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—— Abstract

Transaction system build on top of blockchain, especially smart contract, is becoming an im-
portant part of world economy. However, there is a lack of formal study on the behavior of
users in these systems, which leaves the correctness and security of such system without a solid
foundation. Unlike mining, in which the reward for mining a block is fixed, different execution
results of a smart contract may lead to significantly different payoffs of users, which gives more
incentives for some user to follow a branch that contains a wrong result, even if the branch is
shorter. It is thus important to understand the exact probability that a branch is being selected
by the system. We formulate this problem as the (+—)-Biased Ballot Problem as follows: there
are n voters one by one voting for either of the two candidates A and B. The probability of a
user voting for A or B depends on whether the difference between the current votes of A and B is
positive or negative. Our model takes into account the behavior of three different kinds of users
when a branch occurs in the system — users having preference over a certain branch based on
the history of their transactions, and users being indifferent and simply follow the longest chain.
We study two important probabilities that are closely related with a blockchain based system —
the probability that A wins at last, and the probability that A receives d votes first. We show
how to recursively calculate the two probabilities for any fixed n and d, and also discuss their
asymptotic values when n and d are sufficiently large.
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1 Introduction

Blockchain technology provides a decentralized way for bookkeeping and has been proved
to be a powerful tool in various areas, especially fintech applications [3]. Bitcoin [16], as
the first blockchain based cryptocurrency system, is now accepted by more than 100,000

* A full version of the paper is available at [6], http://i2¢c.cs.uh.edu/tiki-download_wiki_attachment.
php?attId=73&download=y.
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merchants worldwide [10], and the value of each bitcoin is more than $1,000. Besides
purely cryptocurrency transactions, blockchain is also used to build decentralized smart
contract platform, where the execution of contracts is enforced by all nodes participating the
blockchain system [5]. This greatly extends the range of application of blockchain technology
and could revolutionize world business [19].

Briefly speaking, a blockchain is a chain of blocks with each block containing some
information (e.g., the transactions, the execution result of a program and so on) and the
hash of the previous block. Users of the system keep appending blocks to the blockchain.
Smart contracts can be built upon a blockchain system. A smart contract is an event-driven
program which can be viewed as a contract in a decentralized system. In smart contract
supported blockchain systems (e.g., Ethereum), a user runs the contract locally, puts the
execution result of the smart contract in a block and then tries to append the block to the
blockchain. Further details of a blockchain system can be found in Section 1.1.

Ideally, a blockchain always remains as a chain. However, intentionally or not, a user
may append a new block after some other block instead of the one at the end of the current
blockchain, yielding a branch (or “fork”). There are several different criteria for eliminating
branches. One common criterion is the longest-chain rule [16], which ensures that the branch
that first receives d blocks afterwards will be selected as the “legal” branch, that is, blocks
in all the other branches will be neglected by the system.

Users of the system that are financially driven may behave strategically to maximize
their own profit. In a blockchain system where a user is paid by a fixed amount of coins
whenever he/she successfully appends a block (e.g., Bitcoin), it is natural that he/she will
append a block to a branch that is most likely to be selected by the system eventually, which
is essentially the current longest branch [16]. Things become much more complicated when
smart contracts are involved, since the execution result of the contract may involve a huge
gain or loss among users. Suppose there two branches A and B where different execution
results of some smart contract are stored. A user who is involved in the smart contract can
have strong pereference over these two branches. Indeed, let 74 (r5) be the reward that the
user can get if eventually A (B) is selected by the system. If r4 > 100r g, then even if A is
currently the shorter branch and will be selected by the system with the probability of 0.01,
the user may still append blocks to A, trying to maximize his/her expected reward. Such
a phenominon has been observed by Chen et al. [7]. To better understand and predict the
behavior of users in a blockchain system supporting smart contracts like Ethereum, it is thus
important to characterize the exact probability that certain branch gets selected, which is
the goal of this paper.

1.1 The Blockchain Based Transaction System

A blockchain is a public ledger that records transactions between users [16]. Typically, it is
a chain of blocks with each block containing some information (e.g., the transactions, the
execution result of a program and so on) and the hash of the previous block. Consequently,
the precedence order between blocks are fixed and it is possible to trace back from a recent
block to the very first block in the system. Users of the system append blocks to the
blockchain through a process called mining. They are called miners?.

As blockchain is a decentralized system, one of the critical requirements is that all users
have to reach consensus on the sequence and content of blocks. There are mainly two types
of techniques involved in this process: block construction and chain selection. For block
construction, the most common approach is proof-of-work [24], which is widely used in many
blockchain based transaction systems, e.g., Bitcoin [16] and Ethereum [25]. Proof-of-work

! Throughout this paper, we are only concerned with such users, thus users and miners are used
interchangeably.
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requires the node to solve a hard problem to build a valid block, and the success probability
is determined by physical resources (e.g., CPU and storage) owned by the node [15]. Because
the amount of physical resources is relatively fixed, the probability for each node to produce
a valid block is stable. It is worth mentioning that besides proof-of-work, there are also
other protocols for block construction, e.g., proof-of-stake [4] and proof-of-elapsed-time [8].
However, as proof-of-work much more widely used than other protocols, we focus on proof-of-
work throughout this paper and consequently, we treat the probability of producing a valid
block as a fixed value. If more than one branches are generated, participating nodes have to
decide which branch to follow to add new blocks. Common chain selection criteria include
longest-chain rule [16] and GHOST (greedy heaviest-observed sub-tree) rule [14]. Byzantine
fault tolerant protocol is also proposed to eliminate disagreements on the chain [9, 11].
Throughout this paper, we focus on the longest-chain rule.

A fixed reward? is paid to a user who successfully adds a block, thus giving incentive to
mining. However, when a miner adds a block, it is not guaranteed that he/she always appends
this block at the bottom of the chain. He/she may choose any previous block to append the
new block or sometimes two or more users simultaneously add blocks after the same block
yielding a branch. Eventually only one branch will be chosen as the “legal” branch and
all others will be discarded. The longest chain rule is a common branch selection method
used in Bitcoin and other blockchains. This rule chooses the branch that first accumulates d
blocks for some constant d. Note that when a branch is discarded, miners in that branch do
not receive any award, thus incentivizing users to follow the longest chain rule.

The strategic behavior of users may cause serious problems when a blockchain system
includes smart contracts. A smart contract is an event-driven program which can be viewed
as a contract in a decentralized system. In smart contract supported blockchain systems
(e.g., Ethereum [25]), a user runs the contract locally, then publishes the execution result
of the smart contract in a block. The user is rewarded for mining and contract execution.
However, since a smart contract defines the payoff among users involved in the contract,
different execution results may lead to significantly different payoffs of users involved in the
contract. If a miner is directly or indirectly involved, he/she may want to branch the chain
by adding a block containing a (right or wrong) result favorable to them. In this case, miners
benefiting from the result will work on different branches in their favor, while indifferent
users will simply work on the (temporarily) longer branch. Eventually, one branch will be
selected by the system.

This poses the question, what is the probability that a certain branch is selected? This
could be cast as a ballot problem: we view both branches as two candidates A and B. Every
block added to the system is viewed as a vote and voting for A or B represents which branch
the block is added to. As indifferent users choose the longer branch, the probability that a
voter votes for A or B is subject to variation on the current number of votes A and B get.
We give the formal definition of the ballot problem in the following subsection.

1.2 Problem Statement

We propose the following model to study the behavior of users in a blockchain based smart
contract system.

(4+—)-Biased Ballot Problem. Suppose there are two candidates A and B. There are n
voters one by one making their votes. Each voter either votes for A or B. The probability
that the voter votes for A or B depends on the total number of votes received by A and
B at the time he votes. Specifically, let n%y and n%; be the number of votes received by A
and B when voter i votes, respectively. Voter i votes for A and B with probability p, and

2 The reward may be adjusted after a significantly long time. In the short term, it is treated as fixed.
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g+ =1 —py, if niy —nl > 0; with probability p_ and ¢_ =1 — p_, if ny, — n% < 0; with
probability pp and gy = 1 — po, if n}y — n’; = 0. We are interested in the following two
questions in this paper. First, what is the probability that A receives more votes than B at
last? Second, if there are infinite voters (indeed, n > 2d suffices), what is the probability
that A first receives d votes.

An equivalent formulation of the problem under the framework of random walk is the
following:

1-Dimensional (4+—)-Biased Random Walk. Suppose there is a ball located at the x-axis.
Let L; be the location of the ball after i-steps. Originally, Ly = 0.

P+, if Lz >0
P(LiJrl —L; = ].) = p—, if L; <0
Po, if Lz =0

and P(Li+1 - Li == —1) =1- P(LZ'+1 — Lz = 1)

Note that L;11 — L; = 1 implies that voter i 4+ 1 votes for A, and L;11 — L; = —1 implies
that he votes for B. Therefore, the probability that A receives more votes than B at last is
exactly P(L, > 0). We call it the ending probability. The event that A receives d votes first
is denoted as Hy. We call P(Hy) as the hitting probability.

We discuss the random walk that starts at the origin in Section 3. In general, the random
walk need not start at the origin, i.e., Ly could be an arbitrary integer. We provide the result
as Theorem 12. The reader may refer to the full version [6] of this paper for details.

» Remark. In our model, the two candidates A and B represent the two chains a blockchain
branches into. Users’ preferences over the two chains, based on the history of their transactions,
are indicated by the parameters p.,q4,po, qo,P—,q—. Suppose the probability of users
favoring chain A is p, users favoring chain B is ¢, and users being indifferent is A. Further,
we assume that users being indifferent will always add a block to the longer chain, and when
A and B have the same length, they add a block randomly. In this case, parameters will
take the following values.

Pr=p+A  po=p+A2  p_=p
=9  Q=q9g+N2, g =q+A

The ending and hitting probabilities will indicate the chance that eventually A or B becomes
the chain that is accepted by the system. Weighing such probabilities against their potential
gain or loss (due to the history of their transactions recorded on A and B), users may decide
on whether to follow the chain they prefer, or to follow the other chain if the probability
that the chain they prefer has too low probability of being accepted by the system.

1.3 Related Work on Random Walk and the Ballot Problem

We give a brief overview of random walk and the ballot problem.

Bertrand’s Ballot Problem. In an election where candidate A receives p votes and candidate
B receives ¢ votes with p > ¢, what is the probability that A will be strictly ahead of B
throughout the count?

The ballot problem is a classical problem in combinatorics whose study dates back to
1878 by Whitworth [13]. The answer of the problem is ﬁ, which is known as the Bertrand’s
ballot theorem and could be proved via various approaches, e.g., by a recursion relation [13]
or by Andre’s reflection method [17].

An equivalent problem is also studied in the context of random walk [1]. Consider the

1-dimensional symmetric simple random walk on Z, that is, let the random walk start at
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the origin Ly = 0 and L;1; = L; + 1, each with probability 1/2 and independent of other
steps. What is the probability that L; > 0 for all 1 <4 < p+ ¢ conditioned on Ly, =p—¢?
This probability is given precisely by the Bertrand’s ballot theorem. The number of all such
random walks is studied in [2]. Various generalizations of the ballot problem in the context
of random walk has been studied by Takacs [20, 21, 22].

Random walk, as a general subject, has been studied extensively in the literature. We
refer the readers to [23] as a nice survey on geometric random walk and [1] as a nice survey
on various ballot problem-related results when the ballot problem is viewed as a random
walk.

In recent years, research on the ballot problem and its extensions has found applications in
the study of the blockchain based transaction systems. In his seminal paper, Nakamoto [16]
introduces the Bitcoin system and uses the result from the ballot problem to study the
security of the system. Indeed, the security problem in Bitcoin could be cast as the following
modified ballot problem: suppose each voter votes independently with probability p to A
and probability ¢ = 1 — p to B, what is the probability that A is always strictly ahead of B?
Such a model is also adopted in a series of subsequent studies [18, 12].

1.4 OQur Contribution

We study the strategic behavior of users in a blockchain based transaction system. Instead
of adopting the classical model that assumes attackers and honest users, in our model we
assume there are three groups of users when the blockchain branches into chain A and chain
B, with two groups favoring chain A and chain B respectively, and the third group being
indifferent and favoring the longer chain. We formulate our model as the (+—)-Biased Ballot
Problem where the two candidates A and B represent the two chains. In our model, we
do not necessarily require that chain A is always ahead of chain B. Indeed, we care about
the probability that A exceeds B after n blocks are generated, which we call the ending
probability, and the probability that A is extended by d blocks at first, which we call the
hitting probability. That means, we also take into account of the possibility that chain A
is temporarily behind chain B but takes over later on. However, once A is behind B, the
probability that the next block is added to A will be adjusted. In the extreme case when
p_ = 0, i.e., when A is behind no blocks will be added to A, our model reduces to the
classical model in which we only consider the probability that A is always ahead of B.

We show how to calculate the ending and hitting probability for the (4+—)-Biased Ballot
Problem and study their asymptotic values when n and d are sufficiently large. Applying our
results to blockchain, we show that, if the third group (i.e., users that are indifferent) has
much larger probability of generating the next block, then the probability that chain A wins
eventually is roughly 0.5 + A, where A is the difference in the probability of generating a
block between users favoring A and users favoring B, and 6 € [3/4,3/2]. We further consider
the ballot problem starting at the situation that A is already ahead of B by s votes. Let ps
be the probability that A wins eventually, then for sufficiently large n the probability chain
B can win is no more than (1 — yg)(q+/p+)* when py > ¢, In the classical ballot problem,
the probability that B can catch up by k blocks is (¢4 /p4)*, as is shown by Nakamoto [16]
in the Bitcoin system. In our model, however, this probability is further reduced by a factor
of 1 — Ho-

2 Preliminaries

Bailey's number [2]. Counsider a sequence of numbers x1,x9, - , 4, where z; € {—1,1}.

In total, the number of 1’s and —1’s in the sequence is n and r, respectively. Furthermore,
> i x; >0 holds for any 1 < j < n+r. The number of all such sequences is denoted as

21:5

ISAAC 2017



21:6

Smart Contract Execution — the (+—)-Biased Ballot Problem

o(n,r) in this paper. It is shown by Bailey that

n+l—r (n+r
U(n7r):n7—’_1' - .

Similar as the binomial coefficient, the followings are true for the Bailey’s number [2]:

on,r)y=ocn—-1,r)+o(n,r—1), 2<r<n-1 (1)

o(n,n—1) =o(n,n). (2)

Specifically, if » = n, o(n,r) becomes the same as the n-th Catalan number. We will make
use of the following generating function for the Catalan number:

oo

n 2
T;a(n,n)x i (3)

3 Solution for the (+—)-Biased Ballot Problem

In this section, we show how to calculate the ending and hitting probability for the (+—)-
Biased Ballot Problem for any fixed n and d. We also discuss their asymptotic values when
n and d are sufficiently large. We focus on the random walk version of the problem. We
consider the case that the random walk starts at the origin, i.e., Ly = 0. The reader may
refer to to the full version [6] oft this paper for the random walk that starts at an arbitrary
location.

Let Ag be the event that the random walk starts at Ly = 0, and returns to 0 for the first
time after 2k steps. Furthermore, we define

A=A {L; >0,V1<i<2k}, Ay =A,N{L; <0,V1<i<2k}.

Consequently, A = Az UA, .

Consider the event L,, > 0. There are two possibilities, either the random walk starts at
0, goes right and never returns to 0 within n steps, or it returns to 0 for the first time after
n' < n steps, implying that after n’ steps it re-starts at 0, and ends at some positive location
after n — n’ steps. Notice that n’ must be even. Let B;' be the event that it goes right and
never returns to 0 within n steps, we have the following recursive calculation:

[n/2]
P(L, >0) =P(Bf)+ Y P(Ay)-P(Ly o >0) (4)
k=1

Here P(Ag) - P(Lyp_2r > 0) is the probability of the event that the random walk starts at 0,
goes right, returns to 0 for the first time after 2k steps, and then re-start at 0, ends at some
positive location after n — 2k additional steps.

We can apply similar arguments for the hitting probability. Let Hy = U?Zl{Lgd,j =7}
denote the event that the random walk goes right for d steps and goes left for less than d
steps. There are two possibilities, either the random walk starts at 0, goes right and never
returns to 0, or it returns to 0 for the first time after 2k steps, and the event Hy ; happens
afterwards. Let D; denote the event that the random walk never goes back to 0, then we
have the following.

d—1
P(Hy) = P(D]) + Y _P(Ay) - P(Ha) (5)
k=1
The recursive formulas (4) and (5) has a very similar structure. In the following we show
how to calculate P(B;), P(D;) and P(Aj), whereas for every fixed n and d we can always
calculate P(L,, > 0) and P(Hy) recursively.
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» Lemma 1.
P(Bf)=po- >, on—1-rrpt g},
0<r<(n—1)/2

n—l) . n—2r
T n—r °

where o(n —1—r,r) = (

Proof. The first step of the random walk should go right, which happens with probability
po. We denote by x; = L;41 — L; € {—1,1}. Consider the case that from the second step to
the n-th step, there are in total r steps that go left and n — 1 — r steps go right. To make
sure that the random walk never goes back to 0, we have

h
;>0 Vi<h<n-1 (6)
j=1

Note that when h =n — 1, we have n — 1 —r —r > 0, whereas r < (n — 1) /2.

According to the definition of the Bailey’s number, the number of integral solutions for
n—1l—r

Inequality (6) is o(n — 1 —r,7), and the probability that each solution happens is p’} q.
Hence, the lemma is proved. <

For Dj{ the argument is exactly the same.
» Lemma 2.

P(Dj)=po- Y, old—1,rp{"q},
0<r<d—1

where ¢(d,r) = (") - LT

Proof. The first step of the random walk should go right, which happens with probability
po. Again let x; = L;11 — L; € {—1,1}. Suppose starting from the second step, there are in
total r steps that go left. Notice that in total there are d — 1 steps go right (excluding the
first step) where 0 < r < d — 1, then we have

h
> w;>0, Vi<h<d+r-L
j=1

The number of integral solutions for the above is o(d — 1,7), and the probability that each
solution happens is pi_lqj_. Hence, the lemma is proved. |

Now we consider Ay.

» Lemma 3.
P(Af) =po-o(k—1k—1)p " gk,

where o(k — 1,k —1) = (2kk:12)/k'

Proof. Consider Az. Starting at 0, the first step of the random walk must go right,
and the last step must go left (from 1 to 0). From step 2 to step 2k — 1, we consider
x; = Lig1 — L; € {—1,1}, then it is easy to see that

Therefore, the number of all possible solutions is given by the Bailey’s number o(k — 1,k —1).

Each solution occurs with probability p{flqﬁfl. Further multiplying the probability of the
first and last step pog4, the lemma is proved. <
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Using the same argument, we have

» Lemma 4.
P(A;)=qo-o(k—1,k—1)p~¢" 1,

where o(k — 1,k —1) = (2kk:12)/k'

With the above lemmas, for any fixed n and d we can always recursively calculate
P(L, > 0) and P(Hy). In the following we discuss their values when n and d go to infinity,
which provide an estimation of the two probabilities when n and d are sufficiently large.

» Lemma 5. If p; > qy,
lim P(BF) = po - L2 —4*
Otherwise, lim, ., P(B;) = 0.
To show the above lemma, we need the following.

» Lemma 6 ([13], pp.272). Consider a random walk starting at Lo = 0, P(L;41—L; = 1) = p,
P(Liy1 — L; = —1) = q wherep+q=1. If p > q, then
lim P(L; > 0,V1<i<n)=2"1

n—oo p
If p < q, the above limit is 0.

Proof of Lemma 5. This infinite summation could be calculated directly by plugging in
Lemma 1 and using generating functions. An easier way, however, is to apply Lemma 6.
Note that

B ={Ly=0,L1 =1,Ly >1,Ly >1,--- L, > 1}.

From the second step to the n-th step, the event B could be viewed as starting at 1
and always remaining at the rightside of 1 (including 1 itself). Note that in this case the
probability of going left is always g, and going right is always py, hence, if py > g+

lim P(BF) = po - Lr—4F
Otherwise, lim,,_,, P(B;") = 0. <

» Lemma 7. If py > qy,

; b+ —a+
lim P(D}) =py- .
A PO0) =po- =g

Otherwise, limg_ oo P(D;) =0.

The proof is a bit involved, the reader is referred to the full version [6] of this paper for
details.
Next we consider Ay.

» Lemma 8.

oo

S P =
Pt 1+ VT —Apiqy
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Proof. Using the generating function (3), we know

ZP(A;) = Zpoa(k -1,k — 1)pi 1q$ = Poq Za(k, k)p’iqi =
k=1 k=1 k=0

Similarly, we have

» Lemma 9.

> _ 2qop—
E P(Ak ) = :
— 1+1—4p_q_

» Theorem 10. If p; < ¢4, lim, o P(L,, > 0) = 0. Otherwise,

P+—a+

lim P(L, >0 70" ps

1m =

n—00 ( n > ) - 2poq+ _ 2qop—
Iy/T=dpray  1+4/1-4pq-

2poq+

T+ I dprds

Proof. The limit of P(L,, > 0) could be calculated in the following way. Given that

2qop-

> P(he) = Y (PO) + PN =
k=1 Pt 1+ T=4piqs 1+ T—4dp_q_’

For N being sufficiently large, we know

oo
Z Ak <6N,

whereas for n > 2N we have

N N
BF)+ > P(Ap)P(Ln2k > 0) < P(Ly > 0) < P(BF) + Y P(AR)P(Lyp_ok > 0) + en.
k=1

Let n goes to infinity and let ug = limy, 0o P(Ly > 0), vg = lim,_,o P(B;7), the following

holds for any fixed integer N,

V0+ZP Ay ,LL0<,LL0<UO+ZP Ak M0+€N
k=1

Let N goes to infinity, we know ey goes to 0, hence
o0
po = vo + ZP(Ak)MO
k=1
Plug in vy, if p+ < ¢4, lim, o P(L,, > 0) = 0, otherwise,
P+—a+

po -
po = lim P(L, >0) = as

— 00 _ 2poq+ _ 2qop—
Iy/1=dpray  1+4/1-4pq-

Using the same argument, we have the following theorem.
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» Theorem 11.

lim P(Hy) = T

d= 00 _ 2poq+ _ 2qop—
I+y/1=4prqr  14+4/1-4p_q_

So far we have discussed the random walk starting at the origin. Indeed, if the random
walk starts at some point s > 0 (the case s < 0 could be handled in the same way), then its
ending probability ps satisfies the following (See the full version [6] of this paper for details).

» Theorem 12. For s > 1, if py > q4+

o= 1= (1= o) (5"

Otherwise, s = 0.

3.1 Application to Blockchain

In this subsection we apply our results to the blockchain system. Specifically, we estimate
the value of ending probability when the parameters p.,q+,po, qo, P—,q— are taking certain
fixed values. Note that these parameters are taken as fixed constants.

We first consider Theorem 12. Suppose A represents the main chain and B represents
some private chain of attackers. Users favoring the main chain A are the honest users in the
traditional studies of blockchain, users favoring chain B are the attackers, and users being
indifferent (the third group of users) are actually the majority of users in the system — they
do not really have a preference but will just follow the longer chain. Theorem 12 implies that
if the main chain on which the honest users keep working on is already k blocks ahead, then
the attackers can win with a probability no more than (1 — ,uo)(;%)s as long as p1 > qy,
that is, as long as the honest users together with the third group of users can generate the
next block with the probability of more than 50%.

We now give a more detailed analysis. Suppose the probability of users favoring chain A
is p, users favoring chain B is ¢, and users being indifferent is A\. We assume that the third
group of users, i.e., users being indifferent will always add a block to the longer chain, and
when A and B have the same length, they add a block randomly since it makes no difference
to them. In this case, we have the following.

p+=p+A  po=p+A2  p_=p
+=4q,  Q=q+A2,  g-=q+A
If users favoring A are so powerful that p > ¢ 4+ A, then g could be simplified as
(p+ 5A) - 22

_ 1 _ pPF+A
Ho = nl;rI;OP(Ln >0) = 1— 2(p+3Ng  2(g+3Mp

1+p+A—q  1+4p—q—AX

Simple calculations show that it becomes 1, that means A can always win. If ¢ > p+ A,
however, then the probability is 0.

In the following we assume that A > |p — g|, whereas p; > ¢4 and ¢— > p_. Under this
condition, we can simplify the formula in Theorem 10 as follows,

po - P2 (P+X/2)(p—gq+)
_ P+ _ pHA
I N T Ty = TR V) I CEVE)
P+ q-— pF+A q+A

We can rewrite pg as
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If p and ¢ are tiny compared with A, say, p,¢ < 0.1, then we can ignore pg/(p + A) and
pq/(q + A) and derive the following

1 3p—3q
HOR S T
That means, if A is more powerful in generating blocks than B but is still not as powerful as

the third party, then his probability of winning the game is larger than half by approximately

s P —a) € G—a),50 )

4  Conclusion

We study the behavior of users in a blockchain system supporting smart contracts. As
different execution results of a smart contract can lead to significantly different payoffs among
users, it becomes critical to know the exact probability that a certain branch is selected by
the system. We propose a generalized model called the (4—)-Biased Ballot Problem. In
our model, we classify users into three groups when the blockchain branches into two chains
A and B: the group of user favoring chain A, the group of users favoring chain B and the
third group of users that are indifferent and will simply follow the longer chain. Instead of
requiring one chain, say, chain A, to be always ahead of the other chain, we allow chain A to
be temporarily behind chain B by considering the probability that chain A exceeds B after
n blocks are generated (which we call the ending probability), and the probability that chain
A exceeds B and when it is extended by d blocks (which we call the hitting probability). We
provide recursive equations which allow us to compute the ending and hitting probabilities for
any fixed n and d, and discuss the asymptotic values of the ending and hitting probabilities
when n and d are sufficiently large.

—— References

1 L Addario-Berry and BA Reed. Ballot theorems, old and new. In Horizons of combinatorics,
pages 9-35. Springer, 2008.

2 DF Bailey. Counting arrangements of 1’s and-1’s. Mathematics Magazine, 69(2):128-131,
1996.

3 Shagun Bali and Terry Roche. Blockchain technology: Pushing the envelope in fintech. In
Industry report TABB Forum, 2015.

4 Vitalik Buterin. What proof of stake is and why it matters. Bitcoin Magazine, August, 26,
2013.

5 Vitalik Buterin. A next-generation smart contract and decentralized application platform.
white paper, 2014.

6 Lin Chen, Lei Xu, Zhimin Gao, Nolan Shah, Yang Lu, and Weidong Shi. Smart contract
execution — the (4—)-biased ballot problem. http://i2c.cs.uh.edu/tiki-download_
wiki_attachment.php?attId=71&download=y.

7 Lin Chen, Lei Xu, Zhimin Gao, Nolan Shah, Yang Lu, and Weidong Shi. Decentralized ex-
ecution of smart contracts: Agent model perspective and its implications. In 1st Workshop
on Trusted Smart Contracts, 2017.

8 Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On security
analysis of proof-of-elapsed-time (poet). In 19th Annual International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, 2017.

9 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer, et al. On scaling decentralized
blockchains. In International Conference on Financial Cryptography and Data Security,
pages 106-125. Springer, 2016.

10  Anthony Cuthbertson. Bitcoin now accepted by 100,000 merchants worldwide, 2015.

21:11

ISAAC 2017


http://i2c.cs.uh.edu/tiki-download_wiki_attachment.php?attId=71&download=y
http://i2c.cs.uh.edu/tiki-download_wiki_attachment.php?attId=71&download=y

21:12

Smart Contract Execution — the (+—)-Biased Ballot Problem

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert Van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 45-59, 2016.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International Conference on Financial Cryptography and Data Security, pages 436-454.
Springer, 2014.

William Feller. An introduction to probability theory and its applications: wvolume I,
volume 3. John Wiley & Sons New York, 1968.

Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In International Conference on Financial Cryptography and Data Security, pages 528-547.
Springer, 2015.

Debin Liu and L Jean Camp. Proof of work can work. In WEIS, 2006.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Marc Renault. Lost (and found) in translation: Andre’s actual method and its application
to the generalized ballot problem. The American Mathematical Monthly, 115(4):358-363,
2008.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies
in bitcoin. arXiv preprint arXiv:1507.06183, 2015.

Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.", 2015.
Lajos Takédcs. A generalization of the ballot problem and its application in the theory of
queues. Journal of the American Statistical Association, 57(298):327-337, 1962.

Lajos Takacs. The distribution of the majority in a ballot. journal for probability theory
and related fields, 2(2):118-121, 1963.

Lajos Takécs. Fluctuations in the ratio of scores in counting a ballot. Journal of Applied
Probability, 1(02):393-396, 1964.

Santosh Vempala. Geometric random walks: a survey. Combinatorial and computational
geometry, 52(573-612):2, 2005.

Marko Vukoli¢. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication.
In International Workshop on Open Problems in Network Security, pages 112—-125. Springer,
2015.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 2014.



	Introduction
	The Blockchain Based Transaction System
	Problem Statement
	Related Work on Random Walk and the Ballot Problem
	Our Contribution

	Preliminaries
	Solution for the (+-)-Biased Ballot Problem
	Application to Blockchain

	Conclusion

