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Abstract
Replicated Data Types (rdts) have been introduced as a suitable abstraction for dealing with
weakly consistent data stores, which may (temporarily) expose multiple, inconsistent views of their
state. In the literature, rdts are commonly specified in terms of two relations: visibility, which
accounts for the different views that a store may have, and arbitration, which states the logical order
imposed on the operations executed over the store. Different flavours, e.g., operational, axiomatic
and functional, have recently been proposed for the specification of rdts. In this work, we propose
an algebraic characterisation of rdt specifications. We define categories of visibility relations and
arbitrations, show the existence of relevant limits and colimits, and characterize rdt specifications
as functors between such categories that preserve these additional structures.

2012 ACM Subject Classification Theory of computation → Program semantics; Software and its
engineering → General programming languages

Keywords and phrases Replicated data type, Specification, Functorial characterisation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.42

Funding Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”, by the EU
H2020 RISE programme under the Marie Skłodowska-Curie grant agreement 778233, by the UBACyT
projects 20020170100544BA and 20020170100086BA, by the PIP project 11220130100148CO, by the
Leverhulme Prize PLP-2016-129, and by the EPSRC grant EP/S028641/1.

Acknowledgements We thank the reviewers for their careful reading and insightful comments.

1 Introduction

The cap theorem establishes that a distributed data store can simultaneously provide
two of the following three properties: consistency, availability, and tolerance to network
partitions [8]. A weakly consistent data store prioritises availability and partition tolerance
over consistency. As a consequence, a weakly consistent data store may (temporarily) expose
multiple, inconsistent views of its state; hence, the behaviour of operations may depend
on the particular view over which they are executed. Replicated data types (rdts) have
been proposed as suitable data type abstractions for weakly consistent data stores. The
specification of such data types usually takes into account the particular views over which
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(a) Visibility relation with admissible arbitrations.
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(b) Non admissible arbitrations.

Figure 1 A register specification.

operations are executed. A view is usually represented by a visibility relation, which is a
binary, acyclic relation over the operations (a.k.a. events) executed by the system. The
state of a store is described instead as a total order over the events, called arbitration,
which describes the way in which conflicting concurrent operations are resolved. Different
specification approaches for rdts are presented in the literature, all of them building on
the notions of visibility and arbitration [2, 3, 4, 5, 7, 6, 9, 11, 13, 14]. A purely functional
approach for the specification of rdts has been presented in [7, 6], where an rdt is associated
with a function that maps each visibility relation into a set of arbitrations.

Consider an rdt Register that represents a memory cell, whose content can be updated
and read. Following the approach in [7], the rdt Register is specified by a function that
maps visibility relations into sets of arbitrations: we call here such function SlwwR. Figure 1a
illustrates the definition of SlwwR for the case in which the visibility relation involves two
concurrent writes and a read. Events are depicted by pairs 〈operation, result〉 where wr(k)
stands for an operation that writes the value k and rd stands for a read. The two writes are
unrelated (i.e., they are not visible to each other), while the read operation sees both writes.
The returned value of the read operation is 2, which coincides with one of the visible written
values. According to Figure 1a, SlwwR maps such visibility graph into a set containing those
arbitrations (i.e., total orders over the three events in the visibility relation) in which wr(1)
precedes wr(2). Arbitrations may not reflect the causal ordering of events; in fact, the last
two arbitrations in the right-hand-side of the equation in Figure 1a place the read before
the operation that writes the read value 2. We remark that arbitrations do not necessarily
account for real-time orderings of events: they are instead possible ways in which events can
be logically ordered to explain a given visibility. For instance, the excluded arbitrations in the
image of SlwwR are the total orders in which wr(2) precedes wr(1), i.e., the specification bans
the behaviour in which a read operation returns a value that is different from the last written
one. An extreme situation is the case in which the specification maps a visibility relation into
an empty set of arbitrations, which means that events cannot be logically ordered to explain
such visibility. For instance, the equation in Figure 1b assigns an empty set of arbitrations
to a visibility relation in which the read operation returns a value that is different from the
unique visible written value (i.e., it returns 0 instead of 1). In this way, the specification
bans the behaviour in which a read operation returns a value that does not match a previous
written value. As originally shown [7], this style of specification can be considered (and it
is actually more general than) the model for the operational description of rdts proposed
in [4]. We refer the reader to [6] for a formal comparison of the two different approaches.

This work develops the approach suggested in [7] for the categorical characterisation
of rdt specifications. We consider the category PIDag(L) of labelled, directed acyclic
graphs and injective pr-morphisms, i.e., label-preserving morphisms that reflect directed
edges, and the category SPath(L) of sets of labelled, total orders and ps-morphisms, i.e.,
morphisms between sets of paths. A ps-morphism f : X1 → X2 from a set of paths X1 to a
set of paths X2 states that any total order in X2 can be obtained by extending some total
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order in X1. In this work we show that a large class of specifications, dubbed coherent, can
be characterised functorially. Roughly, a coherent specification accounts for those rdts
such that the arbitrations associated with a visibility relation can be obtained by extending
arbitrations associated with “smaller” visibilities: as illustrated in [6], they correspond to
what are called return value consistent rdts in [4]. We establish a bijection between functors
and specifications, showing that a coherent specification induces a functor from PIDag(L)
into SPath(L) that preserves colimits and binary pullbacks and vice versa.

The paper has the following structure. Section 2 offers some preliminaries on categories
of relations, which are used for proposing some basic results on categories of graphs and
paths in Section 3. Section 4 recalls the set-theoretical presentation of rdts introduced in [6].
Section 5 introduces our semantical model, the category of set of paths, describing some of its
basic properties with respect to limits and colimits. In Section 6 we present some categorical
operators for rdts, which are used in Section 7 to present our main characterisation results.
The paper is closed with some final remarks, a comparison of the proposed constructions
with those presented in [7], and some hints towards future work.

2 Preliminaries on Relations

Relations. Given a finite set E, a (binary) relation ρ over E is a subset ρ ⊆ E × E of the
cartesian product of E with itself. We use the pair 〈E, ρ〉 to denote a relation ρ over E, in
order to always have the set of events explicit, and simply ∅ to denote the empty relation.

A subset E′ ⊆ E is downward closed with respect to ρ if ∀e ∈ E, e′ ∈ E′.e ρ e′ implies e ∈ E′

and, when ρ is clear, we write bec for the smallest downward closed set including e ∈ E.

IDefinition 1 ((Binary Relation) Morphisms). A (binary relation) morphism f : 〈E, ρ〉 → 〈T, γ〉
is a function f : E→ T such that

∀e, e′ ∈ E. e ρ e′ implies f(e) γ f(e′)

A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting (shortly, pr-morphism) if

∀e ∈ E, t ∈ T. t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Note that both classes of morphisms are closed under composition: we denote as Bin the
category of relations and their morphisms and PBin the sub-category of pr-morphisms.

I Lemma 2 (Characterising pr-morphisms). Let f : 〈E, ρ〉 → 〈T, γ〉 be a morphism. If
1. f(e) γ f(e′) implies e ρ e′, and
2.

⋃
e∈E f(e) is downward closed,

then it is a pr-morphism. If f is injective, then the converse holds.

Proof. For ⇒), let us take e ∈ E and t ∈ T. If t γ f(e), then there exists e′ ∈ E such that
t = f(e′) because of (2). By (1), f(e′) γ f(e) implies e′ ρ e.

For⇐), by the definition of pr-morphism f(e) γ f(e′) implies ∃e ∈ E. e ρ e′ ∧ f(e) = f(e).
Since f is injective, e = e and hence e ρ e′. So, let T =

⋃
e∈E f(e). We want to show that

∀t ∈ T, t′ ∈ T . tγ t′ implies t ∈ T

The proof follows by contradiction. Assume that ∃t ∈ T, t′ ∈ T . t γ t′ ∧ t 6∈ T . By
definition of T ,∃e ∈ E such that f(e) = t′. Since f is a pr-morphism, then

t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Therefore t = f(e′) ∈ T , which contradicts the assumption t /∈ T . J
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Clearly, Bin has both finite limits and finite colimits, which are computed point-wise as
in Set. The structure is largely lifted to PBin.

I Proposition 3 (Properties of PBin). The inclusion functor PBin → Bin reflects finite
colimits and binary pullbacks.

In other words, since Bin has finite limits and finite colimits, finite colimits and binary
pullbacks in PBin always exist and are computed as in Bin. There is e.g. no terminal
object, since morphisms in Bin into the singleton are clearly not past-reflecting.

Monos in Bin are just morphisms whose underlying function is injective, and similarly in
PBin, so that the inclusion functor preserves (and reflects) them.

I Lemma 4 (Monos under pushouts). Pushouts in Bin (and thus in PBin) preserve monos.

We now introduce labelled relations. Consider the forgetful functors Ur : Bin→ Set and
Up : PBin→ Set, the latter factoring through the inclusion functor PBin→ Bin. Given a
set L of labels, we consider the comma categories Bin(L) = Ur ↓ L and PBin(L) = Up ↓ L:
finite colimits and binary pullbacks always exist and are essentially computed as in Bin.

Explicitly, an object in Ur ↓ L is a triple (E, ρ, λ) for a labeling function λ : E → L. A
label-preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a morphism f : (E, ρ) → (E′, ρ′) such
that ∀s ∈ E. λ(s) = λ′(f(s)). Moreover, finite colimits and binary pullbacks exist and are
computed as in Bin. Similar properties hold for the objects and the morphisms of Up ↓ L.

3 Categories of Graphs and Paths

We now move to introduce specific sub-categories that are going to be used for both the
syntax and the semantics of specifications.

I Definition 5 (PDag). PDag is the full sub-category of PBin whose objects are directed
acyclic graphs.

In other terms, objects are relations whose transitive closures are strict partial orders.
I Remark 6. The full sub-category of Bin whose objects are directed acyclic graphs is not
suited for our purposes, since e.g. it does not admit pushouts, not even along monos. The
one with pr-morphisms is much more so, still remaining computationally simple.

I Proposition 7 (Properties of PDag). The inclusion functor PDag→ PBin reflects finite
colimits and binary pullbacks.

We now move to consider paths, i.e., relations that are total orders.

I Definition 8 (Path). Path is the full sub-category of Bin whose objects are paths.

Note that defining Path as only containing pr-morphisms would be too restrictive, since
there exists a pr-morphism between two paths if and only if one path is a prefix of the other.

I Proposition 9 (Properties of Path). The inclusion functor Path → Bin reflects finite
colimits.

As for relations, we consider suitable comma categories in order to capture labelled paths
and graphs. In particular, we use the forgetful functors Urp : Path→ Set and Upd : PDag→
Set: for a set of labels L we denote PDag(L) = Urp ↓ L and Path(L) = Upd ↓ L. Once more,
finite colimits and binary pullbacks always exist and are essentially computed as in Bin.
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4 Replicated Data Type Specification

We briefly recall the set-theoretical model of replicated data types (rdt) introduced in [6].
Our main result is its categorical characterisation, which is given in the following sections.

First, some notation. We denote a graph as the triple 〈E ,≺, λ〉 and a path as the triple
〈E ,≤, λ〉, in order to distinguish them. Moreover, given a graph G = 〈E ,≺, λ〉 and a subset
E ′ ⊆ E , we denote by G|E′ the obvious restriction (and the same for a path P).

We now define a product operation on a set of paths X = {〈Ei,≤i, λi〉}i. First, we say
that the paths of a set X are compatible if ∀e, i, j. e ∈ Ei ∩ Ej implies λi(e) = λj(e).

I Definition 10 (Product). Let X be a set of compatible paths. The product of X is⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei
∈ X }.

Intuitively, the product of paths is analogous to the synchronous product of transition
systems, in which common elements are identified and the remaining ones can be freely
interleaved, as long as the original orders are respected. A set of sets of paths X1,X2, . . . is
compatible if

⋃
i Xi is so. In such case we can define the product

⊗
i Xi as

⊗ ⋃
i Xi.

Now, let us further denote with G(L) and P(L) the sets of (finite) graphs and (finite)
paths, respectively, labelled over L and with ε the empty graph. Also, when the set of labels
L is chosen, we let G(E , λ) and P(E , λ) the sets of graphs and paths, respectively, whose
elements are those in E and are labelled by λ : E → L.

I Definition 11 (Specifications). A specification S is a function S : G(L)→ 2P(L) such that
S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).

In other words, a specification S maps a graph (interpreted in terms of the visibility
relation of a rdt) to a set of paths (that is, the admissible arbitrations of the rdt). Indeed,
note that P ∈ S(G) is a path over EG, hence a total order of the events in G.

As shown in [6], Definition 11 offers an alternative characterisation of rdts [4] for a
suitable choice of the set of labels. In particular, an rdt boils down to a specification labelled
over pairs 〈operation, value〉 that is saturated and past-coherent. The former property is a
technical one: roughly, if G′ is an extension of G with a fresh event e, then the admissible
arbitrations that a saturated specification S assigns to G′ (i.e., the set of paths S(G′)) are
included in the admissible arbitrations of G saturated with respect to e, i.e., all the paths
that extends a path in S(G) with e inserted at an arbitrary position. Coherence instead is
fundamental and expresses that admissible arbitrations of a visibility graph can be obtained
by composing the admissible arbitrations of smaller visibilities.

I Definition 12 ((Past-)Coherent Specification). Let S be a specification. We say that S is
past-coherent (briefly, coherent) if

∀G 6= ε. S(G) =
⊗
e∈EG

S(G|bec).

Explicitly, in a coherent specification S the arbitrations of a configuration G (i.e., the set
of paths S(G)) are the composition of the arbitrations associated with its sub-graphs G|bec.

Next example illustrates a coherent specification for the Register rdt.

FSTTCS 2019



42:6 A Categorical Account of Replicated Data Types

I Example 13 (Register). Fix the set of labels L = {〈wr(k), ok〉, 〈rd, k〉 | k ∈ N} ∪ {〈rd,⊥〉}.
Then, the specification of the rdt Register is given by the function SlwwR defined as

P ∈ SlwwR(G) iff ∀e ∈ EG.


λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e, k. λ(e′) 6= 〈wr(k), ok〉
∀k. λ(e) = 〈rd, k〉 implies ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉 and

∀e′′ ≺G e, k′ 6= k. e′ <P e′′ implies λ(e′′) 6= 〈wr(k′), ok〉

Intuitively, a visibility graph G is mapped to a non-empty set of arbitrations (i.e.,
SlwwR(G) 6= ∅) only when each event e in G associated with a read operation has a re-
turn value k that matches the value written by the greatest event e′ (according to <P). The
result of a read is undefined (i.e., ⊥) when it does not see any write (first condition).

5 The model category

In order to provide a categorical characterisation of coherent specifications, we must first
define precisely the model category. So far, we know that its objects have to be sets of
compatible paths. We fix a set of labels L, and we first look at a free construction for paths,
and then we turn our attention to morphisms.

5.1 Saturation
I Definition 14 (Path saturation). Let P be a path and f : (EP, λP) → (E , λ) a function
preserving labels. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P→ Q}

Saturation is generalised to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).

Note that, should f not be injective, it could be that sat(P, f) = ∅.

I Example 15. Consider the injective, label-preserving function f from {〈wr(1), ok〉, 〈wr(2),
ok〉} to {〈wr(1), ok〉, 〈wr(2), ok〉, 〈rd, 2〉}. Then, we have

sat

Ö 〈wr(1), ok〉

〈wr(2), ok〉

 , f

è
=


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉


Intuitively, saturation adds 〈rd, 2〉 – and in general events not in the image of f – to the
original path in all possible ways, preserving the order of original events.

I Definition 16 (Path retraction). Let Q be a path and f : E → EQ a function. The retraction
of Q along f is defined as

ret(Q, f) = {P | P ∈ P(E , λ) and f induces a morphism f : P→ Q}

The notion of retraction is extended to sets of paths X ⊆ P(E , λ) as
⋃

Q∈X ret(Q, f).

Note that λ is fully characterised as the restriction of λQ along the mapping. Should f be
injective, ret(Q, f) would be a singleton, and if f is an inclusion, then ret(Q, f) = Q|E .

We may now start considering the relationship between the two notions.
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I Lemma 17. Let X1 ⊆ P(E1, λ1) be a set of paths and f : (E1, λ1) → (E2, λ2) a function
preserving labels. Then X1 ⊆ ret(sat(X1, f), f). If f is injective, then the equality holds.

I Lemma 18. Let X2 ⊆ P(E2, λ2) be a set of paths and f : E1 → E2 a function. Then
X2 ⊆ sat(ret(X2, f), f).

We say that an injective function f is saturated with respect to X2 if the equality holds.

I Example 19. Consider the set of paths X1 and X2 and the pr-morphism f below

X1 =


〈wr(1), ok〉

〈wr(2), ok〉

 X2 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 f :
〈wr(1), ok〉

〈wr(2), ok〉
→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

the underlying function f (defined in Example 15) is not saturated with respect to X2 because


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 6= sat(ret(


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

, f), f) = sat(


〈wr(1), ok〉

〈wr(2), ok〉

, f)

In fact, the ps-morphism f : X1 → X2 only adds the new event 〈rd, 2〉 on top of the path in
X1, thus making it a topological ps-morphism (see Section 7.3 later on).

5.2 From saturation to categories
We can exploit saturation to get a simple definition of our model category.

I Definition 20 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets of paths. A
path-set morphim (shortly, ps-morphism) f : X1 → X2 is a function f : (E1, λ1) → (E2, λ2)
preserving labels such that X2 ⊆ sat(X1, f).

Intuitively, there is a ps-morphism from the set of paths X1 to the set of paths X2 if any
path in X2 can be obtained by adding events to some path in X1. This notion captures the
idea that arbitrations of larger visibilities are obtained as extensions of smaller visibilities.

I Example 21. Consider the following three sets and the function f from Example 15

X1 =


〈wr(1), ok〉

〈wr(2), ok〉

 X2 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(1), ok〉

〈rd, 2〉

〈wr(2), ok〉

 X3 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(2), ok〉

〈rd, 2〉

〈wr(1), ok〉


Now, f induces a ps-morphism f : X1 → X2 because X2 ⊆ sat(X1, f) (the latter is shown in
Example 15). On the contrary, there is no ps-morphism from X1 to X3: the rightmost path
of X3 cannot be obtained by extending a path of X1 with an event labelled by 〈rd, 2〉.

I Definition 22 (Sets of Paths Category). We define SPath(L) as the category whose objects
are sets of paths labelled over L and arrows are ps-morphisms.

I Proposition 23 (Properties of SPath). The category SPath(L) has finite colimits along
monos and binary pullbacks.

FSTTCS 2019
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Proof.
(Strict) initial object. The (unique) initial object is 〈∅, {ε}, ∅〉, with ε ∈ P(∅, ∅) the empty

path. Let X ⊆ P(E , λ) and ! : ∅ → E the unique function. We have a function ! : (∅, ∅)→
(E , λ) such that X ⊆ sat({ε}, !) = P(E , λ).

Binary Pushouts. Let X ,X1, and X2 be sets of paths and fi : X → Xi ps-morphisms.
Consider the underlying functions fi : E → Ei and their pushout f′

i : Ei → E1 +E E2 in the
category of sets: it induces a pushout f′

i : Xi → sat(X1, f′
1) ∩ sat(X2, f′

2) in SPath(L).
Binary Pullbacks. Let X ,X1, and X2 be sets of paths and fi : Xi → X ps-morphisms.

Consider the underlying functions fi : Ei → E and their pullback f′
i : E1 ×E E2 → Ei

in the category of sets: it induces a pullback f′
i : ret(X1, f′

1) ∪ ret(X2, f′
2) → Xi in

SPath(L). J

The above characterisation of pushouts is enabled by the fact that we considered injective
functions. To help intuition, we now instantiate that characterisation to suitable inclusions.

I Lemma 24. Let fi : X → Xi be ps-morphisms such that the underlying functions fi : E → Ei
are inclusions and E = E1 ∩ E2. Then their pushout is given by f′

i : Xi → X1 ⊗X2.

Proof. By definition X1 ⊗X2 = {P | P is a path over
⋃
i Ei and P|Ei

∈ Xi}. Note also that
sat(Xi, f′

i) =
⋃

Q∈Xi
{P | P ∈ P(

⋃
i Ei,

⋃
i λi) and f′

i induces a path morphism f′
i : P → Q}.

Since f′
i is an inclusion, the latter condition equals to P|Ei

= Q, thus the property holds. J

I Example 25. Consider the following ps-morphisms
〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

←

〈wr(1), ok〉

〈wr(2), ok〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉


then, the pushout is given by the following ps-morphisms


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

→



〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

〈rd, 2〉

,

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

〈rd, 1〉


←


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉


An analogous property holds for pullbacks. Let fi : Xi → X be ps-morphisms such that

the underlying functions are inclusions: the pullback is given as f′
i :

⋃
i Xi|E1∩E2

→ Xi. In
particular, the square below is both a pullback and a pushout.

⋃
i Xi|E1∩E2

X1

X2 X1 ⊗X2

6 Structure and Operators for Visibility

We now study the category of visibility relations. We first introduce an operation that will
be handy for our categorical characterisation. We say that a graph G is rooted if there exists
a (necessarily unique) event e ∈ EG such that G = G|bec.
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I Definition 26 (Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E. We define the extension of G
over E ′ with ` as the graph G`E′ = 〈E>,≺ ∪ (E ′ × {>}), λ[> 7→ `]〉.

Here, E> denotes the extension of the set E with a new event >, labelled into `. Intuitively,
G`E′ is obtained by adding to the visibility relation G a new event “seeing” some events in E ′.
We call the inclusion G→ G`E′ an extension morphism. Should G`E′ be rooted, we call it a root
extension of G, and the associated inclusion a root extension morphism.

I Proposition 27. Rooted graphs form a family of separators of PDag(L).

Proof. We need to show that for any pair of pr-morphisms f1, f2 : G1 → G2 such that f1 6= f2
there is a rooted graph G and a morphism f : G→ G1 such that f; f1 6= f; f2. Given e ∈ EG1

such that f1(e) 6= f2(e), it suffices to consider the pr-morphism f : G1|bec → G1. J

We now further curb the arrows in PDag(L) to monic ones. Intuitively, we are only
interested in what happens if we add further events to visibility relations. We thus consider
the sub-category PIDag(L) of direct acyclic graphs and monic pr-morphisms. Note that the
chosen morphism f in the proof of Proposition 27 is mono, since morphisms in PDag(L)
are monic if and only if the underlying function is injective. We can then show that rooted
graphs are also a family of generators for the sub-category PIDag(L).

We first need a technical lemma.

I Lemma 28 (Monos under pushouts, 2). Pushouts in PDag(L) preserve monos.

We can then state an important characterisation of PIDag(L).

I Proposition 29. PIDag(L) is the smallest sub-category of PDag(L) containing all root
extension morphisms and closed under finite colimits.

Proof. First, note that, since pushouts in PDag(L) preserve monos, the smallest sub-
category of PDag(L) containing all root extensions and closed under finite colimits is surely
a sub-category also of PIDag(L). So, given a monic pr-morphism f : G1 → G2, we need to
prove that it can be generated from root extension morphisms via colimits. We proceed by
induction on the cardinality of EG2 .

If the cardinality is 0, then f must be the identity of the empty graph. Otherwise,
consider G2 and assume that it is rooted with root e. Now, if e ∈ img(f), since the image of
a pr-morphism is downward closed, it turns out that f is the identity of G2. If it is not in the
image, then f can be decomposed as G1 → (G2 \ e)→ G2: the left-most is given by induction,
while the right-most is a root extension morphism. Without loss of generality, let us assume
that G2 has two distinct roots, namely e1 and e2, and that the image of f is contained in
G2|be1c. Now, f can be decomposed as G1 → G2|be1c → G2: the left-most is given by induction,
while the right-most is obtained via the pushout of the span G2|be1c ∩ G2|be2c → G2|beic. J

7 A categorical correspondence

It is now the time for moving towards our categorical characterisation of specifications.
In this section we will show that coherent specifications induce functors preserving the
relevant categorical structure (soundness) and, conversely, that a certain class of functors
(basically, those preserving finite colimits and binary pullbacks) induce coherent specifications
(completeness). Finally, we will prove that these functions between functors and specifications
are mutually inverse, establishing a one-to-one correspondence (up-to isomorphism).

We first provide a simple technical result for coherent specifications.
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I Lemma 30. Let S be a coherent specification and E ⊆ EG. If E is downward closed, then
S(G)|E ⊆ S(G|E).

Proof. Let E be downward closed, and note that this amounts to requiring E =
⋃
e∈E bec,

hence for all e ∈ E we have that (G|E)|bec = G|bec. By the latter and by coherence we have

S(G)|E = (
⊗

e∈EG
S(G|bec))

∣∣∣
E
and S(G|E) =

⊗
e∈E S(G|bec). Note that (

⊗
e∈EG
S(G|bec))

∣∣∣
E
⊆⊗

e∈E S(G|bec) because a path in the former can always be restricted to a suitable path with
fewer events on the latter (the converse in general does not hold). J

7.1 Soundness
The notion of specification introduced in Definition 11 is oblivious to the existence of
morphisms between graphs. In the following we impose a minimal consistency requirement,
i.e., that a specification maps isomorphic graphs to isomorphic sets of paths, along the same
isomorphism on events. That is, if there exists an isomorphism in PDag from G1 to G2 with
underlying bijection f : EG1 → EG2 , then for all specifications S there is an isomorphism in
SPath(L) from S(G1) to S(G2) with the same underlying function.

I Proposition 31 (functors induced by specifications). A coherent specification S induces a
functor M(S) : PIDag(L)→ SPath(L).

Proof. For G we define M(S)(G) as S(G) and for f : G → G′ we define M(S)(f) as the ps-
morphism with underlying injective function f : (EG, λG) ↪→ (EG′ , λG′). The proof boils down
to showing that f really is a ps-morphism from S(G) into S(G′), i.e., S(G′) ⊆ sat(S(G), f)
and, since we are considering specifications preserving isomorphisms, we can restrict our
attention to the case where f is an inclusion.

Since f is a pr-morphism,
⋃

e∈EG
f(e) is downward-closed in G′ and thus by Lemma 30

we have S(G′)|EG
⊆ S(G′|EG

) = S(G), the latter equality given by coherence. Now, consider
a path P ∈ S(G′). Since P|EG

∈ S(G), we have P ∈ sat(S(G), f), because saturation adds
missing events – namely those in EG′ \ EG – to P|EG

in all possible ways. Therefore we can
conclude S(G′) ⊆ sat(S(G), f). J

It is a well-known fact that the category of sets and injective functions lacks pushouts.
The same also holds for PIDag(L). However, recall now that pushouts in PDag(L) preserve
monos (Lemma 28). Thus in the following we say that a functor F : PIDag(L)→ SPath(L)
weakly preserves finite pushouts (and in fact, finite colimits) if any commuting square in
PIDag(L) that is a pushout (via the inclusion functor) in PDag(L) is mapped by F to a
pushout in SPath(L).

I Theorem 32. Let S be a coherent specification. The induced functor M(S) : PIDag(L)→
SPath(L) weakly preserves finite colimits and preserves binary pullbacks.

Proof. The initial object is easy, since it holds by construction. As for pushouts and pullbacks:
since S is coherent, it boils down to Lemma 24. J

7.2 Completeness
It is now time for moving to the completeness results of our work, showing (a few alternatives
on) how to obtain a specification from a functor.

I Theorem 33. Let F : PIDag(L) → SPath(L) be a functor such that F(G) ⊆ P(EG, λG).
If F weakly preserves finite colimits and preserves binary pullbacks, it induces a coherent
specification S(F).
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Proof. Let S(F)(G) = F(G). We shall show that F(G) is coherent. Consider the following
pushout in PDag(L)

G|be1c∩be2c G|be2c

G|be1c G|be1c∪be2c

(7.1)

Since F preserves pullbacks, thus monos, and weakly preserves pushouts, this diagram is
mapped by F to the following pushout in SPath(L)

F(G|be1c∩be2c) F(G|be2c)

F(G|be1c) F(G|be1c∪be2c)
(7.2)

where all underlying functions between events are inclusions. By Lemma 24 we have that

F(G|be1c∪be2c) ' F(G|be1c)⊗ F(G|be2c)

Since clearly G = G|⋃
e∈EG

bec, by associativity of pushouts we obtain coherence

F(G) '
⊗
e∈EG

F(G|bec)

Isomorphism preservation follows from F being a functor. J

Combined with Theorem 32, the result above intuitively tells us that the coherence
of a specification roughly corresponds to the weak preservation of colimits. However, the
set-theoretical requirement F(G) ⊆ P(EG, λG) is still unsatisfactory, yet apparently unavoidable,
because a generic F could associate any set of paths to a graph. We can sharpen the result
by requiring functors to preserve specific properties for suitable arrows of PIDag(L). The
candidates are root extension morphisms, given the properties shown in Section 6. In order
to define the functors, we also need to consider a suitable subset of the arrows of SPath(L).

I Definition 34 (Saturated specifications). Let S be a specification. It is saturated if for all
graphs G and extensions G`E the inclusion f : EG → EG` is saturated with respect to S(G`E) (see
Lemma 18), that is

∀G, E , `. S(G`E) = sat(ret(S(G`E), f), f)

A saturation ps-morphism (along `) is a saturated ps-morphism f : X1 → X2 with
underlying function (E , λ)→ (E>, λ[> 7→ `]). We can now prove an instance of Theorem 33
concerning saturated specifications.

I Proposition 35. Let F : PIDag(L) → SPath(L) be a functor mapping root extension
morphisms into saturation ps-morphisms (along the same labels). If F weakly preserves finite
colimits, it induces a saturated, coherent specification S(F).

Proof. We first show that F preserves monos, which renders the assumption of Theorem 33
about preservation of pullbacks redundant. We will essentially follow the proof of Propos-
ition 29. Given f : G1 → G2 in PIDag(L), we proceed by induction on the cardinality of
EG2 . If EG2 is ∅, i.e., it is the initial object, then f is the identity on ∅, and the claim follows
by functors preserving identities. Suppose now that G2 is rooted with root e. If e ∈ img(f),
then f again is the identity. Otherwise, f can be decomposed as G1 → (G2 \ e) → G2: the
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left-most one satisfies the induction hypothesis, and the right-most one is a root extension
morphism, which by hypothesis is mapped to a (monic) saturation ps-morphism. Therefore,
by functoriality of F, the claim holds for the composition of these morphisms. If G2 is not
rooted, then f can be similarly decomposed as G1 → G2|be1c → G2. By induction the claim
holds for the left-most morphism. The right-most one is obtained via a pushout of the form
(7.1), which is mapped by F to a pushout of the form (7.2), because F (weakly) preserves finite
colimits. By induction hypothesis, the span of this pushout consists of monic ps-morphisms,
therefore we use Lemma 24 to conclude that the pushout morphisms are monic as well, hence
the right-most morphism satisfies our claim. Again, the claim for the whole of f follows from
functoriality of F. A similar inductive argument can be used to show that F(G) is a set of
paths over (EG, λG) (up to a label-preserving isomorphism of events). Therefore we can now
re-use the proof of Theorem 33 and obtain that S(F) is a coherent specification.

It remains to be shown that S(F) is saturated, that is F(G`E) = sat(ret(F(G`E), f), f).
If G`E is rooted, this follows from F mapping root extensions to saturation ps-morphisms.
Otherwise, by coherence, F(G`E) can be decomposed into the product

⊗
e∈(EG)>

F(G`E
∣∣
bec). For

each component of the product we have a root extension G`E
∣∣
bec \e→ G`E

∣∣
bec, which is mapped

by F to a saturation ps-morphism, therefore we have F(G`E
∣∣
bec) = sat(ret(F(G`E

∣∣
bec), fe), fe),

where fe is the underlying function between events of the root extension. Saturation of F(G`E)
follows by computing the product of these sets of paths. J

7.3 More Completeness
The need of finding a suitable image for root extension morphisms allows for alternative
choices. To this end, we introduce a different subset of the arrows of SPath(L).

I Definition 36 (Path extension/prefixing). Let P be a path and f : (EP, λP) → (E , λ) a
function preserving labels. The extension of P along f is defined as

ext(P, f) = {Q | Q ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}

Similarly, let Q be a path and f : E → EQ a function preserving labels. The prefixing of Q
along f is defined as

pre(Q, f) = {P | P ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}

Both definitions immediately extend to sets of paths. Should f be injective, pre(Q, f)
would be a singleton, and if f is an inclusion, then pre(Q, f) = Q|E , for the latter a prefix of
Q. Also, note that similarly P has to be a prefix for all the paths in ext(P, f).

I Example 37. A topological specification StopR for a Register can be defined as SlwwR in
Example 13 with the additional requirement that paths are topological orderings of visibilities

P ∈ StopR(G) iff P ∈ SlwwR(G) and ≺G ⊆ ≤P

In this way, StopR(G) excludes e.g. the two right-most arbitrations of the equation in Figure 1a.

I Definition 38 (Topological specifications). Let S be a specification. It is topological if

∀G, E , `. S(G`E) = ext(pre(S(G`E), f), f)

A topological ps-morphism (along `) is a ps-morphism f : X1 → X2 with underlying
function (E , λ) → (E>, λ[> 7→ `]) such that X2 = ext(pre(S(X2), f), f). The name is
directly reminiscent of what are called topological rdts in [10, 5], and in fact it similarly
guarantees that arbitrations preserve the visibility order. We can thus prove another instance
of Theorem 33, now concerning topological specifications.
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I Proposition 39. Let F : PIDag(L) → SPath(L) be a functor mapping root extension
morphisms into topological ps-morphisms (along the same labels). If F weakly preserves finite
colimits, it induces a topological, coherent specification S(F).

7.4 Interchangeability of Functors and Coherent Specifications
The connection between the construction of Theorem 32 and Theorem 33 is quite tight, and
in fact induces a one-to-one correspondence between functors and coherent specifications.

I Theorem 40. Let S be a coherent specification. Then S(M(S)) = S. Conversely, let
F : PIDag(L) → SPath(L) be a functor verifying the hypothesis of Theorem 33. Then
M(S(F)) ' F.

Proof. We first show that M(S(F)) ' F. For notational convenience, we denote M(S(F))
by M′. We will show the existence of a natural isomorphism ϕ : M′ ⇒ F. By definition,
we have M′(G) = S(F)(G) = F(G), therefore we can define ϕG = IdF(G). We need to prove
that it is natural, which in this case amounts to showing M′(f) = F(f), for f : G → G′ in
PIDag(L). This follows from M′(f) and F(f) having the same underlying function between
events, namely the inclusion (EG, λG)→ (EG′ , λG′).

Now we show that S(M(S)) = S for any coherent specification S. This follows directly
from the definition of M and S. In fact, S(M(S))(G) = M(S)(G) = S(G). J

The one-to-one correspondence can be lifted to the specific classes of saturated/topological
coherent specifications and to the functors of Proposition 35/Proposition 39, respectively.
However, what is most relevant is the fact the interchangeability allows one to leverage the
categorical machinery of the functor category for providing operators on specifications.
I Remark 41. Besides coherence, one of the keys of the previous correspondence is the (quite
reasonable) choice of specifications that preserve isomorphisms. In general terms, whenever
one needs to consider the relationship between different specifications, it is necessary to take
into account how the underlying sets of events are related. This is quite easy to accomplish
if we move to the functorial presentation. For example, we can say that a specification S1
refines a specification S2 if S1(G) ⊆ S2(G) for all graphs G. However, this is a very concrete
characterisation: it would be more general to check for the existence of a ps-morphism
S2(G2)→ S1(G1) whose underlying function f : EG2 → EG1 is a bijection, in order to abstract
from the identities of the events. In this case, a further constraint would be that f is
preserved along the image of the morphisms in PIDag(L). These requirements boil down to
the existence of a natural transformation M(S2)→M(S1).

8 Conclusions and Further Works

In this paper we have provided a functorial characterisation of rdt specifications. Our
starting point is the denotational approach proposed in [7, 6], in which rdt specifications
are associated with functions mapping visibility graphs into sets of admissible arbitrations
that are also saturated and coherent, and where a preliminary functorial correspondence was
proposed. In this paper we streamlined and expanded the latter result. We considered the
category PDag(L) of labelled, acyclic graphs and pr-morphisms for representing visibility
graphs. We equip PDag(L) with operators that model the evolution of visibility graphs
and we show that the sub-category PIDag(L) of monic morphisms can be generated by the
subset of root extensions via pushouts. For arbitrations, we take SPath(L), which is the
category of sets of labelled, total orders and ps-morphisms. Then, we show that each coherent
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specification mapping isomorphic graphs into isomorphic set of paths induces a functor M(S) :
PIDag(L)→ SPath(L). Conversely, we prove that a functor F : PIDag(L)→ SPath(L)
that preserves finite colimits and binary pullbacks induces an coherent specification S(F).
Moreover, M(S) and S(F) are shown to be inverses of each other.

With respect to the categorical results expressed in [7], besides the additional charac-
terisation of topological specifications, the key improvement has been the proof that the
coherence of specifications has a precise counterpart in terms of the weak preservation of
colimits on their functorial presentations, as stated by Theorem 32 and Theorem 33. We thus
removed the set-theoretical requirements occurring e.g. in [7, Section 5.3], as witnessed by the
definition of coherent functor there. We believe that this purely functorial characterisation of
rdts, as further witnessed by Proposition 35 and Proposition 39, provides an ideal setting
for the development of techniques for handling rdt composition, as briefly pointed out by
the functorial characterisation of refinement between specifications. Our long term goal is to
equip rdt specifications with a set of operators that enables us to specify and reason about
complex rdts compositionally, i.e., in terms of their constituent parts. We aim at providing
a uniform formal treatment to the compositional approaches proposed in [1, 10, 12].
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