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—— Abstract

The Constraint Satisfaction Problem (CSP) and its counting counterpart appears under different
guises in many areas of mathematics, computer science, statistical physics, and elsewhere. Its

structural and algorithmic properties have demonstrated to play a crucial role in many of those
applications. For instance, topological properties of the solution set such as connectedness is related
to the hardness of CSPs over random structures. In approximate counting and statistical physics,
where CSPs emerge in the form of spin systems, mixing properties and the uniqueness of Gibbs
measures have been heavily exploited for approximating partition functions or the free energy of spin
systems. Additionally, in the decision CSPs, structural properties of the relational structures involved
— like, for example, dismantlability — and their logical characterizations have been instrumental for
determining the complexity and other properties of the problem.

In spite of the great diversity of those features, there are some eerie similarities between them.
These were observed and made more precise in the case of graph homomorphisms by Brightwell
and Winkler, who showed that the structural property of dismantlability of the target graph, the
connectedness of the set of homomorphisms, good mixing properties of the corresponding spin
system, and the uniqueness of Gibbs measure are all equivalent. In this paper we go a step further
and demonstrate similar connections for arbitrary CSPs. This requires much deeper understanding
of dismantling and the structure of the solution space in the case of relational structures, and new
refined concepts of mixing introduced by Bricefio. In addition, we develop properties related to the
study of valid extensions of a given partially defined homomorphism, an approach that turns out to
be novel even in the graph case. We also add to the mix the combinatorial property of finite duality
and its logic counterpart, FO-definability, studied by Larose, Loten, and Tardif.
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1 Introduction

The Constraint Satisfaction Problem (CSP) provides a powerful framework in a wide range
of areas of mathematics, computer science, statistical physics, and elsewhere. The goal in a
CSP is to find an assignment to variables from a given set that satisfies a number of given
constraints. The counting version of the problem asks about the number of such assignments.
The CSP however appears in different forms: as the standard one outlined above in Al and
computer science [19], as the homomorphism problem in graph and model theory [22, 27], as
conjunctive query evaluation in logic and database theory [30], as computing the partition
function of a spin system in statistical physics [39] and related areas, like symbolic dynamics
and coding [35, 37].

The CSP allows for many approaches of diverse nature, and every application field
exploits some of its many facets: structural properties of constraints for complexity and
algorithms, probabilistic properties and the topology of the solution space in Random CSP
and random structures, mixing properties in statistical physics and dynamical systems, decay
of correlations and the uniqueness of probabilistic measures in approximate counting, and
homomorphic duality and logical characterizations in model theory. In [12], Brightwell and
Winkler observed that some of these properties are actually closely related, at least in the
simple case of graph homomorphisms. In this paper we take this research direction a step
further by extending Brightwell and Winkler’s results to the general CSP, and by refining
and widening the range of the properties involved.

We start off with a brief introduction of the features of the CSP considered in this paper.
Afterwards, we provide a detailed account of the necessary background and a description of
our results.

Every CSP involves a set of variables and a domain, a set of possible values for the
variables. Assumptions about these two sets differ in different areas. The most studied case in
combinatorics and complexity theory is when both sets are finite. However, many interesting
problems such as scheduling and temporal and spatial reasoning involve infinite domains; see
also extensive literature on infinite CSPs (see, for example, [4] and the references therein).
In other cases such as in statistical physics, it is natural to choose the set of variables to be
infinite (a lattice, for example). Then, it is also natural to study probability distributions
over such assignments — where Gibbs measures and the problem of their (non-)uniqueness
appear naturally [25] — and also study quantities such as entropy and free energy [3, 7).

Following [22], CSPs can be formulated as the problem of deciding the existence of a
homomorphism from a finite relational structure G to a target relational structure H, where
G and H encode the variables and the values of the CSP. The complexity of this problem,
especially the case when H is a fixed finite relational structure, has received a lot of attention,
culminating with the proof of the Feder-Vardi conjecture [14, 44]. In the present paper
we focus as well on the case when H is finite, although our main focus is not algorithmic
but rather structural. In particular, we are interested in studying the space Hom(G, H)
of homomorphism from G to H. Furthermore, following [12] we consider homomorphisms
from both finite and infinite relational structures G (although [12] only considers graphs),
a flexibility that turns out to be useful to see different aspects of homomorphism spaces
Hom(G, H) that otherwise would be meaningless.



R. Briceno, A. A. Bulatov, V. Dalmau, and B. Larose

There is a vast literature concerning graph homomorphisms and their properties through
the lenses of statistical physics [5, 20, 11, 39]. In this context, it is very common to encode a
spin system as a pair of relational structures G and H, where G contains a set of variables/
particles and H contains the set of values/spins that each particle could take, imposing hard
constraints on them, i.e., disregarding configurations of values that do not satisfy all the
given constraints. In practical terms, all this reduces to study — individually and as a set —
the maps from G to H that are homomorphisms. In particular, many important parameters
of a spin system such as free energy and entropy can be learned from studying such a set
of homomorphisms.

In [12], Brightwell and Winkler observed that many of the properties of graph homorphisms
used in the above areas are equivalent to a single structural property of graphs, namely,
dismantlability. In this paper we follow a similar approach and study properties of CSPs over
general relational structures that we put into basically three categories: (1) dismantlability, (2)
connectedness, and (3) mixing. Furthermore, as a consequence of our results, we established
a connection with a fourth notion not initially contemplated in [12]: (4) finite duality.

Dismantlability

A graph is said to be dismantlable if it can be reduced to a single vertex removing vertices
whose neighborhood is contained in the neighborhood of some other vertex. Such trans-
formations are called folds, and they can be viewed as retractions of a very particular kind.
Dismantlable graphs were introduced in [41], based on ideas already present in [29] in the
context of lattices, and have been intensively studied in combinatorics. Distamantlability can
be generalized in a natural way to relational structures. Indeed, some variants of this notion
have been used in the study of CSPs. In particular, dismantlability has been applied in [15]
to the problem of enumerating all solutions of Hom(G, H) with polynomial delay. Also, it
has played a major role in the study of CSPs definable in first-order logic [18, 34].

Connectedness

When G is finite, it is often useful to convert Hom(G,H) into a graph and explore the
connectivity properties of this graph. The set of edges of Hom(G, H) can be defined in a
variety of ways, usually the most suitable to the problem at hand. For example, it is common
to say that two elements from Hom(G, H) are close (and therefore adjacent in the graph)
if the Hamming distance between them is smaller than a certain threshold. The particular
case when this threshold is 1 has been intensively studied, motivated initially by the fact
that the connectedness of the solution space for SAT problems over random instances is
linked to the performance of standard satisfiability algorithms, such as WalkSAT or DPLL
[1, 32]. This has given rise to a general framework called reconfiguration [28] (see also [40] for
a recent survey) that goes way beyond homomorphisms. Work in this area encompasses both
structural questions (under which conditions is Hom(G, H) connected?) and algorithmic
ones (what is the complexity of, deciding, given G and H as input, whether Hom(G, H) is
connected? Its diameter? The shortest path between two given members of Hom(G, H)?
Etc.). In the context of spin systems, the connectedness of Hom(G, H) is related to processes
that consists on periodically updating the spin of a single or a small set of particles (e.g.,
irreducibility of Glauber dynamics).

We also consider an alternative way to define adjacency in Hom(G, H) via links as in [34].
This notion of adjacency is linked to the so-called finite duality property, which is another of
the main themes of our work.
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Mixing

Mixing properties have been intensively studied in statistical physics and related areas
(see [2, 6, 8, 10, 17, 42]), and are usually applied when the set of particles in G is very
large or infinite. In this case, it can be very useful to be able to “glue” together partial
homomorphisms, provided their domains are far from each other. There are several properties
that formalize this phenomenon and it is common to establish hierarchies among them. More
concretely, given a metric in G, it is natural to ask whether there exists some uniform gap
such that for any two subsets A and B of particles sufficiently far apart (in terms of the
gap), and for any pair of homomorphisms ¢, € Hom(G,H), we can find a third one, ~,
such that restriction of v to A and B coincides with the restrictions of ¢ and ¥ on A and
B, respectively. On the contrary, whenever the information content of a given set (at least
partially) determines the information content of another set (i.e., the possible values that
the variables on it can take), no matter how far it is, such a phenomenon has been called
long range action in previous work (e.g., see [13]).

Similar phenomena are used in the related area of approximate computing of partition
functions, where many algorithms are based on decay of correlations between values of remote
elements of G, which allows for approximation of partition functions based only on local
neighborhoods of variables.

Finite duality and logic characterizations

Homomorphism duality often helps to design a solution algorithm for a CSP or establish its
useful properties. A graph (or relational structure) H is said to have homomorphism duality
if there is a set O of graphs, called obstructions, such that a graph G has a homomorphism
to H if and only if no graph from O is homomorphic to G. Sometimes the set of obstructions
is very simple, say, any bipartite graph has homomorphic duality, where O is the set of all
odd cycles. If O can be chosen finite, we say that H has finite duality.

Homomorphism duality is closely related to another property of CSPs. Let £ be a logic
language such as first order, second order, etc. The problem of deciding homomorphisms to a
relational structure H is said to be expressible in L if there is a formula ® in the language £
such that G has a homomorphism to H if and only if ® is true on G. It is known, for instance,
that H has a set of obstructions consisting of relational structures of bounded treewidth if
and only if the corresponding homomorphism problem is expressible in Datalog [22], or that
H has finite duality if and only if the corresponding problem is expressible in first order logic
[34] (see, for example, [16] for a survey on dualities for CSP).

Our results

The main result of this paper is Theorem 10, that shows, for a relational structure H, the
equivalence of the following three conditions: (A) H? dismantles to a substructure of its
diagonal, that is, the substructure of H? induced by the set {(a,a) | a € H}; (B) for any
G, the homomorphism graph Hom(G, H) is connected; and (C) for any relational structure
G, the graph Hom(G, H) satisfies certain mixing properties. These results generalize the
results from [12] to the case of general relational structures. Observe that the case of graphs
considered in [12] does not fully reflect the richness of the theory behind our result.

As a byproduct of our results, we obtain two applications. On the one hand, we
establish a link with strong spatial mizing (e.g., see [21]) and topological strong spatial
mizing (introduced in [7]). These two last properties have played an important role in the
development of deterministic approximate counting algorithms. In this paper we address the
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following question: What fixed targets H are suitable for both of these properties to hold for
any G? On the other hand, we establish a connection with finite duality, which allows us to
reprove the main theorem in [34]. We hope that our work opens the possibility of developing
new counting techniques based on this approach in a very general setting. We stress that
many of these results are new even in the graph case.

Due to space restrictions proofs are ommitted. They can be found at the full version [9].

2 Preliminaries

Let H be a countable (finite or denumerable) set and k a positive integer. The set of k-tuples
over H is denoted by H*. A (k-ary) relation R over H is a subset R C H*. The elements
of a relation R will be denoted in boldface, e.g., a, b, etc., and a[i] will denote the ith entry
ofaforl<i<k.

Given another countable set G and a map ¢ : G — H, for a k-tuple a over G we shall
use ¢(a) to denote the k-tuple over H obtained after applying ¢ to a componentwise. If
V C G, we will denote by ¢|,, the restriction of ¢ to V. Furthermore, if ¢ is another map
with domain H, we shall use ¥ o ¢ to denote the composition of 1 with ¢, i.e., the map
z = P((x)).

A signature 7 is a finite collection of relation symbols R, each of them with an associated
arity. For a given signature 7, a relational structure (with signature 7) — or simply, a
T-structure — H consists of a countable set H called the universe of H and a relation R(H)
for each R € 7, such that the arity of R(H) equals that of R. We shall use the same capital
letter to denote the universe of a T-structure, e.g., H is the universe of H. We will usually
consider 7 to be a fixed signature, and G and H to be 7-structures with universes G and H,
respectively.

A relational structure is said to be finite if its universe is finite and locally finite if
every element in its universe occurs only in a finite number of its tuples.

» Remark 1. A digraph G (with self-loops allowed) is a very particular case of a relational
structure, where the signature 7 consists of a unique relation symbol E of arity 2. Moreover,
graphs correspond to the digraph case where E(G) is a symmetric relation.

A map ¢ : G — H is said to be a homomorphism from G to H if, for every relation
symbol R € T,

a € R(G) = ¢(a) € R(H).
We will denote by Hom (G, H) the set of all homomorphisms from G to H.

» Example 2. A particular example of CSPs that cannot be represented in the setting of
Brightwell and Winkler (that is, as homomorphisms of graphs) is the case of d-dimensional
nearest-neighbor (n.n.) shifts of finite type (SFTs), a fundamental object in dynamical
systems and probability (see [35, 36, 37]). Given a positive integer d, consider the signature
7 ={Ry,..., R4}, where R; is a 2-ary relation for all 1 < i < d. We consider two T-structures
G and H. Here, G will be an infinite relational structure with universe G = Z? and relations
R;(G), 1 < i < d, representing the usual d-dimensional hypercubic lattice and the adjacency
of pairs of elements in it. On the other hand, H will be a finite relational structure with
universe H and R;(H) representing pairs of “colors” from H that are allowed to be adjacent
in the canonical ith direction of the lattice, 1 <7 < d. Then, X = Hom(G, H) is known as
a d-dimensional n.n. SFT, a set of colorings of Z¢ with not necessarily isotropic adjacency
rules (i.e., we do not need to have the same restrictions in every direction), and any such
object can be represented in this way.
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A relational structure J is a substructure of H if J C H and, for every relation symbol
R € 7, we have that R(J) C R(H). Furthermore, if for every k-ary R € 7, we have that
R(J) = R(H) N J*, then we say that J is the substructure of H induced by J. If J C H and
¢ : H — J is a homomorphism acting as the identity on J, then ¢ is said to be a retraction.

The product of H; and Hs, denoted H; x Hs, is the 7-structure with universe Hy; x Ho
where, for every k-ary relation symbol R € 7, we have that R(H; x Hs) consists of all tuples
((a1,b1),..., (ak, b)) with (ay,...,ar) € R(H;y) and (by,...,b;) € R(Hs). We shall denote
by H? the product H x H. The projections 71,72 : H> — H are the maps (a,b) — a
and (a,b) — b, respectively, for (a,b) € H?. An element (a,b) of H? is diagonal if a = b.
The diagonal set of H2, denoted A(H?), is the set of its diagonal elements. Similarly, the
diagonal structure of H2, denoted A(H?), is the substructure of H? induced by A(H?). A
substructure K of H? is symmetric whenever (a,b) € K if and only if (b,a) € K. Notice
that H? is always symmetric.

In this paper, we will study properties of H and how they relate to other properties
of Hom(G, H) for arbitrary G. We mainly consider three families of properties, namely,
dismantling of H, connectedness of some particular graphs with vertex set Hom(G, H), and
mixing properties of Hom(G, H).

2.1 Dismantling

Let H be a 7-structure and let a,b be elements in its universe H. We say that b dominates
a (in H) if for every k-ary R € 7, any i € {1,...,k}, and any (a1,...,ax) € R(H) with
a; = a, we also have that (ai,...,a;-1,b,a;41,...,a;) € R(H). Additionally, if a # b, then
we say that a is dominated (in H).

A sequence of 7-structures Jo, ..., Js is a dismantling sequence if for every 0 < j < ¢
there exist a;,b; € J; such that b; dominates a; in J;, and J;4; is the substructure of J;
induced by J; \ {a;}. In this case, we say that J, dismantles to J,. We can alternatively
denote a dismantling sequence by giving the initial relational structure Jy and the sequence
of elements ag,...,ar—1. We say that H is dismantlable if it dismantles to a 7-structure
such that its universe is a singleton.

Note that for every 0 < j < £ there is a natural retraction r; from J; to J;41, where
r; maps a; to b; and acts as the identity elsewhere. We call such retractions a fold. By
successive composition, one can define a retraction (namely, rj_1 0---or;) from J; to J;/
for every j < j’.

It is well known that if H dismantles to some substructure K, then this dismantling can
be found in a greedy manner. Formally,

» Lemma 3 ([34, Lemma 5.1]). IfH dismantles to K and a € H\ K 1is dominated in H, then
the substructure of H induced by H \ {a} dismantles to K.

Let J C H. We say that H is J-non-foldable if every dominated element in H be-
longs to J.
2.2 Walks in relational structures

We define a walk w in a 7-structure H to be a sequence

aOaila (Rlaal)y.jhah s 7an—1ain7 (Rnaan)ajnyan

for some n > 0, such that, for all 1 < ¢ < n,
Ry €7, a, € Ry(H), i¢ # jo, and
ag_1 = ag[ig] and a; = ag[jg].
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In this case, we will say that w joins a¢ (the starting point) and a,, (the ending
point), and that the length of the walk w is n. Notice that if a walk w joins a¢ and a,,, then

there is another walk w’ that joins a,, and ag obtained by just reversing the order of indices.

The distance dist(a, b) between two elements a,b € H is defined to be the smallest length
among all the walks w that join a and b. The distance dist(V, W) between sets V,W C H is
defined to be the minimum distance between an element from V and an element from W.

Note that the definition of walk above coincides with the standard definition of walk
when H is a graph. However, in the case of graphs it will be convenient to describe the walk
merely as the list ag, ..., a, of its nodes, as usual.

A 7-structure H is connected if there is a walk joining any pair of elements of its universe
H and a connected component is any induced substructure that is connected and maximal
in the sense of inclusion. A walk w is a circuit if n > 0, the starting and ending points of w
coincide, and for all 1 < /¢ < ¢/ <n, we have that (Ry,ay) # (Re,ae). A 7-structure T is a
T-forest if it has no circuits. If, additionally, it is connected then it is a 7-tree. Usually,
7-trees are defined using the notion of incidence multigraph (see for example [34]). It is easy
to verify that the definition given here is equivalent.

2.3 Forest of walks

Given a 7-structure H, we proceed to define a new 7-structure Ty. The universe Ty of Ty
consists of all the walks w in H. For a k-ary R € 7, we define R(Ty) as follows: for all
a=(ay,...,ar) € R(H), for all 1 < i < k, and for all walks w ending in a;, we include in
R(Tw) the tuple (w1, ..., wi—1,w, Wit1,..., W), where w;, j # ¢, is the walk obtained from
w by extending it with ¢, (R, a), j, a;.

We note that Ty does not have circuits and has exactly |H| connected components, i.e.,
|H| T-trees. It is easy to check that for every substructure I of H, the 7-structure Ty is a
substructure of Ty.

» Remark 4. If H is connected and we consider a slight modification of this previous definition,
where the walks are asked to be non-backtracking (i.e., for every 1 < ¢ < n, we have that
either iy # jyi1, Or jo # Go41, or (Re,x¢) # (Ret1,Xe+1)), then we obtain that each connected
component of the resulting T-structure corresponds to the universal covering tree of H [31, 33]
(in particular, they are all the same up to isomorphism).

Note that, by construction, the map py : Ty — H that sends every walk w in Ty to its
ending point, that from now on we refer as the label map, defines a homomorphism from
Ty to H. Furthermore,

» Lemma 5. Assume that H is J-non-foldable for some J C H and let U be a cofinite subset
of Ty containing pﬁl(J). Then, every homomorphism in Hom(Ty, H) that agrees with py in
U is identical to py.

Proof. Given n > 0, let W,, be the set of walks of length at least n in H (notice that
W, C W,_1 and Wy = Ty). We shall show that any p’ € Hom(Ty, H) that agrees with py
in W, U pﬁl(J) for arbitrary n also agrees with py in W,,_1 . Let w be any walk of length
n — 1 and let a be its ending point. We first show that p’(w) dominates a in H. Indeed,
let R €7 and let a = (ay,...,a;) € R(H), where a appears, say, in the ith coordinate. By
construction, R(Ty) contains the tuple w = (w1, ..., w;—1, w, wit1,...,w), where for every
J # i, w; is obtained by concatenating %, (R,x), j, a; at the end of w. Since w; has length n
for every j # i, it follows by assumption that p’(w;) = a;. That is, p'(w) (which must be a
tuple in R(H)) is obtained by replacing, in a, a; by p'(w).
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Hence, we have shown that p'(w) dominates a in H. Since H is J-non-foldable it follows
that either p/'(w) = a (and, hence, p'(w) = pg(w)) or a € J (and, hence, p'(w) = pu(w) since
w € pﬁl(J )). To conclude the proof it is only necessary to observe that, since U is a cofinite
set containing pﬁl(J ), it follows that any homomorphism that agrees with py in U, agrees
as well in W, U pg*(J) for sufficiently large n. <

2.4 Graphs of homomorphisms

Let G and H be 7-structures and suppose that H is finite. We define two different kinds
of graphs with vertex set Hom(G,H). The first notion has been heavily studied, from an
algorithmic perspective, in the context of the so-called CSP reconfiguration problem (see
[26] and the references therein) and, in the special cases when G and H are graphs also from
an structural point of view [12]. We define C(G, H) as the (reflexive) graph with vertex set
Hom(G, H) such that for every ¢, € Hom(G,H), ¢ and v are adjacent if and only if ¢ and
1 differ in at most one value, i.e., there exists at most one x € G such that ¢(z) # ¥ (z).
More generally, for any n > 1 we can define C,,(G,H) on Hom(G, H) by declaring ¢ and
adjacent if they differ in at most n values (in particular, C(G, H) = C;(G, H)).

A second notion of graph of homomorphisms appears in [34] and uses the notion of links.
The 1-link L (with signature 7) is the 7-structure with universe {0, 1}, where R(LL) = {0, 1}*
for every k-ary R € 7. Define a (di)graph L(G,H) with vertex set Hom(G, H) as follows: set
¢ — 1 —i.e., a directed edge starting from ¢ and ending in 1) — if for any k-ary R € 7 and any
(x1,...,2k) € R(G), we have that (y1(x1),...,vk(xr)) € R(H) whenever ~q,...,v € {¢,¢}.
Alternatively, one can say that there ¢ and ¢ are joined by a directed edge if there exists a
homomorphism from L to H®, the Hth power of G (see [34, Section 5.2]), mapping 0 to ¢
and 1 to . Notice that the symmetry in the definition of 1-link implies that L(G,H) is, in
fact, an undirected graph.

Clearly, C,,(G,H) is a subgraph of C,,11(G,H). In contrast, Cy,(G,H) and L(G,H) are
not included in one another in general.

Note that there is a one-to-one correspondence between the elements in Hom(L x G, H)
and the edges of L(G,H). More generally, for £ > 1 we define the ¢-link L, (with signature
7) as the 7-structure with universe {0, 1,...,¢}, where R(L;) = Uf;é{i,z’ + 1}*, for every
k-ary R € 7. In other words, the ¢-link is a sequence of 1-links with their endpoints identified.
Then the following result is immediate:

» Lemma 6. For every map ¢ : {0,1,...,£} xG — H and every 1 <i < ¢, let ¢(i): G — H
be the map defined by ¢(i)(x) — ¢(i,x) for v € G. Then, ¢ € Hom(LL, x G, H) if and only if
#(0),...,6(f) is a walk in L(G,H).

2.5 Mixing properties

Given 7-structure G and H, it is useful to study properties in Hom(G, H) that allow us to
glue together partially defined homomorphisms. This kind of properties are usually referred
in the literature as mizing properties (e.g., see [8, 10]).

A natural mixing property is irreducibility. We say that Hom(G, H) is (V, W)-irreducible
for VW C G, if for every ¢, v € Hom(G,H), there exists a map v € Hom(G, H) that agrees
with ¢ on V and agrees with ¢¥» on W.

Given g > 0, we say that Hom(G, H) is strongly irreducible with gap g¢ if for every
V, W such that dist(V, W) > g and for all ¢,v € Hom(G,H), there exists v € Hom(G, H)
that agrees with ¢ on V and agrees with ¢ on W. We say that Hom(G,H) is strongly
irreducible if it is strongly irreducible with gap g for some g.
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A strengthening of strong irreducibility is the following property, introduced in [7]. Given
g > 0, we say that Hom(G, H) is topologically strong spatial mixing (TSSM) with
gap g if for every V, W, S C G such that dist(V, W) > g and for all ¢, € Hom(G, H) that
agree on S, there exists v € Hom(G, H) that agrees with ¢ on V' U S and agrees with ¢ on
S UW. We say that Hom(G,H) is topologically strong spatial mixing if it is TSSM
with gap g for some g.

Clearly, Hom(G, H) is TSSM only if Hom(G, H) is strongly irreducible but not viceversa
(see [7, 8] for some counterexamples).

An antithesis of having good mixing properties is the existence of configurations which
are frozen. We say that ¢ € Hom(G,H) is a frozen configuration if for any cofinite set
U C G, the only homomorphism 1) € Hom(G, H) such that |, = |, is ¢ = ¢ itself.

3 Dismantlability, Connectivity, and Irreducibility

In this section we present our main theorem, which characterizes in several ways a special
class of relational structures. This theorem generalizes some of the equivalences characterizing
dismantlable graphs that appear in [12, Theorem 4.1] — which were developed only for the
case of graphs — to arbitrary relational structures.

3.1 The case of graphs

The following theorem is a rephrasing of the equivalences that appear in [12, Theorem 4.1]
which are relevant to us. We will use this as a prototypical example of the kind of results
that we are aiming for, where we split the properties in 3 main categories (A) dismantlability,
(B) connectedness, and (C) mixing.

» Theorem 7 ([12, Theorem 4.1]). Let H be a graph. The following are equivalent:

(A) H is dismantlable;

(B) C(G,H) is connected for every locally finite graph G;

(C) there exists g > 0 such that Hom(G, H) is strongly irreducible with gap g for every graph
G.

» Lemma 8. A graph H is dismantlable if and only if H? dismantles to a substructure of its
diagonal.

Proof. This follows from our own results. In Theorem 10, we prove that, for a finite 7-
structure H, we have that H? dismantles to a substructure of its diagonal if and only if
there exists g > 0 such that Hom(G, H) is strongly irreducible with gap g for all 7-structures
G. In particular, this applies if 7 = {E'}, the usual binary relation of adjacency in graphs.
Therefore, by Theorem 7, these two properties are also equivalent to H being dismantlable,
and we conclude. <

In other words, thanks to Lemma 8, at least in the realm of graphs, we can freely replace
“dismantlable” by “the square dismantles to a substructure of its diagonal”, which will be the
relevant class of general relational structures in this work.

» Remark 9. It is important to notice that the equivalence between “dismantlable” and
“the square dismantles to a substructure of its diagonal” is not true for general relational
structures. For example, given 7 = {R} for R a binary relation symbol, we can take H such
that H = {0,1} and R(H) = {(0,1)}. Then, H is not dismantlable, but H? dismantles to its
diagonal.
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3.2 Main Theorem

The following theorem shows that different dismantling, connectedness, and mixing notions
are equivalent. It can be seen as a generalization of Theorem 7 to relational structures.

» Theorem 10. Let H be a finite T-structure with universe H. Then the following are

equivalent:

(Als) H dismantles to a structure I such that 1? dismantles to its diagonal;

(A2s) H? dismantles to a substructure of its diagonal;

(Bls) C(G,H) is connected for every locally finite T-structure G;

(B2s) there exists some n > 1 such that Cp,(G,H) is connected for every finite T-structure
G;

(B3s) C(LL x H2 H) is connected;

(B4s) L(G,H) is connected for every finite T-structure G;

(B5s) the projections w1 and mo are connected in L(H?, H);

(Cls) there exists g > 0, such that Hom(G, H) is strongly irreducible with parameter g for
every T-structure G; and

(C2s) there exists g > 0, such that Hom(Tyz,H) is ({}, W)-mizing with parameter g, for
all x € Tz and W C Tyz.

The proof of Theorem 10 can be found in the full version. Indeed, we prove a more general
version of it which will allow us to derive the applications contained in the rest of the paper.
Although due to space restrictions we cannot state the theorem in its more general form we
believe is interesting in its own. In particular, it is motivated by the fact that, sometimes, it
is natural — particularly in the context of statistical physics — to work by forcing a certain
subset of particles to take each of them a particular spin and work with the remaining ones.
For example, this is a common scenario when the particles in the boundary of a given set in
a lattice are fixed to take particular spins and we want to study the distribution of spins in
the interior of the set, conditioned on such boundary configuration. These ideas inspired the
most general version, which can be regarded as the study of boundary long range actions,
i.e., long range action phenomena where some boundary configuration is fixed, very similar
to the concept of boundary phase transition in relation to phase transitions (e.g., see [38]).

4  First application: Gibbs measures and mixing conditions

4.1 Basic definitions

Given a finite 7-structure H with universe H, a weight function for H is a map A : H — R™*.
Let G be a locally finite 7-structure. If V' C G is a finite set and ¢ € Hom(G, H), we
define Py, 4 to be the probability measure on Hom(G, H) given by

Zv (N ey M@(x) i ¥l ¢l € Hom(G, H),
0 otherwise,

Pvs({y}) = {

for ¢ € Hom(G, H), where 9|y, ¢|g\ - is the map that coincides with + in V' and with ¢ in
G\ 'V, and Zy () is a normalization constant — the partition function — defined as

Zvg(A) = > I Mw()).

Y €Hom(G,H) eV
Ply ¢|G\V€Hom(G,H)
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We will call the collection of probability measures {Py, 4}, the Gibbs (G, H, \)-specifi-
cation. The boundary of a set V' C G, denoted by 9V, is defined as the set of elements
in G at distance exactly 1 from V. Notice that Py 4 depends exclusively on ¢|y,,. Now,
consider events of the form

A, V) = {¢p € Hom(G, H) : ¢, = ¢l }.

Next, consider the o-algebra F generated by all events of the form A(¢, V) for V finite,
and define M(G,H) to be the set of probability measures on (Hom(G, H), F).

A measure u € M(G,H) is a Gibbs measure for the Gibbs (G, H, \)-specification if for
any finite V' C G and for all ¢; € Hom(G, H),

1 (A(g1, V)[A(g2, G\V)) =Py g, ({¢1}) for p-ae. ¢2 € Hom(G, H).

In other words, the probability distribution of a random ¢; inside a finite V' conditioned
on its values outside V' to coincide with those of ¢, depends only on the values of ¢/, and
on the boundary, ¢z|;,,. Furthermore, the conditional distribution is the same as for Py, 4,
(see also [12, Definition 2.1]).

If Hom(G, H) # 0, then there always exists at least one Gibbs measure [25, Chapter 4].
A fundamental question in statistical physics is whether there exists a unique Gibbs measure
or multiple for a given Gibbs (G, H, \)-specification.

4.2 Non-uniqueness and spatial mixing properties

In [12], it is shown that if H is a graph and it is dismantlable (or equivalently, by Lemma
8, its square dismantles to a subgraph of its diagonal), then, for any locally finite graph G,
there exists some A such that there is a unique Gibbs measure [12, Theorem 7.2]. Conversely,
in [12] it is also proven that if H is a non-dismantlable graph, then there exists G such that
for any A there exists multiple Gibbs measures [12, Theorem 8.2].

Here, following a similar path, we show that when extending this question to arbitrary
relational structures, the first implication does not remain true in general, but the second
still holds. More exactly,

» Proposition 11. There exists a finite T-structure H such that H? dismantles to a substruc-
ture of its diagonal and a locally finite T-structure G such that for any X\ there exists multiple
Gibbs measures for the Gibbs (G, H, \)-specification. Moreover, H can be chosen so that H?
dismantles to its full diagonal A(H?).

» Proposition 12. Let H be a finite T-structure. If H? does not dismantle to a substructure
of A(H?), then there exists a locally finite T-structure G such that for any \ there exists
multiple Gibbs measures for the Gibbs (G,H, \)-specification.

In what follows we introduce some spatial mixing properties related to our results.

» Definition 13. Given J C H, we say that a Gibbs (G, H, \)-specification satisfies spatial
J-mizing (J-SM) if there exists constants C,a > 0 such that for all ¢1, P2 € Hom(G, H),
for all finite VC G, and for allz € V and a € H,

Py.g, {¥(2) = a}) = Py, ({¢:(x) = a})| < O - exp(—a - dist(z, Dy (41, ¢2))), (1)

where

D{(¢1,¢2) = {z € OV : (¢1(2), $2(x)) € H* \ A(J?)}

and {Y(x) = a} refers to the event that a random 1 takes the value a at x.
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The definition of J-SM unifies and interpolates two well-known properties. If J = (,
then D% (¢1,¢92) = OV and Eq. (1) corresponds to the definition of weak spatial mixing
(WSM), i.e., 0-SM. On the other hand, if J = H, then D (¢1,¢2) = {z € OV : ¢1(z) #
¢2(x)} and Eq. (1) corresponds to the definition of strong spatial mixing (SSM), i.e.,
H-SM.

In general, spatial mixing properties are forms of correlation decay that have been of
interest because of their many applications. On the one hand, WSM is related with uniqueness
of Gibbs measures and the absence of phase transitions [21]. On the other hand, SSM is a
strengthening of WSM and it is related to the absence of boundary phase transitions [38], and
has connections with the existence of FPTAS for #P-hard counting problems [3, 43], mixing
time of Glauber dynamics [21], and efficient approximation algorithms for thermodynamic
quantities [24, 7].

In [8], there were explored sufficient and necessary conditions for a graph H to have, for
any locally finite graph G, the existence of a weight function A such that the Gibbs (G, H, \)-
specification satisfies WSM and SSM. In particular, it was proven that dismantlability
was equivalent to the existence of Gibbs (G, H, \)-specifications satisfying WSM for all
locally finite graph G, and therefore uniqueness, since WSM implies it. In addition, it was
observed that a direct consequence is that a necessary condition for SSM to hold is that
H is dismantlable, because SSM implies WSM. However, it was also shown that it is not a
sufficient condition. Here, we strengthen this necessary condition and extend it to the realm
of relational structures.

» Proposition 14. If H? does not dismantle to a substructure of A(H?) whose universe
contains A(J?), then there exists a locally finite T-structure G such that the Gibbs (G,H, \)-
specification does not satisfy J-SM for any A.

Two direct corollaries of this fact are the following.

» Corollary 15. If H? does not dismantle to some substructure of the diagonal A(H?), then
there exists a locally finite T-structure G such that the Gibbs (G, H, \)-specification does not
satisfy WSM for any .

» Corollary 16. If H? does not dismantle to the full diagonal A(H?), then there evists a
locally finite T-structure G such that the Gibbs (G, H, \)-specification does not satisfy SSM
for any A.

5 Second application: finite duality revisited

Throughout this section all relational structures are assumed to be finite. We say a 7-structure
H is a core if every homomorphism from H to H is one-to-one. An obstruction to H is a
T-structure G that admits no homomorphism to H; the obstruction G is critical if every
proper substructure (i.e., any substructure different from G itself) admits a homomorphism
to H. A relational structure H is said to have finite duality if it has only finitely many
critical obstructions.

We say that a 7-structure H contains all constants if for every a € H there exists
R, € 7 such that R,(H) = {a}. Note that every such 7-structure is a core. It is well know
that relational structures with constants allow us to specify the desired image of a given
element. More formally, let G be any 7-structure, z € G, and a € H. It is immediate that
the T-structure G, obtained from G by adding a to R,(G), satisfies the following property:
For every ¢ : G — H,

¢ € Hom(G,,H) & ¢ € Hom(G, H) and ¢(x) = a.
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We shall say that G, is obtained by coloring = to a in G.

The main result in [34] states that a core relational structure H has finite duality if and
only if H? dismantles to its diagonal. It is not difficult ot see that this result follows from our
work. In addition, in can be shown that, when H contains all constants, having finite duality
is equivalent to having finitely many critical 7-tree obstructions, which was not previously
known.

» Theorem 17. Let H be a finite T-structure which is a core. Then, the following are
equivalent:

(Alc) H? dismantles to its diagonal;

(DIc) H has finitely many critical obstructions.

Furthermore, if H contains all the constants then the following condition is also equivalent:
(D2c) H has finitely many critical T-tree obstructions.

It has been shown in [23] that if a 7-structure H has finite duality then there exists some
finite set F of 7-trees such that for every 7-structure I not homomorphic to H, there exists
a 7-tree in F that is homomorphic to I but not homomorphic to H. We want to note that
the equivalence between conditions (D2c¢) and (D1c) does not follow from this fact. Indeed,
direction (D2c¢) = (D1c) does not even hold when we do not require that the 7-structure H
is equipped with constants as witnessed by the case when H is the oriented 3-cycle. Note
that, in this case, H satisfies (D2c) since every 7-tree is homomorphic to H and, hence, H
has no critical 7-tree obstructions at all. However, since any oriented cycle whose length is
not a multiple of 3 is a critical obstruction of H, it follows that H does not satisfy (Dlc).
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