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Abstract
The central levels problem asserts that the subgraph of the (2m+ 1)-dimensional hypercube induced
by all bitstrings with at least m+ 1− ` many 1s and at most m+ ` many 1s, i.e., the vertices in the
middle 2` levels, has a Hamilton cycle for any m ≥ 1 and 1 ≤ ` ≤ m+ 1. This problem was raised
independently by Savage, by Gregor and Škrekovski, and by Shen and Williams, and it is a common
generalization of the well-known middle levels problem, namely the case ` = 1, and classical binary
Gray codes, namely the case ` = m+ 1. In this paper we present a general constructive solution
of the central levels problem. Our results also imply the existence of optimal cycles through any
sequence of ` consecutive levels in the n-dimensional hypercube for any n ≥ 1 and 1 ≤ ` ≤ n+ 1.
Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle
through the n-dimensional hypercube, n ≥ 2, that contains the symmetric chain decomposition
constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing
the corresponding Gray code.
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1 Introduction

The n-dimensional hypercube, or n-cube for short, is the graph Qn formed by all {0, 1}-strings
of length n, with an edge between any two bitstrings that differ in exactly one bit. This
family of graphs has numerous applications in computer science and discrete mathematics,
many of which are tied to famous problems and conjectures, such as the sensitivity conjecture
of Nisan and Szegedy [29], recently proved by Huang [23]; Erdős and Guys’ crossing number
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problem [8] (see [9]); Füredi’s conjecture [13] on equal-size chain partitions (see [41]); Shearer
and Kleitman’s conjecture [37] on orthogonal symmetric chain decompositions (see [39]); the
Ruskey-Savage problem [32] on matching extendability (see [11, 12]), and the conjectures of
Norine, and Feder and Subi on edge-antipodal colorings [10, 30], to name just a few.

The focus of this paper are Hamilton cycles in the n-cube and its subgraphs. A Hamilton
cycle in a graph is a cycle that visits every vertex exactly once, and in the context of the
n-cube, such a cycle is often referred to as a Gray code. Gray codes have found applications
in signal processing, circuit testing, hashing, data compression, experimental design, and in
solving puzzles like the Towers of Hanoi or the Chinese rings; see Savage’s survey [35]. They
are also fundamental for efficient exhaustive generation algorithms, a topic that is covered in
depth in the most recent volume of Knuth’s ‘The Art of Computer Programming’ [25].

To start with, it is an easy exercise to show that the n-cube has a Hamilton cycle for any
n ≥ 2. One such cycle is given by the classical binary reflected Gray code Γn [14], defined in-
ductively by Γ1 := 0, 1 and Γn+1 := 0Γn, 1ΓR

n , where ΓR denotes the reversal of the sequence Γ,
and 0Γ or 1Γ means prefixing all strings in the sequence Γ by 0 or 1, respectively. For instance,
this construction gives Γ2 = 00, 01, 11, 10 and Γ3 = 000, 001, 011, 010, 110, 111, 101, 100. The
problem of finding a Hamilton cycle becomes considerably harder when we restrict our
attention to subgraphs of the cube induced by a sequence of consecutive levels, where the
k-th level of Qn, 0 ≤ k ≤ n, is the set of all bitstrings with exactly k many 1s in them. One
such instance is the famous middle levels problem, raised in the 1980s by Havel [22] and
independently by Buck and Wiedemann [4], which asks for a Hamilton cycle in the subgraph
of the (2m+ 1)-cube induced by levels m and m+ 1. This problem received considerable
attention in the literature, and a construction of such a cycle for all m ≥ 1 was provided
only recently by Mütze [27]. A much simpler construction was described subsequently by
Gregor, Mütze, and Nummenpalo [19].

1.1 Our results
In this paper we consider the central levels problem, a broad generalization of the middle
levels problem: Does the subgraph of the (2m+ 1)-cube induced by the middle 2` levels, i.e.,
by levels m+ 1− `, . . . ,m+ `, have a Hamilton cycle for any m ≥ 1 and 1 ≤ ` ≤ m+ 1? This
problem was raised independently by Savage [34], Gregor and Škrekovski [20], and by Shen
and Williams [38]. Clearly, the case ` = 1 of the central levels problem is the aforementioned
middle levels problem (solved in [27]). Moreover, the case ` = 2 was solved affirmatively in a
paper by Gregor, Jäger, Mütze, Sawada, and Wille [16] presented at ICALP 2018. Also, the
case ` = m+ 1 is established by the binary reflected Gray code Γ2m+1. Furthermore, the
case ` = m was solved by El-Hashash and Hassan [7], and in a more general setting by Locke
and Stong [26], and the case ` = m− 1 was settled in [20].

The main contribution of this paper is to solve the central levels problem affirmatively in
full generality; see Figure 1 (a)–(d).

I Theorem 1. For any m ≥ 1 and 1 ≤ ` ≤ m+ 1, the subgraph of the (2m+ 1)-cube induced
by the middle 2` levels has a Hamilton cycle.

The most general question in this context is to ask for a Hamilton cycle in Qn that visits
all vertices in any sequence of ` consecutive levels, i.e., the levels need not be symmetric
around the middle, and the dimension n needs not be odd. These graphs are all bipartite,
and to circumvent the imbalances that prevent the existence of a Hamilton cycle for general n
and `, we have to slightly generalize the notion of Hamilton cycles: Firstly, a saturating cycle
in a bipartite graph is a cycle that visits all vertices in the smaller partition class (if it has
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size 1, then a single edge is considered to be a cycle). Secondly, a tight enumeration in a
(bipartite) subgraph of the cube is a cyclic listing of all its vertices where the total number
of bits flipped is exactly the number of vertices plus the difference in size between the two
partition classes. Clearly, if both partition classes have the same size, these two notions are
equal to a Hamilton cycle. In fact, all cases of this more general problem, except the central
levels problem, were solved already in [18], some of them conditional on a “yes” answer to
the central levels problem. Combining Theorem 1 with these previous results, we now also
obtain an unconditional result for this more general question.

I Corollary 2. For any n ≥ 1 and 1 ≤ ` ≤ n+ 1, the subgraph of the n-cube induced by any
sequence of ` consecutive levels has both a saturating cycle and a tight enumeration.

An essential tool in our proof of Theorem 1 are symmetric chain decompositions. This is a
well-known concept from the theory of posets, which we now define specifically for the n-cube
using graph-theoretic language. A symmetric chain in Qn is a path (xk, xk+1, . . . , xn−k) in
the n-cube where xi is from level i for all k ≤ i ≤ n−k, and a symmetric chain decomposition,
or SCD for short, is a partition of the vertices of Qn into symmetric chains. It is well-known
that the n-cube has an SCD for all n ≥ 1, and the simplest explicit construction was given by
Greene and Kleitman [15] (see Section 2.2 below). Streib and Trotter [40] first investigated
the interplay between SCDs and Hamilton cycles in the n-cube, and they described an SCD
in Qn that can be extended to a Hamilton cycle; see Figure 1 (e). Their SCD, however, is
different from the aforementioned Greene-Kleitman SCD. In this paper, we extend Streib
and Trotter’s result as follows; see Figure 1 (f).

I Theorem 3. For any n ≥ 2, the Greene-Kleitman SCD can be extended to a Hamilton
cycle in Qn.

The Greene-Kleitman SCD has found a large number of applications in the literature, e.g.,
to construct symmetric Venn diagrams [21, 33], to solve the Littlewood-Offord problem [3,
Chap. 4], or to learn monotone Boolean functions [25, Sec. 7.2.1.6] (see also [1, 6, 31, 37, 42]).
Knowing that this SCD extends to a Hamilton cycle and that it is a crucial ingredient for
solving the general central levels problem adds to this list of interesting properties and
applications. Observe also that a Hamilton cycle that extends an SCD has the intriguing
property that it minimizes the number of changes of direction from moving up to moving
down, or vice versa, between consecutive levels in the cube. For comparison, the monotone
paths constructed by Savage and Winkler [36] maximize these changes.

Motivated by these results and by the aforementioned conjecture of Ruskey and Savage [32]
that every matching in Qn extends to a Hamilton cycle, we raise the following conjecture:

I Conjecture 4. Every SCD can be extended to a Hamilton cycle in Qn.

Although every SCD of Qn is the union of two matchings, there are matchings in Qn

that do not extend to an SCD; take for example the two edges obtained by starting at
the vertices 0n and 1n and flipping the same bit. Consequently, an affirmative answer to
Conjecture 4 would cover only some cases of the Ruskey-Savage conjecture.

1.2 Efficient algorithms
Our proof of Theorem 1 is constructive and translates directly into an algorithm for computing
the Hamilton cycle in time and space that are polynomial in the size of the graph (the
middle 2` levels of Qn, n := 2m+ 1), which is exponential in n. Often, it is desirable to have

ICALP 2020



60:4 On the Central Levels Problem

(a)
` = 1

(b)
` = 2

(c)
` = 3

(d)
` = 4

(e)
Streib-
Trotter

(f)
Greene-
Kleitman

Figure 1 (a)–(d) The Hamilton cycles in Q7,` for ` = 1, 2, 3, 4 constructed as in our proof of
Theorem 1. (e) The Hamilton cycle in Q7 containing an SCD obtained from the Streib-Trotter
construction, with symmetric chains highlighted on the side. (f) The Hamilton cycle in Q7 containing
the Greene-Kleitman SCD obtained from our proof of Theorem 3. In this figure, 1-bits are drawn as
black squares, 0-bits as white squares.



P. Gregor, O. Mička, and T. Mütze 60:5

a “local” algorithm that uses only time and space that are polynomial in n. Ideally, one
might hope for O(n) space to store the current bitstring and some additional data structures,
and O(1) time to compute the next bitstring on the cycle. Such algorithms are known for
the binary reflected Gray code Γn [2], and for the middle levels problem [28], i.e., for the
extreme cases ` = m + 1 and ` = 1 of the central levels problem. There are fundamental
obstacles that prevent us to obtain such a local algorithm from our proof, and it remains
a challenging open problem to find such an algorithm. Our Theorem 3 on the other hand,
can be translated into a simple algorithm that uses only O(n) space and O(1) time in every
iteration to compute the next bitstring along the Hamilton cycle. A pseudocode description
of this algorithm is available in [17]. We also implemented it in C++, available for download
and for demonstration on the Combinatorial Object Server [5].

1.3 Proof ideas
We first describe the ideas for proving Theorem 1. For any m ≥ 1 we define n := 2m+ 1, and
for 1 ≤ ` ≤ m+ 1 we let Qn,` denote the subgraph of Qn induced by the middle 2` levels.
To prove that Qn,` has a Hamilton cycle for general m and `, we combine and generalize the
tools and techniques developed for the cases ` = 1 and ` = 2 in [19] and [16], respectively.
Our proof proceeds in two steps: In a first step, we construct a cycle factor in Qn,`, i.e., a
collection of disjoint cycles which together visit all vertices of Qn,`. In a second step, we use
local modifications to join the cycles in the factor to a single Hamilton cycle. Essentially,
this technique reduces the Hamiltonicity problem in Qn,` to proving that a suitably defined
auxiliary graph is connected, which is much easier.

In fact, the predecessor paper [16] already proved the existence of a cycle factor in Qn,`,
but this construction does not seem to yield a factor that would be amenable to analysis.
In this paper, we therefore construct another cycle factor in Qn,`, based on modifying the
aforementioned Greene-Kleitman SCD of Qn by the lexical matchings introduced by Kierstead
and Trotter [24]. The resulting cycle factor in Qn,` has a rich structure, in particular the
number of cycles and their lengths can be described combinatorially.

The simplest way to join two cycles C and C ′ from this factor to a single cycle is to
consider a 4-cycle F that shares exactly one edge with each of the cycles C and C ′ (the other
two edges of F must then go between C and C ′), and to take the symmetric difference of
the edge sets of C ∪ C ′ and of F , yielding a single cycle (C ∪ C ′)4 F on the same vertex
set as C ∪ C ′. We refer to such a cycle F as a flipping 4-cycle. For example, if we interpret
the binary reflected Gray code Γn as a cycle in Qn, we see that Γn+1 = (0Γn ∪ 1ΓR

n )4 F

where F is the 4-cycle F = 0n+1, 010n−1, 110n−1, 10n. In addition to flipping 4-cycles, we
also use flipping 6-cycles, which intersect with the two cycles to be joined in a slightly
more complicated way, albeit with the same effect of joining them to a single cycle. The
most technical aspect of this part of the proof is to ensure that all flipping cycles used are
edge-disjoint, so that the joining operations do not interfere with each other.

To prove Theorem 3, we proceed by induction from dimension n to n+ 2, treating the
cases of even and odd n separately. We first specify a particular ordering of all chains
of the Greene-Kleitman SCD, and then show that this ordering admits a matching that
alternatingly joins the bottom or top vertices of any two consecutive chains in our ordering.
In fact, there is a close relation between our proofs of Theorem 1 and 3: The aforementioned
construction of a cycle factor in Qn,` is particularly nice for ` = m+ 1, i.e., for the case where
we consider the entire cube. Specifically, in this case our cycle factor contains all chains
from the Greene-Kleitman SCD. These cycles can be joined to a single Hamilton cycle in
such a way, so as to give exactly the aforementioned Hamilton cycle constructed for proving
Theorem 3.

ICALP 2020
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1.4 Outline of this paper

In Section 2 we discuss the Greene-Kleitman SCD and lexical matchings, and collect some
other preliminaries. In Section 3 we describe our construction of a cycle factor in Qn,`. Due
to space constraints, in this extended abstract we are unable to provide the full details of
the analysis of this cycle factor, and how to join its cycles to a Hamilton cycle. We rather
give an informal high-level sketch of these steps in Section 4. In Section 5 we present our
proof of Theorem 3. The omitted proof details, together with the pseudocode description of
the corresponding loopless algorithm can be found in [17].

2 Preliminaries

For the reader’s convenience, important notations that are introduced in the following and
used repeatedly in the paper are summarized in Table 1 at the end of this paper.

2.1 Bitstrings and lattice paths

For any string x and any integer k ≥ 0, we let xk denote the concatenation of k copies of x.
We often interpret a bitstring x as a path in the integer lattice Z2 starting at the origin (0, 0),
where every 0-bit is interpreted as a �-step that changes the current coordinate by (+1,−1)
and every 1-bit is interpreted as an �-step that changes the current coordinate by (+1,+1);
see Figure 2.

x = 00011011010011 ∈ D14

Figure 2 The correspondence between bitstrings (top) and lattice paths (bottom).

Let D2k denote the set of bitstrings with exactly k many 1s and k many 0s, such that
in every prefix, the number of 0s is at least as large as the number of 1s. We also define
D :=

⋃
k≥0 D2k. Note that D0 = {ε}, where ε denotes the empty bitstring. In terms of

lattice paths, D corresponds to so-called Dyck paths that never move above the line y = 0
and end on this line. If a lattice path x contains a substring u ∈ D, then we refer to this
substring u as a valley in x.

2.2 The Greene-Kleitman SCD

We now describe Greene and Kleitman’s [15] construction of an SCD in the n-cube; see
Figure 3. For any vertex x of the n-cube, we interpret the 0s in x as opening brackets and
the 1s as closing brackets. By matching closest pairs of opening and closing brackets in
the natural way, the chain containing x is obtained by flipping the leftmost unmatched 0
to ascend the chain, or the rightmost unmatched 1 to descend the chain, until no more
unmatched bits can be flipped. It is easy to see that this indeed yields an SCD of the n-cube
for any n ≥ 1. We always work with this SCD due to Greene and Kleitman, and whenever
referring to a chain, we mean a chain from this decomposition.
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1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
) ) ) ( ( ( ) ( ( ) ( ( ) ( ( ) ) ( ( ( ( )

1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

x =

Figure 3 Construction of the Greene-Kleitman SCD containing a bitstring x via parenthesis
matching. The highlighted bits are the leftmost unmatched 0 and the rightmost unmatched 1 in
each bitstring.

Each chain C of length h in Qn can be encoded compactly as a string of length n over
the alphabet {0, 1, ∗} in the form

C = u0 ∗ u1 ∗ · · · ∗ uh−1 ∗ uh, (1)

where u0, . . . , uh ∈ D. The symbols ∗ represent unmatched positions, and the vertices along
the chain are obtained by replacing the ∗s by 1s followed by 0s in all possible ways; see (2).
For example, the chain shown in Figure 3 is C = ∗∗∗∗∗01∗01∗010011∗∗∗01, so we have
u0 = u1 = u2 = u3 = u4 = u8 = u9 = ε, u5 = u6 = u10 = 01, and u7 = 010011.

We distinguish four types of chains depending on whether u0 and uh, i.e., the first and
last valleys in (1), are empty or not. These chain types are denoted by [−−], [+−], [++],
and [−+], where the first symbol is − if u0 = ε and + otherwise, and the second symbol is
− if uh = ε and + otherwise. For example, the chain in Figure 3 is a [−+]-chain. We also
use the symbol ? in these type specifications if we do not know whether a valley is empty or
not. Note that there is no [−−]-chain in Qn of length h = 1 unless n = 1.

Given a chain C of length h as in (1), the ith vertex of C from the bottom is

x = u0 1 · · ·ui−1 1ui 0ui+1 · · · 0uh (2)

where i = 0, . . . , h, and this vertex belongs to level k = n−h
2 + i. Note that every vertex x

of Qn can be written uniquely in the form (2), and we refer to this as the chain factorization
of x. For the following arguments, it will be crucial to consider the lattice path representation
of x, with the valleys u0, . . . , uh that are separated by i many �-steps, followed by h − i
many �-steps, i.e., the valley ui is the highest one on the lattice path.

We use Ch,i, 0 ≤ i ≤ h, to denote the set of the ith vertices in all chains of length h.
Moreover, we partition Ch,i into two sets C−h,i and C

+
h,i, depending on whether the valley ui

in (2) is empty or nonempty, respectively. Clearly, C+
h,h are exactly the top vertices of

[?+]-chains of length h and C+
h,0 are exactly the bottom vertices of [+?]-chains of length h,

and similarly with − instead of +. Note that the sets Ch,i are empty if n is odd and h is
even, or vice versa.

2.3 Lexical matchings
Lexical matchings in Qn were introduced by Kierstead and Trotter [24], and they are
parametrized by some integer p ∈ {0, 1, . . . , n− 1}. These matchings are defined as follows;
see Figure 4. We interpret a bitstring x as a lattice path, and we let x� denote the lattice

ICALP 2020
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0
1

3 2

5 4
8

7

10

6
9

12

11x = 1110001001001001100001

x = M11,↓
n,k (y)

x�

level k = 9
n = 22

M11,↑
n,kM11,↓

n,k

2
1

0

3

5 7

10

8
1211 9

6

4

y = 1110001001001001100101

y = M11,↑
n,k (x)

y�

level k + 1 = 10

Figure 4 Definition of p-lexical matchings between levels 9 and 10 of Q22, where steps flipped
along the p-lexical edge are marked with p. Between those two levels, the vertex x is incident with
p-lexical edges for each p ∈ {0, 1, . . . , 12}, and the vertex y is incident with p-lexical edges for each
p ∈ {0, 1, . . . , 12} \ {4, 6, 9}.

path that is obtained by appending �-steps to x until the resulting path ends at height −1.
If x ends at a height less than −1, then x� := x. Similarly, we let x� denote the lattice
path obtained by appending �-steps to x until the resulting path ends at height +1. If x
ends at a height more than +1, then x� := x. We let Ln,k denote the set of all vertices on
level k of Qn, and we define a matching by two partial mappings Mp,↑

n,k : Ln,k → Ln,k+1 and
Mp,↓

n,k : Ln,k+1 → Ln,k defined as follows: For any x ∈ Ln,k we consider the lattice path x�
and scan it row-wise from top to bottom, and from right to left in each row. The partial
mapping Mp,↑

n,k(x) is obtained by flipping the pth �-step encountered in this fashion, where
counting starts with 0, 1, . . ., if this �-step is part of the subpath x of x�; otherwise x is
left unmatched. Similarly, for any x ∈ Ln,k+1 we consider the lattice path x� and scan it
row-wise from top to bottom, and from left to right in each row. The partial mappingMp,↓

n,k(x)
is obtained by flipping the pth �-step encountered in this fashion if this �-step is part of
the subpath x of x�; otherwise x is left unmatched. It is straightforward to verify that these
two partial mappings are inverse to each other, so they indeed define a matching between
levels k and k + 1 of Qn, called the p-lexical matching, which we denote by Mp

n,k. We also
define Mp

n :=
⋃

0≤k<n M
p
n,k, where we omit the index n whenever it is clear from the context.

In the following, we will only ever use p-lexical edges for p = 0, 1, 2. For instance, it is

C−
1,0 C+

h,i C−
h+2,i

0 ≤ i ≤ h ≤ n− 2

Ch,i

0 ≤ i < h ≤ n

C−
h,i−1

1 < i < h ≤ n

C−
1,1 C−

h+2,i+2 C+
h,iCh,i+1 C−

h,i

Z02M0 M1

Figure 5 Perfect matchings described by Lemma 5. The {0, 1, 2}-lexical edges are drawn solid,
dashed, and dotted, respectively.
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well-known that taking the union of all 0-lexical edges, i.e., the set M0, yields exactly the
Greene-Kleitman SCD [24]. This property is captured by the following lemma, together with
several other explicit perfect matchings, consisting of {0, 1, 2}-lexical edges between certain
sets of vertices from our SCD; see Figure 5.

To state the lemma, for a set M of edges of Qn and disjoint sets X,Y of vertices, we let
M [X,Y ] denote the set of all edges ofM between X and Y . Moreover, for any vertex x ∈ C−h,i,
1 < i < h ≤ n, we consider the chain factorization x = u0 1 · · ·ui−2 1ui−1 1 0ui+1 · · · 0uh

with u0, . . . , uh ∈ D, and we define a neighbor z(x) on the level below by

z(x) :=
{
u0 1 · · ·ui−2 1 0 0ui+1 · · · 0uh if ui−1 = ε,

u0 1 · · ·ui−2 1 0 v 0w 1 0ui+1 · · · 0uh if ui−1 = 0 v 1w with v, w ∈ D.
(3)

Note that (x, z(x)) is a 0-lexical or 2-lexical edge in the first or second case, respectively.

I Lemma 5. For every n ≥ 3, the following sets of edges M [X,Y ] are perfect matchings
in Qn between the vertex sets X and Y .
(i) M0[Ch,i, Ch,i+1] for every 0 ≤ i < h ≤ n;
(ii) M1[C−1,0, C

−
1,1], M1[C+

h,i, C
−
h+2,i+2], and M1[C+

h,i, C
−
h+2,i] for every 0 ≤ i ≤ h ≤ n− 2;

(iii) Z02[C−h,i−1, C
−
h,i] for every 1 < i < h ≤ n, where Z02 := {(x, z(x)) | x ∈ C−h,i}.

The proof of Lemma 5 can be found in [17].

3 Cycle factor construction

We now construct a cycle factor Cn,` in the graph Qn,`, n = 2m+ 1, i.e., in the subgraph of
the n-cube induced by the middle 2` levels. Throughout this section we consider fixed m ≥ 1
and 2 ≤ ` ≤ m+ 1. We construct the cycle factor incrementally, starting with chains from
the Greene-Kleitman SCD and adding {0, 1, 2}-lexical edges between certain sets of vertices,
see Figure 6. In the following, when referring to a subgraph given by a set of edges, we mean
the subgraph of Qn,` induced by those edges. Moreover, we say that a chain is short if its
length is at most 2`− 3, i.e., if it does not span all levels of Qn,`.

Our construction starts by taking all those short chains, formally

X0 :=
⋃

0≤i<h≤2`−3
M0[Ch,i, Ch,i+1]; (4a)

recall Lemma 5 (i). From Lemma 5 (ii) we know that 1-lexical edges perfectly match all
bottom vertices of [−+]-chains of length 1 with all top vertices of [+−]-chains of length 1
along the edges

X1
m := M1[C−1,0, C

−
1,1]. (4b)

Furthermore, for 1 ≤ h ≤ 2`−5, 1-lexical edges perfectly match all top vertices of [?+]-chains
of length h with all top vertices of [?−]-chains of length h + 2, and all bottom vertices of
[+?]-chains of length h with all bottom vertices of [−?]-chains of length h+ 2 along the edges

X1
t :=

⋃
1≤h≤2`−5

M1[C+
h,h, C

−
h+2,h+2], X1

b :=
⋃

1≤h≤2`−5
M1[C+

h,0, C
−
h+2,0], (4c)

respectively. Note that the only vertices of short chains that have degree 1 in the set

X := X0 ∪X1
m ∪X1

t ∪X1
b (4d)

are exactly the vertices of C+
2`−3,2`−3 and C+

2`−3,0; that is, the top vertices of [?+]-chains of
length 2`− 3 and the bottom vertices of [+?]-chains of length 2`− 3.
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Next, between every pair of consecutive levels of Qn,` we take all 0-lexical and 1-lexical
edges that are not incident to a degree-2 vertex in X. Specifically, between these pairs of
levels we take all 0-lexical edges from chains that are not short and all 1-lexical edges between
chains that are not short. In addition, between the top two levels we take all 1-lexical
edges between top vertices of [?+]-chains of length 2`− 3 and top vertices of [?−]-chains of
length 2`− 1, and symmetrically, between the bottom two levels we take all 1-lexical edges
between bottom vertices of [+?]-chains of length 2`− 3 and bottom vertices of [−?]-chains of
length 2`− 1. Formally, these sets of edges are

Y1 := Y ′1 ∪M1[C+
2`−3,0, C

−
2`−1,0], Y` := Y ′` ∪M1[C+

2`−3,2`−3, C
−
2`−1,2`−1], Yk := Y ′k (5a)

for 1 < k < ` where

Y ′k :=
⋃

h≥2`−1
i:=(h−(2`−1))/2+2(k−1)

M0[Ch,i, Ch,i+1] ∪M1[C+
h,i, C

−
h+2,i+2] ∪M1[C+

h,i+1, C
−
h+2,i+1]

(5b)

for 1 ≤ k ≤ `. Note that Y1 and Y` contain all {0, 1}-lexical edges between the bottom two
levels or the top two levels of Qn,`, respectively. We also define

Y :=
⋃

1≤k≤`

Yk. (5c)

As a consequence of these definitions and Lemma 5 (i) and (ii), the only vertices of Qn,` that
have degree 1 in the set X ∪ Y are exactly the vertices of C−2`−1,i for 1 ≤ i ≤ 2`− 2. We thus
add the edges

Z :=
⋃

i=1,3,5,...,2`−3
Z02[C−2`−1,i, C

−
2`−1,i+1] (6)

defined in part (iii) of Lemma 5, which makes

Cn,` := X ∪ Y ∪ Z (7)

a cycle factor in the graph Qn,`.

3.1 Comparison with previous constructions

Our cycle factor construction generalizes the construction for ` = 1 presented in [19, 27],
which simply consisted in taking the union of all 0-lexical and 1-lexical edges between the
middle two levels. It also generalizes the construction for ` = 2 presented in [16], which
also only used {0, 1, 2}-lexical matchings. In fact, all these earlier papers actually used
{m,m− 1,m− 2}-lexical matching edges, but these are isomorphic to {0, 1, 2}-lexical edges
by reversing bitstrings. The earlier construction for ` = 2 seemed rather arbitrary at the
time, but now nicely fits into the general picture shown in Figure 61.

1 As the picture of this construction resembles a rocket, with the tip on the left and the boosters on the
right, one might be tempted to consider this rocket science.
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7,6
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Figure 6 Illustration of the cycle factor Cn,` for ` = 2, 3, 4. Each bullet represents an entire set
of vertices, as specified in the figure, lines between them specify perfect matchings between these
sets. The {0, 1, 2}-lexical edges are drawn with solid, dashed, and dotted lines, respectively. In the
bottom part, various sets of matching edges are highlighted.

4 Sketch of the remaining proof steps

It turns out that each cycle from the factor Cn,` defined in (7) visits vertices from an interval
of 2r levels, where 2 ≤ r ≤ `, around the middle. We refer to the number 2r as the range of
the cycle, and we say the cycle is short if 2 ≤ r < `, and long if r = `. One can show that
any short cycle with range r has length 8(r − 1), contains exactly one [−−]-chain of length
2r − 1, one [−+]- and one [+−]-chain of length 2r − 3 each, and one [++]-chain of length
2r − 5 (the latter only if r ≥ 3), i.e., short cycles are in bijection with short [−−]-chains.
For long cycles, on the other hand, we are lacking such a detailed understanding of their
structure. However, we are able to identify certain vertices on them, and to describe the
operation of moving along one cycle from one such special vertex to the next one in terms of
certain rotation operations on ordered rooted trees. Consequently, long cycles are obtained
as equivalence classes of ordered rooted trees under such rotations.

As outlined in Section 1.3, to join the cycles in our factor to a Hamilton cycle, we explicitly
construct flipping 4-cycles and 6-cycles. The 4-cycles are used to join short cycles among each
other and to long cycles, in such a way that every short cycle is joined to some long cycle,
possibly via other short cycles. For this we exploit the fact that certain pairs of short chains
from the Greene-Kleitman SCD are connected by many 4-cycles. Specifically, consider any
short chain C of length h ≥ 3, and any chain C ′ of length h− 2 obtained from C by replacing
two consecutive *s at positions a and b by 0 and 1, respectively. Using the definition of
Greene-Kleitman chains, it is easy to check that C and C ′ are connected by h − 2 many
4-cycles, each using a distinct edge of C and C ′, except the two consecutive edges of C that
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flip the coordinates a and b. The Greene-Kleitman SCD has an abundance of such pairs
of heavily connected pairs of chains, and as our cycle factor contains all these short chains,
we can exploit this to join short cycles to each other and to some long cycle in a tree-like
fashion, by considering the short cycles by increasing range. Particular care must be taken
to ensure that all selected flipping 4-cycles are edge-disjoint from each other, so that they do
not interfere with each other in the joining process.

The remaining task is to join long cycles to each other, and for this we use flipping
6-cycles between the topmost two levels of Qn,`, ensuring that they are edge-disjoint from
any flipping 4-cycles, which all live in the levels below. Such a flipping 6-cycle can be used
to connect two long cycles with each other, and this operation can again be interpreted in
terms of an operation on ordered rooted trees, which we call a pull operation. These 6-cycles
have been described and used heavily already in the predecessor papers [16, 19], where it was
shown that they are all edge-disjoint. To complete the proof of Theorem 1, we show that all
long cycles can be joined to each other by flipping 6-cycles, by showing that all equivalence
classes of ordered rooted trees under the aforementioned rotations (which correspond to long
cycles) can be transformed into each other by pull operations (which correspond to flipping
6-cycles). This step of the proof reduces the Hamiltonicity problem in Qn,` to proving that a
suitably defined auxiliary graph is connected, which turns out to be much easier.

5 Proof of Theorem 3

In this section, we prove Theorem 3. All lemmas stated below follow from straightforward
calculations; see [17] for details. For any chain C, we let |C| denotes its length, i.e., the
number of ∗s in C. For any chain C with |C| ≥ 2, we let f(C) and `(C), respectively, denote
the chains obtained by replacing the first two ∗s or the last two ∗s in C by 0 and 1. Note
that if |C| ≥ 2, then we have f(`(∗C∗)) = `(f(∗C∗)).

Our goal is to order the chains of the Greene-Kleitman SCD in Qn, n ≥ 2, so that
any consecutive pair of chains is joined at their top end vertices or bottom end vertices
alternatingly, with the exception of any two consecutive chains of length 1 that are connected
from the bottom end of one of them to the top end of the other, so as to form a Hamilton
cycle. We call such an ordering of chains a cycle ordering. The following simple but powerful
lemma, valid for arbitrary SCDs, shows that the direction in which each chain is traversed
along the Hamilton cycle (upwards or downwards) is determined only by the chain length.

I Lemma 6. Let Λn be a cycle ordering of chains of an SCD in Qn, n ≥ 2. In this Hamilton
cycle, any two chains C and C ′ with |C| ≡ |C ′| (mod 4) are traversed in the same direction.

We now define a cycle ordering Λn, n ≥ 2, for the Greene-Kleitman SCD. The corres-
ponding Hamilton cycle is oriented so that it traverses the longest chain ∗n, which will be
the first in the ordering Λn, from bottom to top. Our construction works inductively, and
the induction step goes from n to n+ 2, with separate rules for even and odd n. The base
cases are n = 0 and n = 1, for which the entire cube consists only of a single vertex and a
single edge, respectively, so for these cases the notion of a cycle ordering is not defined.

For even n, we define Λ0 := ε, and for n ≥ 0 and given Λn =: C1, . . . , CN we define
Λn+2 := ρ(Λn) = ρ(C1), . . . , ρ(CN ) with

ρ(C) :=
{
λ(C) if |C| ≡ n (mod 4),
λ(C)R if |C| 6≡ n (mod 4),

(8)
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and

λ(C) :=
{
∗C∗, f(∗C∗), f(`(∗C∗)), `(∗C∗) if |C| ≥ 2,
∗C∗, 0C1 if |C| = 0.

(9)

We call the chains of λ(C) arising from C the descendants of C. This rule replaces each
chain C in Λn by its descendants λ(C), where the order of descendants can be reversed,
indicated by the superscript R, depending on the length of C modulo 4.

For odd n, we define Λ1 := ∗, and for n ≥ 1 and given Λn we define Λn+2 := ρ(Λn),
where ρ is as before and

λ(C) :=
{
∗C∗, `(∗C∗), `(f(∗C∗)), f(∗C∗) if |C| ≥ 3,
∗C∗, `(∗C∗), f(∗C∗) if |C| = 1.

(10)

I Lemma 7. Λn contains every chain of the Greene-Kleitman SCD exactly once.

even n

|C| ≥ 2

odd n

|C| = 0 |C| ≥ 3 |C| = 1

∗C
∗

f
(∗
C
∗)

f
(`
(∗
C
∗)
)

`(
∗C
∗)

∗C
∗

0
C
1

∗C
∗

`(
∗C
∗)

`(
f
(∗
C
∗)
)

f
(∗
C
∗)

∗C
∗

`(
∗C
∗)

f
(∗
C
∗)

λ(C)

λ(C)

λ(C)

λ(C)

Figure 7 Connections between top and bottom ends of the descendants λ(C) of a chain C, as
guaranteed by Lemma 8. Bold gray edges are used along the Hamilton cycle. Dotted edges are
present but not used.

To complete the proof of Theorem 3, it remains to show that any two consecutive chains
in Λn can be joined by an edge between their top ends or bottom ends alternatingly. For
this we need the following simple lemmas that guarantee these connecting edges.

I Lemma 8. For any n ≥ 2 and any chain C with |C| ≥ 2, the chains C and f(C), and the
chains C and `(C) are connected both at their top and bottom ends in Qn.

All connecting edges between top and bottom ends among the descendants of a chain
guaranteed by Lemma 8 are shown in Figure 7. The next two lemmas are illustrated in
Figure 8.

I Lemma 9. For any n ≥ 2 and any two chains C,C ′ connected at their bottom ends in Qn,
we have that ∗C∗ and ∗C ′∗ are connected at their bottom ends in Qn+2.

I Lemma 10. For any n ≥ 2 and any chain C with |C| ≥ 2 in Qn, we have that `(∗C∗)
and `(∗f(C)∗) are connected at their bottom ends in Qn+2.
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even n + odd n

Lemma 8

C

C ′

λ(C)R

λ(C ′)

Λn Λn+2

C
f(C)

Λn Λn+2

Lemma 9

λ(C)

λ(f(C))R

`(
∗C

∗)

`(
∗f

(C
)∗

)

∗C
∗

∗C
′ ∗

even n

Figure 8 Joining of the descendants of two consecutive chain from Λn in the induction step
n→ n+ 2, via the thick edges guaranteed by Lemmas 9 and 10. The dashed edges are connections
to preceding and subsequent chains on the Hamilton cycle.

Proof of Theorem 3 (even n). We show that Λn, n ≥ 2 even, defined in (9) is a cycle
ordering of the Greene-Kleitman chains, by proving that any consecutive pair of chains
is connected at their top or bottom ends alternatingly, starting with the first chain ∗n of
length n that is traversed from bottom to top. We will also establish the following additional
property P: For any two consecutive chains C and C ′ connected at their top ends, we either
have C = f(C ′) or f(C) = C ′. These invariants can easily be checked for the induction base
case n = 2, which is given by Λ2 = ∗∗, 01.

For the induction step consider n ≥ 2 to be even, and assume that Λn is a cycle ordering
satisfying property P. By Lemma 8, the descendants λ(C) for any chain C from Λn can be
joined as shown on the left hand side of Figure 7, so we only need to check the connections
between the first and last chains among consecutive groups of descendants. Indeed, if C
and C ′ are consecutive in Λn and joined at their bottom ends, then C is traversed from top
to bottom and C ′ from bottom to top in the Hamilton cycle; see the left part of Figure 8.
Consequently, by Lemma 6, we have |C| 6≡ |∗n| = n (mod 4) and |C ′| ≡ n (mod 4), i.e., by (8)
the sequence Λn+2 contains λ(C)R and λ(C ′), and indeed, the bottom vertex of the last
chain of λ(C)R, namely ∗C∗, is connected to the bottom vertex of the first chain of λ(C ′),
namely ∗C ′∗, by Lemma 9. Similarly, if C and C ′ are consecutive in Λn and joined at their
top ends, then C is traversed from bottom to top and C ′ from top to bottom in the Hamilton
cycle; see the right part of Figure 8. Consequently, by Lemma 6, we have |C| ≡ n (mod 4)
and |C ′| 6≡ n (mod 4), i.e., by (8) the sequence Λn+2 contains λ(C) and λ(C ′)R, and indeed,
the bottom vertex of the last chain of λ(C), namely `(∗C∗), is connected to the bottom
vertex of the first chain of λ(C ′)R, namely `(∗C ′∗), using that by property P we have either
C = f(C ′) or f(C) = C ′, so we can invoke Lemma 10. Moreover, property P still holds
for Λn+2 by the definition (9) (note that if |C| = 0, then we have 0C1 = f(∗C∗)). J

The proof of Theorem 3 for odd n is very similar. In [17] we provide all details and
a loopless algorithm for computing this Gray code. An implementation of this algorithm
in C++ is available for download and for demonstration [5].
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Table 1 A glossary for notation used in the paper.

Qn n ≥ 1 the n-dimensional hypercube
Qn,` 1 ≤ ` ≤ m+ 1 the subgraph of Qn induced by the middle 2` levels

n = 2m+ 1, m ≥ 1
D2k k ≥ 0 the set of all Dyck paths (bitstrings) of length 2k
D the set of all Dyck paths
C a chain C = u0 ∗ u1 ∗ · · · ∗ uh−1 ∗ uh of length h ≥ 0 in

the Greene-Kleitman decomposition, ui ∈ D for every i
Ch,i 0 ≤ i ≤ h the set of the ith vertices in all chains of length h
C−

h,i 0 ≤ i ≤ h as above but only in chains with ui = ε

C+
h,i 0 ≤ i ≤ h as above but only in chains with ui 6= ε

Ln,k 0 ≤ k ≤ n the set of vertices on level k in Qn

Mp
n,k 0 ≤ k < n, 0 ≤ p < n the p-lexical matching between Ln,k and Ln,k+1

Mp
n, Mp 0 ≤ p < n the set of all p-lexical edges in Qn

|C| the length of a chain C, i.e., |C| = h for C as above
f(C) |C| ≥ 2 the chain f(C) = u0 0 u1 1 u2 ∗ · · · ∗ uh for C as above
l(C) |C| ≥ 2 the chain l(C) = u0 ∗ · · · ∗ uh−2 0 uh−1 1 uh for C as above
λ(C) a sequence of descendant chains for a chain C, see (9), (10)
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