
(1), it suffices to show that GR(〈e, h, `〉) is at most eh− b(e+ h− `)2/4c if e+ h ≥ ` and at
most eh otherwise.

Let T = 〈e, h, `〉. Let V = {(x, y) ∈ Feh × Fh` | T (x, y, ·) = 0}. Then GR(T ) =
eh+ h`− dimV . From Theorem 3 it follows that

dimV = max
i

dim{x ∈ Feh | dim{y ∈ Fh` | T (x, y, ·) = 0} = i}+ i. (2)

We now think of Feh, Fh` and F`e as the matrix spaces Fe×h, Fh×` and F`×e. Then T

gives the trilinear map T : Fe×h × Fh×` × F`×e → F : (X,Y, Z) 7→ Tr(XY Z). Therefore,
T (X,Y, ·) = 0 if and only if XY = 0. If the rank of X as an e× h matrix equals r, then

dim{Y ∈ Fh×` | T (X,Y, ·) = 0} = (h− r)`,

since Y is any matrix with columns from ker(X). We have

dim{X ∈ Fe×h | rank(X) = r} = er + (h− r)r.

Thus the relevant values of i in (2) are of the form i = (h− r)` and we have that

dimV = max
r

dim{X ∈ Fe×h | rankX = r}+ (h− r)`

= max
r
er + (h− r)r + (h− r)`

= max
r
f(r) + h`

where f(r) = r(∆− r) with ∆ := e+ h− `. Thus,

GR(T ) = eh−max
r
f(r).

Over the integers, the function f attains its maximum at b∆
2 c (and at d∆

2 e), but this may
be outside the interval [0, e] that we want to maximise over (recall e ≤ h ≤ l). Observe
that if ∆ ≥ 0 then e ≥ ∆/2 ≥ 0, meaning that f does attain its global maximum in the
interval [0, e]. On the other hand, if ∆ ≤ 0 then r(∆− r) ≤ 0 = f(0) for every r ≥ 0, so the
maximum of f in the interval [0, e] is at the endpoint r = 0. Summarizing,

max
0≤r≤e

f(r) =

b∆2

4 c if ∆ ≥ 0,
0 otherwise.

(3)

This completes the proof. J

I Remark 18. Theorem 17 gives the upper bound Q(〈m,m,m〉) ≤ Q(〈m,m,m〉) = d 3
4m

2e
on the subrank of matrix multiplication Q(〈m,m,m〉). This improves the previously best
known upper bound Q(〈m,m,m〉) ≤ m2 −m+ 1 from [12, Equation 25].
I Remark 19. Geometric rank GR is not sub-multiplicative under the tensor Kronecker
product ⊗. We give an example. The matrix multiplication tensor 〈m,m,m〉 can be written as
the product 〈m,m,m〉 = 〈m, 1, 1〉⊗ 〈1,m, 1〉⊗ 〈1, 1,m〉 and GR(〈m, 1, 1〉) = GR(〈1,m, 1〉) =
GR(〈1, 1,m〉) = 1 whereas GR(〈m,m,m〉) = d 3

4m
2e by Theorem 17.

I Remark 20. Geometric rank GR is not the same as subrank Q or border subrank Q. For
example, for the trilinear map W (x1, x2, y1, y2, z1, z2) = x1y1z2 + x1y2z1 + x2y1z1 we find
GR(W ) = 2 (see the example in the introduction), whereas Q(W ) = Q(W ) = 1. The latter
follows from the fact that ˜Q(W ) = 1.81... [33], where ˜Q(T ) := limn→∞Q(T⊗n)1/n is the
asymptotic subrank of T , since Q(T ) ≤ ˜Q(T ) [31].
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I Remark 21. Geometric rank GR is not super-multiplicative under the tensor Kronecker
product ⊗. Here is an example. Let ˜SR(T ) := limn→∞ SR(T⊗n)1/n and let ˜GR(T ) :=
limn→∞GR(T⊗n)1/n, whenever these limits are defined. From the fact that Q(T ) ≤
GR(T ) ≤ SR(T ) and the fact that ˜Q(W ) = ˜SR(W ) = 1.81... [13] it follows that ˜GR(W ) =
1.81.., whereas GR(W ) = 2. We conclude that GR is not super-multiplicative. We have seen
already in Remark 19 that GR is not sub-multiplicative.
I Remark 22. Geometric rank GR is not the same as slice rank SR. For example, for the
matrix multiplication tensor 〈m,m,m〉 we find that GR(〈m,m,m〉) = d 3

4m
2e (Theorem 17),

whereas it was known that SR(〈m,m,m〉) = m2 [7, Remark 4.9].

7 Geometric rank versus slice rank

In Section 4 we proved, by chaining the basic properties of geometric rank, that geometric
rank is at most slice rank, that is, GR(T ) ≤ SR(T ). What is the largest gap between
GR(T ) and SR(T )? Motivated by this question, and motivated by the analogous question
for analytic rank instead of geometric rank that we discussed in the introduction we give a
direct proof of the inequality GR(T ) ≤ SR(T ).

In fact, we prove a chain of inequalities GR(T ) ≤ ZR(T ) ≤ SR(T ) where ZR(T ) is defined
as follows. We will use the following notation for a tensor T ∈ Fn1×n2×n3 ;

V(T ) = {(x, y) ∈ Fn1×n2 | ∀z ∈ Fn3 : T (x, y, z) = 0}. (4)

Moreover, we use the following standard notation for the variety cut out by polynomials
f1, . . . , fs;

V(f1, . . . , fs) = {x | f1(x) = · · · = fs(x) = 0}. (5)

Let F[x,y] = F[x1, . . . , xn1 , y1, . . . , yn2 ] and let

F[x,y, z] = F[x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 ].

Let F[x,y]{(0,1),(1,0),(1,1)} ⊆ F[x,y] be the subset of polynomials that are bi-homogeneous of
bi-degree (0, 1), (1, 0) or (1, 1). That is, the set F[x,y]{(0,1),(1,0),(1,1)} contains the polynomials
in F[x1, . . . , xn1 ] that are homogeneous of degree 1, and the polynomials in F[y1, . . . , yn2 ]
that are homogeneous of degree 1, and the polynomials in F[x,y] that are homogeneous of
degree 1 in x1, . . . , xn1 and homogeneous of degree 1 in y1, . . . , yn2 . For any tensor T we
define

ZR(T ) = min
{
s ∈ N | ∃f1, . . . , fs ∈ F[x,y]{(0,1),(1,0),(1,1)} : V(f1, . . . , fs) ⊆ V(T )

}
.

I Theorem 23. Let T be a tensor. Then GR(T ) ≤ ZR(T ) ≤ SR(T ).

Proof. We prove that ZR(T ) ≤ SR(T ). Let r = SR(T ). We view T as a polynomial
T ∈ F[x,y, z]. Write T =

∑r
i=1 Ti with SR(Ti) = 1 for every i. Then Ti = figi for

some fi ∈ F[x,y]{(0,1),(1,0),(1,1)} and gi ∈ F[x,y, z]. We claim that V(f1, . . . , fr) ⊆ V(T ).
Indeed, if (x, y) ∈ V(f1, . . . , fr), then Ti(x, y, z) = 0 for every i and every z, and therefore
T (x, y, z) = 0 for every z. We conclude that ZR(T ) ≤ r = SR(T ).

We prove that GR(T ) ≤ ZR(T ). Let s = ZR(T ). Then there are s polynomials
f1, . . . , fs ∈ F[x,y]{(0,1),(1,0),(1,1)} such that V(f1, . . . , fs) ⊆ V(T ). We have

GR(T ) = codim V(T ) ≤ codim V(f1, . . . , fs) ≤ s = ZR(T ),

where the first inequality follows from the containment V(f1, . . . , fs) ⊆ V(T ) which implies
that dim V(f1, . . . , fs) ≤ dim V(T ). J

CCC 2020



35:16 Geometric Rank of Tensors and Subrank of Matrix Multiplication

8 Geometric rank as liminf of analytic rank

For a tensor T over Z and a prime number p, we denote by Tp the 3-tensor over Fp obtained
by reducing all coefficients of T modulo p. In this section we prove the following tight
relationship between AR(Tp) and GR(T ).

I Theorem 24. For every tensor T over Z we have

lim inf
p→∞

AR(Tp) = GR(T ).

The starting point for the proof of Theorem 24 is the important observation that analytic
rank can be written in terms of the number of Fp-points of the algebraic variety V(Tp), that
is, for any tensor T ∈ Zn1×n2×n3 ,

AR(Tp) = n1 + n2 − logp |V(Tp)(Fp)| .

For the proof of Theorem 24 we will need to prove three auxiliary results: that the
Bertini–Noether Theorem can be extended to reducible varieties (Theorem 26 below), that
prime fields are rich enough infinitely often to contain any finite set of algebraic numbers
(Lemma 28 below), and that for any variety satisfying a mild assumption, its number of
rational points in a finite field is determined by its dimension (Lemma 31 below).

8.1 Bertini–Noether Theorem
In this subsection we extend the Bertini–Noether Theorem to reducible varieties. The
Bertini–Noether Theorem says that, roughly, if an variety is irreducible then applying a
homomorphism on the defining equations – for example the modulo-p homomorphism –
typically does not change its invariants (see Proposition 10.4.2 in [18]).

I Theorem 25 (Bertini–Noether Theorem [18]). Let f1, . . . , fm ∈ R[x], where R is an integral
domain, such that V = V(f1, . . . , fm) is (absolutely) irreducible. There exists a nonzero
c ∈ R such that for every homomorphism φ : R → K into a field K, if φ(c) 6= 0 then
V(φ(f1), . . . , φ(fm)) ⊆ K is (absolutely) irreducible of dimension dimV and degree deg V .2 3

The version of the Berini-Noether Theorem that we need is as follows. We observe that
any variety defined over a field F, where F is the field of fractions of an integral domain R,
can also be defined over R, by clearing denominators. For example, any variety defined over
the algebraic numbers Q can also be defined over the algebraic integers Z.

I Theorem 26 (Extended Bertini–Noether Theorem). Let f1, . . . , fm ∈ R[x], where R is an
integrally closed domain.4 There exists a nonzero C ∈ R such that for every homomorphism
ψ : R→ K into a field K, if ψ(C) 6= 0 then V ψ := V(ψ(f1), . . . , ψ(fm)) ⊆ K is of dimension
dimV and degree deg V . Moreover, if the irreducible components of V(f1, . . . , fm) are
V1, . . . , Vk, where I(Vi) = 〈fi,j〉j with fi,j ∈ R[x], then the irreducible components of V ψ are
V ψ1 , . . . , V

ψ
k , where V ψi = V(ψ(fi,j)j).

2 φ(fi) ∈ K[x] is obtained by applying φ on each of the coefficients of fi.
3 That deg V remains unchanged follows along similar lines to the proof for dimV (see Corollary 9.2.2

in [18]).
4 The field of fractions of the integral domain R is algebraically closed.
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For the proof of Theorem 26 we will need some notation and a standard auxiliary result,
as follows. Let R be a (commutative) ring. For a ideal I in R, the radical of I (in R) is the
ideal

√
I = {f ∈ R | ∃n ∈ N : fn ∈ I}. Moreover, for a ring homomorphism ψ : R → R′ we

denote ψ(I) = 〈ψ(f) | f ∈ I〉, which is an ideal in R′.

I Lemma 27. Let I be an ideal in a ring R, and let ψ : R→ R′ be a ring homomorphism.
Then

√
ψ(
√
I) =

√
ψ(I).

Proof. If p ∈
√
ψ(I) then there is an integer n such that pn ∈ ψ(I) ⊆ ψ(

√
I), hence

p ∈
√
ψ(
√
I).

Let p ∈
√
ψ(
√
I), meaning there is an integer n such that pn ∈ ψ(

√
I). Thus, we have

pn =
∑m
i=1 giψ(fi) for some m ∈ N, gi ∈ R′ and fi ∈

√
I. Note that for every i there is an

integer ki such that fki
i ∈ I. Let k = max1≤i≤m ki. Then

(pn)km =
∑

d1,...,dm

d1+···+dm=km

m∏
i=1

(giψ(fi))di .

Observe that every summand has a multiplicand (giψ(fi))di with di ≥ k ≥ ki, which lies
in ψ(I) since ψ(fi)di = ψ(fdi

i ) and fdi
i = fdi−ki

i fki
i ∈ I. We deduce that pnkm ∈ ψ(I), being

a sum of members of the ideal ψ(I). Hence p ∈
√
ψ(I), completing the proof. J

Proof of Theorem 26. We begin with some notation. Let F be the (algebraically closed)
field of fractions of R. For any ideal J in F[x] we denote by JR := J ∩R[x] the corresponding
ideal in R[x]. With a slight abuse of notation, we abbreviate ψ(J) := ψ(JR) (which is an
ideal in K[x]). Furthermore, we take

√
JR to mean the radical ideal of J in R[x]. Observe

that
√
JR = (

√
J)R; indeed, f ∈ (

√
J)R iff fn ∈ J and f ∈ R[x] iff f ∈

√
JR.

Let I = 〈f1, . . . , fm〉 and Ii = 〈fi,j〉j be ideals in F[x]. We will show that√
ψ(I) =

√∏
ψ(Ii) . (6)

We have V(I) =
⋃
i V(Ii) = V(

∏
i Ii). By Hilbert’s Nullstellensatz,

√
I =

√∏
i Ii. Next,

and for the rest of this paragraph, we switch from ideals in F[x] to ideals in R[x]. We have

√
IR = (

√
I)R =

(√∏
Ii

)R
=
√∏

IRi . (7)

We deduce (6) as follows;

√
ψ(I) =

√
ψ(IR) =

√
ψ(
√
IR) =

√
ψ
(√∏

IRi
)

=
√
ψ
(∏

IRi
)

=
√∏

ψ(IRi )

=
√∏

ψ(Ii) ,

where the second equality follows from Lemma 27, the third follows from (7), the fourth
again from Lemma 27, and the fifth using the fact that ψ is a homomorphism. It follows that

V ψ := V(ψ(I)) = V(
√
ψ(I)) = V

(√∏
ψ(Ii)

)
= V

(∏
ψ(Ii)

)
=
⋃

V(ψ(Ii)) =
⋃
V ψi ,

where (6) is used in the third equality.
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Recall that Vi is an irreducible variety defined over R. For each i, applying Theorem 25
on any generating set of I(Vi) in R[x] and on ψ implies that there is a nonzero ci ∈ R

such that if ψ(ci) 6= 0 then V ψi is irreducible, of dimension dim Vψ
i = dim Vi and degree

deg V ψi = deg Vi. Let C =
∏
i ci. Thus, if ψ(C) 6= 0 then ψ(ci) 6= 0 for all i, which implies

that V ψ =
⋃
i V

ψ
i is a union of irreducible varieties, and moreover,

dimV ψ = max
i

dimV ψi = max
i

dimVi = dimV and

deg V ψ =
∑
i

deg V ψi =
∑
i

deg Vi = deg V.

This completes the proof. J

8.2 Modular roots
In this subsection we prove that, intuitively, every finite set of algebraic integers is contained
in Fp, for infinitely many primes p. We say that there is a positive density of primes satisfying
a property P ⊆ P (here P is the set of prime numbers) if limn→∞ |P ∩ [n]|/|P∩[n]| > 0.

I Lemma 28. For every finite set of algebraic integers S there is a positive density of
primes p for which there is a homomorphism from Z[S] to Fp.

We will use (a special case of) the Primitive Element Theorem (see, e.g., Section 6.10
in [35]).

I Theorem 29 (Primitive Element Theorem in Characteristic 0 [35]). Let K be a finite extension
of a field F of characteristic 0. Then K = F(α) for some α ∈ K.

For example, Q(
√

2,
√

3) = Q(
√

2 +
√

3).
We will also rely on the following result (see Berend and Bilu [4], Theorem 2).

I Theorem 30 ([4]). For every polynomial P ∈ Z[x] there is a positive density of prime
numbers p such that P has a root modulo p.

Proof of Lemma 28. Consider Q(S), the field extension of the rationals Q obtained by
adjoining all the elements of S. By the Primitive Element Theorem (Theorem 29) there exists
α ∈ Q(S) such that Q(S) = Q(α) = Q[α]. Thus, for every αi ∈ S there is a (univariate)
polynomial fi ∈ Q[x] such that αi = fi(α). We denote by P be the minimal polynomial of α
over Q; by clearing denominators, we assume without loss of generality that P ∈ Z[x].

Let p be a prime number such that P has a root ap modulo p and, moreover, p is
larger than the absolute value of the coefficient denominators of every fi. By Theorem 30,
applied on P , there is a positive density of primes satisfying both conditions. Note that fi
(mod p) is a well-defined polynomial in Fp[x] by our second condition on p. Consider the
function φp that maps each αi = fi(α) ∈ S to fi(ap) (mod p). Since every member of Z[S]
is a multivariate polynomial in the variables αi with integer coefficients, we deduce from our
first condition on p that the function φp extends to a homomorphism φp : Z[S]→ Fp. This
completes the proof. J

8.3 Putting everything together
We will also need the following asymptotically-tight estimate on the number of rational
points in a finite field.
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I Lemma 31. For every variety V defined over a finite field F, if V has an irreducible
component of dimension dimV that is also defined over F then

|V (F)| = ΘdegV, n(|F|dimV ).

The proof of Lemma 31 will follow by combining the Lang-Weil Theorem [25] with a
Schwartz-Zippel-type upper bound (see Claim 7.2 in [15]).

I Theorem 32 (Lang–Weil Bound [25]). For every (absolutely) irreducible variety V defined
over a finite field F,

|V (F)| = |F|dimV (1 +OdegV, n(|F|−1/2)).

I Lemma 33 (Generalized Schwartz–Zippel lemma [15]). For every variety V defined over a
finite field F, |V (F)| ≤ deg(V ) · |F|dimV .

Proof of Lemma 31. For the upper bound, apply Lemma 33 on V . For the lower bound,
let U be an irreducible component of V of dimension dimV that is defined over F, as
guaranteed by the statement, and apply Theorem 32 on U to obtain |V (F)| ≥ |U(F)| =
ΩdegU, n(|F|dimU ) = ΩdegV, n(|F|dimV ). J

We are now ready to prove the main result of this section.

Proof of Theorem 24. Put d = dim V(T ) and r = deg V(T ). We will use the notation
in (4) and (5). We will show that V(T ) ⊆ QN and V(Tp) ⊆ Fp

N (here N = n1 + n2) are
related, for infinitely many prime numbers p, in the following sense;

|V(Tp)(Fp)| = Θr,N (pd). (8)

This would complete the proof since for any such prime p,

AR(Tp) = − logp
( |V(Tp)(Fp)|

|Fp|N
)

= N − logp |V(Tp)(Fp)| = GR(T )−Θr,N

( 1
log p

)
,

where the last inequality follows from (8) using the fact that N − d = codim V(T ) = GR(T ).
Thus, proving (8) would imply that lim infp→∞AR(Tp) = GR(T ), as needed.

Let U be an irreducible component of V(T ) of dimension d. Note that U is defined
over some finite extension Z[S] of the integers, where S is a finite set of algebraic integers.
Lemma 28, applied on S, implies that for a positive density of prime numbers p there
is a homomorphism φp : Z[S] → Fp. Thus, if I(U) = V(fj)j with fj ∈ Z[S][x] then
Uφp := V(φp(fj)j) is defined over Fp (rather than Fp). Let p be any such prime. Theorem 26,
applied on R = Z, K = Fp and on any extension ψp of φp to a homomorphism from Z to Fp,
implies that there is 0 6= C ∈ Z such that for any prime p with ψp(C) 6= 0, we have that
dim V(Tp) = d, deg V(Tp) = r, and that Uψp = Uφp is an irreducible component of V(Tp)
of dimension d = dim V(Tp). We claim that the condition ψp(C) 6= 0 is satisfied for all but
finitely many primes p; indeed, since ψp(C) is a root modulo p of the minimal polynomial
of C over Z, it holds that ψp(C) = 0 if and only if the constant term c of that polynomial
is 0 modulo p, which is never the case for p > |c| (as c 6= 0). Lemma 31 therefore implies,
together with all of the above, that for a positive density of primes p we have

|V(Tp)(Fp)| = Θdeg V(Tp), N (pdim V(Tp)) = Θr,N (pd).

This proves (8), and thus we are done. J
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