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Abstract
Eilenberg-type correspondences, relating varieties of languages (e.g., of finite words, infinite words,
or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory.
We show that they all arise from the same recipe: one models languages and the algebras rec-
ognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main
contribution is a variety theorem that covers e.g. Wilke’s and Pin’s work on ∞-languages, the
variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two categori-
cal approaches of Bojańczyk and of Adámek et al. In addition we derive new results, such as an
extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.
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1 Introduction

Algebraic language theory studies the behaviors of machines by relating them to algebraic
structures. This has proved extremely fruitful. For example, regular languages can be
described as the languages recognized by finite monoids, and the decidability of star-freeness
rests on Schützenberger’s theorem [30]: a regular language is star-free iff it is recognized by
a finite aperiodic monoid. At the heart of algebraic language theory are results establishing
generic correspondences of this kind. The prototype is Eilenberg’s variety theorem [12], which
states that varieties of languages (classes of regular languages closed under boolean operations,
derivatives, and homomorphic preimages) correspond to pseudovarieties of monoids (classes
of finite monoids closed under quotients, submonoids, and finite products). This together
with Reiterman’s theorem [25], stating that pseudovarieties of monoids can be specified by
profinite equations, establishes a firm connection between automata, languages, and algebras.

Inspired by Eilenberg’s work, over the past four decades numerous further variety theorems
were discovered for regular languages [14,20,24,31], treating notions of varieties with modified
closure properties, but also for machine behaviors beyond finite words, including weighted
languages over a field [26], infinite words [21, 35], words on linear orderings [5, 6], ranked
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trees [4], binary trees [29], and cost functions [11]. This plethora of structurally similar results
has raised interest in category-theoretic approaches which allow to derive all the above results
as special instances of only one general variety theorem. The first step in this direction was
achieved in our previous work [1–3, 10]: there we replaced monoids by monoid objects in
a category D of (ordered) algebras such as sets, posets, semilattices or vector spaces, and
proved a variety theorem for D-monoids that subsumes five different Eilenberg theorems
for regular languages [12, 20, 24, 26, 31]. Subsequently, Bojańczyk [8] took an orthogonal
approach: he keeps the category of sets but considers, in lieu of monoids, algebras for a
monad on sorted sets as recognizing structures, improving earlier generic results from [4,28].

In order to obtain the desired general variety theorem, a unification of the two approaches
is required. On the one hand, one needs to take the step from sets to more general categories
D to capture the proper notion of language recognition; for example, for the treatment of
weighted languages [26] one needs to work over the category of vector spaces. On the other
hand, to deal with machine behaviors beyond finite words, one has to replace monoids by other
algebraic structures. The main contribution of this paper is a variety theorem that achieves
the desired unification, and in addition directly encompasses many Eilenberg-type results
captured by neither of the previous generic results, including the work [5, 6, 11,21,29,35].

Traditionally, Eilenberg-like correspondences are proved in essentially the same four steps:

1. Identify an algebraic theory T such that the languages in mind are the ones recognized
by finite T-algebras. For example, for regular languages one takes the theory of monoids.

2. Describe the syntactic T-algebras, i.e. the minimal algebraic recognizers of languages.
3. Infer the form of the derivatives under which varieties of languages are closed.
4. Establish the Eilenberg correspondence between varieties of languages and pseudovarieties

of algebras by relating the languages of a variety to their corresponding syntactic algebras.
The key insight provided by our paper is that all steps can be simplified or even automated.

For Step 1, putting a common roof over Bojańczyk’s and our own previous work, we
consider an algebraic category D and algebras for a monad T on DS , the category of S-sorted
D-algebras for some finite set S of sorts. For example, to capture regular languages one takes
the free-monoid monad TΣ = Σ∗ on Set. For regular ∞-languages one takes the monad
T(Σ,Γ) = (Σ+,Σω + Σ∗ × Γ) on Set2 representing ω-semigroups. For weighted languages
over a finite field K, ones takes the free K-algebra monad T on the category of vector spaces.

For Steps 2 and 3, we develop our main technical tool, the concept of a unary presentation
of a monad. A unary presentation expresses in categorical terms how to present T-algebras
by unary operations; for example, a monoid M is presented by the translations x 7→ yx and
x 7→ xy for y ∈M . It turns out that unary presentations are, in a precise sense, necessary
and sufficient for constructing syntactic algebras (Theorem 4.7). This clarifies the role of
syntactic algebras in earlier work on Eilenberg-type theorems, and the nature of derivatives
appearing in varieties of languages. In our paper, syntactic algebras are not used for proving
the variety theorem: we rely solely on the more elementary concept of a unary presentation.

We emphasize that, in general, nontrivial work lies in finding a good unary presentation
for a monad T. However, our work here shows that then Steps 3 and 4 are entirely generic:
after choosing a unary presentation, we obtain a notion of variety of T-recognizable languages
(involving a notion of derivatives directly inferred from on the presentation) and the following

Variety Theorem. Varieties of T-recognizable languages are in bijective correspondence
with pseudovarieties of T-algebras.
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The proof has two main ingredients. The first one is duality: besides D we also consider
a variety C that is dual to D on the level of finite algebras. Varieties of languages live in C,
while over DS we form pseudovarieties of T-algebras. This is much inspired by the work of
Gehrke, Grigorieff, and Pin [14] who interpreted the original Eilenberg theorem [12] in terms
of Stone duality (C = boolean algebras, D = sets). The second ingredient is the profinite
monad of T, introduced in [9]. It extends the classical construction of the free profinite
monoid, and allows for the introduction of topological methods to our setting. The key to our
approach is a categorical Reiterman theorem (Theorem 5.10) asserting that pseudovarieties of
T-algebras correspond to profinite equational theories. The Variety Theorem then boils down
to the fact that (i) varieties of T-recognizable languages dualize to profinite theories, and (ii)
by the Reiterman theorem, profinite theories correspond to pseudovarieties of T-algebras.

Our results establish a conceptual and highly parametric, yet easily applicable framework
for algebraic language theory. In fact, to derive an Eilenberg correspondence in our framework,
the traditional four steps indicated above are replaced by a simple three-step procedure:

1. Find a monad T whose finite algebras recognize the desired languages.
2. Choose a unary presentation for T.
3. Spell out what a variety of T-recognizable languages and a pseudovariety of T-algebras

is (by instantiating our general definitions), and invoke the Variety Theorem.
To illustrate the strength of this approach, we will show that roughly a dozen Eilenberg
theorems in the literature emerge as special instances. In addition, we get several new results
for free, e.g. an extension of the local variety theorem of [14] from finite to infinite words.

2 The Profinite Monad

We start by setting up our categorical framework for algebraic language theory. Recall that
for a finitary one-sorted signature Γ, a variety of algebras is a class of Γ-algebras presented
by equations between Γ-terms. A variety of ordered algebras is a class of ordered Γ-algebras
(i.e. Γ-algebras on a poset with monotone Γ-operations) presented by inequations between
Γ-terms. Morphisms of (ordered) Γ-algebras are (monotone) Γ-homomorphisms.

I Assumptions 2.1. Fix a variety C of algebras and a variety D of algebras/ordered algebras
such that (i) C and D are locally finite, i.e. all finitely generated algebras are finite; (ii) the
full subcategories Cf and Df on finite algebras are dually equivalent; (iii) the signature of C
contains a constant; (iv) epimorphisms in D are surjective. Further, fix a finite set S of sorts
and a monad T = (T, η, µ) on the product category DS with T preserving epimorphisms.

I Example 2.2. The following categories C and D satisfy our assumptions:

1. C = BA (boolean algebras) and D = Set: Stone duality [15] yields a dual equivalence
BAop

f ' Setf , mapping a finite boolean algebra to the set of its atoms.
2. C = DL01 (distributive lattices with 0, 1) and D = Pos (posets): Birkhoff duality [7]

gives a dual equivalence (DL01)opf ' Posf , mapping a finite distributive lattice to the
poset of its join-irreducible elements.

3. C = D = JSL0 (join-semilattices with 0): the self-duality (JSL0)opf ' (JSL0)f maps a
finite semilattice (X,∨, 0) to its opposite semilattice (X,∧, 1).

4. C = D = VecK (vector spaces over a finite field K): the familiar self-duality of (VecK)f
maps a finite (= finite-dimensional) vector space X to its dual space X∗ = VecK(X,K).

I Example 2.3. Our focus is on monads T whose algebras represent formal languages.

MFCS 2017
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1. Let T∗ be the free-monoid monad on Set. Languages of finite words correspond to subsets
of T∗Σ = Σ∗. The category of T∗-algebras is isomorphic to the category of monoids.

2. Languages of finite and infinite words (∞-languages for short) are represented by the
monad T∞ on Set2 associated to the algebraic theory of ω-semigroups. Recall that an
ω-semigroup is a two-sorted set A = (A+, Aω) with a binary product A+ ×A+

·−→ A+, a
mixed binary product A+×Aω

·−→ Aω and an ω-ary product Aω+
π−−→ Aω satisfying (mixed)

associative laws [19]. The free ω-semigroup on a two-sorted set (Σ,Γ) is (Σ+,Σω +Σ∗×Γ)
with products given by concatenation of words. Thus T∞(Σ,Γ) = (Σ+,Σω + Σ∗ × Γ),
and ∞-languages over the alphabet Σ are two-sorted subsets of T∞(Σ, ∅) = (Σ+,Σω).

3. Weighted languages L : Σ∗ → K over a finite field K are represented by the free-K-algebra
monad TK on VecK . Thus for the space KΣ with finite basis Σ we have TK(KΣ) = K〈Σ〉,
the space of all polynomials

∑
i<n kiwi (ki ∈ K, wi ∈ Σ∗) in non-commuting variables.

Since K〈Σ〉 has the basis Σ∗, weighted languages correspond to linear maps TK(KΣ)→ K.

I Remark 2.4. We denote by Algf T and Alg T the categories of (finite) T-algebras. The
category DS has the factorization system of sortwise surjective morphisms and sortwise
injective/order-reflecting morphisms. This lifts to Alg T since T preserves surjections: every
T-homomorphism factors into a surjective T-homomorphism followed by an injective/order-
reflecting one. Quotients and subalgebras in Alg T are taken in this factorization system.

In the theory of regular languages, topology enters the stage via the Stone space Σ̂∗ of
profinite words, formed as the inverse (a.k.a. cofiltered) limit of all finite quotient monoids of
Σ∗. In [9] we generalized this construction from monoids to algebras for a monad as follows:

I Notation 2.5. For a variety D of algebras, let Stone(D) denote the category of Stone-
topological D-algebras; its objects are D-algebras endowed with a Stone topology and continu-
ous D-operations, and its morphisms are continuous D-morphisms. For a variety D of ordered
algebras, let Priest(D) be the category of ordered topological D-algebras with a Priestley
topology, and monotone continuous D-morphisms. Denote by D̂ the full subcategory of
Stone(D)/Priest(D) on profinite D-algebras, i.e. inverse limits of algebras in Df . Here we
view Df as a full subcategory of D̂ by equipping objects of Df with the discrete topology.

I Example 2.6. For the varieties D of Example 2.2, every algebra in Stone(D)/Priest(D)
is profinite: we have Ŝet = Stone (Stone spaces), P̂os = Priest (Priestley spaces), ĴSL0 =
Stone(JSL0) (Stone semilattices) and V̂ecK = Stone(VecK) (Stone vector spaces); see [15].

I Construction 2.7. For any object D ∈ DS
f form the poset Quof (TD) of all finite quotient

algebras e : TD � (A,α) of the free T-algebra TD = (TD, µD), ordered by e ≤ e′ iff e

factorizes through e′. Define the object T̂D in D̂S to be the inverse limit of the diagram
Quof (TD)→ D̂S mapping (e : TD � (A,α)) to A. We denote the limit projection associated
to e by e+ : T̂D � A. In particular, for any finite T-algebra (A,α) we have the projection
α+ : T̂A→ A, since α : TA� (A,α) is a surjective T-homomorphism by the T-algebra laws.

I Theorem 2.8 (see [9]). The object map D 7→ T̂D from DS
f to D̂S extends (by taking

inverse limits) to a functor T̂ : D̂S → D̂S. Further, T̂ can be equipped with the structure of a
monad T̂ = (T̂ , η̂, µ̂) called the profinite monad of T. Its unit η̂D and multiplication µ̂D for
D ∈ DS

f are uniquely determined by the commutativity of the diagrams

D
η̂D //

eηD $$

T̂D
e+
����

T̂ T̂D
µ̂Doo

T̂ e+����
A T̂A

α+
oooo

for all e : TD � (A,α) in Quof (TD). (1)
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In categorical terms, T̂ is the codensity monad of the functor Algf T→ D̂, (A,α) 7→ A.

I Example 2.9. The monad T̂∗ on Stone assigns to each finite set Σ the Stone space Σ̂∗ of
profinite words. The monad T̂K on Stone(VecK) assigns to each finite vector space KΣ

the Stone vector space arising as the limit of all finite quotient spaces of K[Σ].

I Remark 2.10.

1. If (A,α) is a finite T-algebra, then (A,α+) is a T̂-algebra: putting e = α in (1) gives the
unit and associative law. By [9, Prop. 3.10] this yields an isomorphism Algf T ∼= Algf T̂
given by (A,α) 7→ (A,α+) and h 7→ h.

2. Let V : D̂S → DS denote the forgetful functor. If D ∈ D̂S
f (= DS

f ) we usually write D for
V D. By [9, Rem. B.6] there is a natural transformation ι : TV → V T̂ whose component
ιD : TV D → V T̂D for D ∈ DS

f is determined by V e+ · ιD = e for all e ∈ Quof (TD).

I Remark 2.11.

1. D̂ is the pro-completion (the free completion under inverse limits) of Df , see [15,
Rem. VI.2.4]. Further, since the variety C is locally finite, C is the ind-completion
(the free completion under filtered colimits) of Cf . Therefore the dual equivalence between
Cf and Df extends to a dual equivalence between C and D̂. We denote the equivalence
functors by P : D̂ '−→ Cop and P−1 : Cop '−→ D̂. For example, for C/D = BA/Set with
D̂ = Stone, this is the classical Stone duality [15]: P maps a Stone space to the boolean
algebra of clopens, and P−1 maps a boolean algebra to the Stone space of all ultrafilters.

2. Denote by |−| the forgetful functors of C and D̂ into Set and by 1C/1D the free one-
generated objects in C/D̂. The two finite objects OC := P1D and OD := P−11C play the
role of a dualizing object [15] of C and D̂. This means that there is a natural isomorphism
between the functors |−| · P op and D̂(−, OD) : D̂op → Set, given for any D ∈ D̂ by

|PD| ∼= C(1C, PD) ∼= D̂(P−1PD,P−11C) = D̂(P−1PD,OD) ∼= D̂(D,OD).

Similarly, |−| · P−1 ∼= C(−, OC). Thus OC and OD have essentially the same underlying
set, as |OD| ∼= D̂(1D, OD) ∼= |P1D| = |OC|. For our pairs C/D of Ex. 2.2, we get
OBA = {0 < 1}/OSet = {0, 1}, ODL01 = {0 < 1} = OPos, OJSL0 = {0 < 1}, OVecK

= K.
3. Subobjects in C are represented by monomorphisms, i.e. injective morphisms. Dually,

quotients in D̂ are represented by epimorphisms, which can be shown to be the surjective
morphisms. Thus quotients of T̂-algebras are represented by surjective T̂-homomorphisms.

3 Recognizable Languages

A language L ⊆ Σ∗ of finite words may be identified with its characteristic function
L : Σ∗ → {0, 1}. To model languages in our categorical setting, we replace the one-sorted
alphabet Σ by an S-sorted alphabet Σ in SetSf , and represent it in DS via the free object
⊀ ∈ DS

f generated by Σ (w.r.t. the forgetful functor |−| : DS → SetS). Note that ⊀ is finite
because D is locally finite. The output set {0, 1} is replaced by a finite “object of outputs” in
DS
f , viz. the object with OD ∈ Df in each sort. By abuse of notation, we denote this object

of DS
f also by OD. This leads to the following definition, unifying concepts from [2] and [8].

I Definition 3.1. A language over the alphabet Σ ∈ SetSf is a morphism L : T⊀→ OD in
DS . It is called T-recognizable if there exists a T-homomorphism h : T⊀→ (A,α) with finite
codomain and a morphism p : A→ OD in DS with L = p · h. In this case, we say that L is
recognized by h (via p). We denote by Rec(Σ) the set of all T-recognizable languages over Σ.

MFCS 2017
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I Example 3.2.

1. T = T∗ on Set with OSet = {0, 1}: a language L : T∗Σ→ OSet corresponds to a language
L ⊆ Σ∗ of finite words. It is recognized by a monoid morphism h : Σ∗ → A iff L = h−1[Y ]
for some subset Y ⊆ A. Recognizable languages coincide with regular languages, i.e.
languages accepted by finite automata; see e.g. [22].

2. T = T∞ on Set2 with OSet = {0, 1}: since T∞(Σ, ∅) = (Σ+,Σω), a language L : T∞(Σ, ∅)
→ ({0, 1}, {0, 1}) corresponds to an ∞-language L ⊆ (Σ+,Σω). It is recognized by an
ω-semigroup morphism h : (Σ+,Σω) → A iff L = h−1[Y ] for some two-sorted subset
Y ⊆ A. Recognizable ∞-languages are the ones accepted by finite Büchi automata [19].

The topological perspective on regular languages rests on the important observation that
regular languages over Σ correspond to the clopen subsets of the Stone space Σ̂∗ of profinite
words, or equivalently to continuous maps from Σ̂∗ into the discrete space {0, 1}; see
e.g. [22, Prop. VI.3.12]. This generalizes from the monad T∗ on Set to arbitrary monads T:

I Theorem 3.3. T-recognizable languages over Σ ∈ SetSf correspond bijectively to morphisms

from T̂⊀ to OD in D̂S. The bijection is given by (T̂⊀ L̂−→ OD) 7→ (T⊀
ι⊀−→ V T̂⊀ V L̂−−→ OD).

I Remark 3.4 (C-algebraic structure on Rec(Σ)). By the above and Remark 2.11.2, we deduce

Rec(Σ) ∼= D̂S(T̂⊀, OD) =
∏
s

D̂((T̂⊀)s, OD) ∼=
∏
s

|P (T̂⊀)s|. (2)

Thus we can consider Rec(Σ) as an object of C isomorphic to
∏
s P (T̂⊀)s. One can show that

Rec(Σ) is a subobject of the product
∏
sO
|T⊀|s
C in C: the embedding Rec(Σ)�

∏
sO
|T⊀|s
C

maps a language L : T⊀ → OD to the S-tuple (|T⊀|s
|L|s−−→ |OD|

∼=−→ |OC|)s∈S , using the
bijection |OD| ∼= |OC| of Remark 2.11.2. Consequently the C-algebraic structure of Rec(Σ) is
determined by OC. For example, for C = BA with OBA = {0, 1}, the boolean structure on
Rec(Σ) is given by union, intersection and complement. Taking T = T∗ on Set, we recover
an important result of Pippenger [23]: the boolean algebra of regular languages over Σ is
dual to the Stone space Σ̂∗ of profinite words. In fact, in this case (2) yields Rec(Σ) ∼= P (Σ̂∗).

4 Unary Presentations

In this section we introduce unary presentations of T-algebras that later, in Section 6, will
serve as our key tool for defining the derivatives of a language. For motivation, let A be an
algebra over a finitary single-sorted signature Γ. By a standard result in universal algebra, an
equivalence relation ≡ on A is a Γ-congruence (i.e. stable under Γ-operations) iff it is stable
under elementary translations, i.e. a ≡ a′ implies u(a) ≡ u(a′) for all maps u : A→ A of the
form a 7→ γA(a0, . . . , ai, a, ai+1, . . . an), where γ ∈ Γ and a0, . . . an ∈ A. (For the sorted case,
see [17,18].) If Γ contains infinitary operations, this statement generally fails, but remains
valid if ≡ is refinable to a Γ-congruence of finite index; see Examples 4.3.3/5. Identifying
equivalence relations with quotients, we first state the concept of refinement categorically:

I Definition 4.1. Let (A,α) ∈ Alg T. A quotient e : A� B in DS is T-refinable if there is
a finite quotient e : (A,α)� (C, γ) in Alg T and a morphism p : C � B in DS with e = p · e.

Then the description of congruences via translations has the following categorical formulation:
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I Definition 4.2. A unary operation on A ∈ DS is a morphism u : As → At in D, where
s, t ∈ S. A unary presentation of a T-algebra (A,α) is a set U of unary operations on A
such that, for any T-refinable quotient e : A� B in DS , the following are equivalent:
(U1) e carries a quotient of (A,α) in Alg T, i.e. there exists a T-algebra structure (B, β)

on B for which e : (A,α)� (B, β) is a T-homomorphism.
(U2) Each unary operation u : As → At in U admits a lifting along e, i.e. a morphism

uB : Bs → Bt in D with et · u = uB · es.

I Example 4.3.

1. T = T∗ on Set: every monoid M has a unary presentation given by the unary operations
x 7→ yx and x 7→ xy on M , where y ranges over all elements of M .

2. T = T∞ on Set2: every ω-semigroup A = (A+, Aω) has a unary presentation given by
the operations (i) x 7→ yx and x 7→ xy on A+, (ii) x 7→ xz and x 7→ xω = π(x, x, x, . . .)
from A+ to Aω, and (iii) z 7→ yz on Aω, where y ∈ A+ ∪ {1} and z ∈ Aω. The proof uses
Ramsey’s theorem and appears implicitly in the work of Wilke [35]; see also [19].

3. Let T be a monad on SetS . Every T-algebra (A,α) has a generic unary presentation given
as follows. Let 1s ∈ SetS be the S-sorted set with one element in sort s and otherwise
empty; thus a morphism 1s → A in SetS chooses an element of As. A polynomial over
A is a morphism p : 1t → T (A + 1s) with s, t ∈ S, i.e. a “term” of output sort t in a
variable of sort s. Denote by As

[p]−→ At the evaluation map that substitutes elements of
As for the variable. The maps [p] (where p ranges over polynomials over A) form a unary
presentation of (A,α). The proof rests on the fact that T-algebras can be viewed as
algebras over a (possibly large and infinitary) signature [16]. Note that for monoids and
ω-semigroups, the polynomial presentation is much larger than the one in Example 1/2;
e.g., for a monoid M it contains all operations x 7→ y0xy1x . . . xyn with y0, . . . , yn ∈M .
Polynomials appeared in [8] in the context of syntactic congruences; see Example 4.8.

4. In contrast to Example 4.3.3, in general not every T-algebra admits a unary presentation
if D 6= Set. Indeed, let D = Setc,d be the variety of sets with two constants c, d, and
Setc 6=d its full reflective subcategory on the terminal object 1 and allX ∈ D with cX 6= dX .
The right adjoint Setc 6=d� D induces a monad T on D with Alg T ∼= Setc 6=d. One can
show that the T-algebra corresponding to {x, c, d} ∈ Setc6=d has no unary presentation.

5. If T represents algebras with finitary operations, the equivalence (U1)⇔(U2) often holds
for arbitrary quotients e. However, the restriction to T-refinable quotients is crucial in
the presence of infinitary operations. For example, let T be the free Γ-algebra monad on
Set for the signature Γ with one ω-ary operation. Thus TX is the set of well-founded
Γ-trees (= ω-branching trees without infinite paths) with X-labeled leaves. Let X 6= ∅
and e : TX � {0, 1} be the map sending a tree t to 0 iff t has finite height. Then for the
polynomial presentation of T, see Ex. 4.3.3, the direction (U2)⇒(U1) does not hold for e.

Digression: Syntactic T-algebras
Languages are often analyzed by means of syntactic algebras, i.e. their minimal recognizing
algebras. This language-theoretic concept is closely related to our algebraic notion of a unary
presentation, as we now explain. The results of this subsection serve to put our concepts into
the context of classical algebraic language theory; they are, however, not used in the sequel
and may be skipped by readers interested only in the variety theorem and its applications.

I Definition 4.4. Let L : T⊀→ OD be recognizable. A syntactic T-algebra for L is a finite
T-algebra AL together with a surjective T-homomorphism eL : T⊀� AL (called a syntactic
morphism for L) such that (i) eL recognizes L, and (ii) eL factors through any surjective
T-homomorphism e : T⊀� A recognizing L, i.e. eL = h · e for some h : A� AL in Alg T.

MFCS 2017
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I Example 4.5. Let T = T∗ on Set. The syntactic monoid [22] of a recognizable language
L : Σ∗ → {0, 1} is the quotient monoid eL : Σ∗ � Σ∗/≡L, where ≡L is the monoid congruence
on Σ∗ defined by x ≡L x′ iff L(yxz) = L(yx′z) for all y, z ∈ Σ∗.

The above definition of ≡L involves for each y, z ∈ Σ∗ the unary operation x 7→ yxz on Σ∗,
which can be expressed as the composite of the operations x 7→ yx and x 7→ xz appearing in
the unary presentation of Σ∗ in Example 4.3.1. This is no coincidence: one can always derive
a syntactic congruence from a unary presentation, and vice versa. For brevity, we discuss
only the case where D is a variety of algebras; see the full paper [34] for the ordered case.

I Notation 4.6. Let U be a set of unary operations on T⊀, and denote by U its closure under
composition and identity morphisms id : (T⊀)s → (T⊀)s. Given a language L : T⊀→ OD,
the S-sorted equivalence relation ≡U,L on |T⊀| is defined as follows: for x, x′ ∈ |T⊀|s, put

x ≡U,L x′ ⇔ Lt · u(x) = Lt · u(x′) for all sorts t and all u : (T⊀)s → (T⊀)t in U.

One readily verifies that ≡U,L is a congruence on T⊀ in DS , i.e. sortwise stable under all
D-operations. We denote the induced quotient in DS by eL : T⊀� T⊀/≡U,L.

I Theorem 4.7. For any set U of unary operations on T⊀, the following are equivalent:
(i) U is a unary presentation of T⊀.
(ii) Every recognizable language L : T⊀ → OD has a syntactic T-algebra, and eL : T⊀ �

T⊀/≡U,L carries a quotient of T⊀ in Alg T that forms a syntactic morphism for L.

I Example 4.8. Let U be the unary presentation of Σ∗ in Example 4.3.1. Then ≡U,L is
precisely the congruence ≡L of Example 4.5, and Theorem 4.7 shows that ≡L is a syntactic
congruence for L. Similarly, Example 4.3.2/3 and Theorem 4.7 give a description of the
syntactic ω-semigroup for any recognizable ∞-language [19], and of the syntactic T-algebra
for any monad T on SetS and any T-recognizable language [8]. We omit the details.

Theorem 4.7 explains why syntactic algebras are presented as a key technique in earlier work
on Eilenberg theorems: they implicitly contain unary presentations. However, the latter
are the “heart of the matter”, and it is easier to directly work with presentations in lieu of
syntactic algebras to derive Eilenberg-type theorems. We will demonstrate this in Section 7.

5 Pseudovarieties of T-algebras and Profinite Theories

In this section we investigate pseudovarieties of T-algebras and establish a categorical
Reiterman theorem: pseudovarieties correspond to profinite equational theories. The results
of the present section are largely independent of our Assumptions 2.1: they hold for any locally
finite variety D of (ordered) algebras and any monad T on DS that preserves surjections.

I Definition 5.1. A Σ-generated T-algebra is a quotient e : T⊀� A of T⊀ in Alg T. The
subdirect product of two quotients ei : T⊀ � Ai (i = 0, 1) is the image e : T⊀ � A of the
T-homomorphism 〈e0, e1〉 : T⊀→ A0 ×A1. We say that e1 is a quotient of e0 if e1 factors
through e0, i.e. e1 = q · e0 for some q. A local pseudovariety of Σ-generated T-algebras is a
class of Σ-generated finite T-algebras closed under subdirect products and quotients.

In order-theoretic terms, local pseudovarieties are precisely the ideals of the poset Quof (T⊀).

I Definition 5.2. A T̂-algebra is profinite if it is an inverse limit of finite T̂-algebras. By
a Σ-generated profinite T̂-algebra is meant a quotient ϕ : T̂⊀� P of T̂⊀ in Alg T̂ with P
profinite. Σ-generated profinite T̂-algebras are ordered by ϕ ≤ ϕ′ iff ϕ factors through ϕ′.
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I Theorem 5.3 (Local Reiterman Theorem). For each Σ ∈ SetSf , the lattice of local pseu-
dovarieties of Σ-generated T-algebras (ordered by inclusion) is isomorphic to the lattice of
Σ-generated profinite T̂-algebras. The isomorphism maps a Σ-generated profinite T̂-algebra
ϕ : T̂⊀� P to the local pseudovariety of all finite quotients e : T⊀� A with e+ ≤ ϕ.

I Remark 5.4. Theorem 5.3 can be interpreted in terms of profinite (in-)equations. If D
is a variety of ordered algebras, a profinite inequation u ≤ v over Σ is a pair of elements
u, v ∈ |T̂⊀|s in some sort s. We say that a Σ-generated finite T-algebra e : T⊀� A satisfies
u ≤ v if e+(u) ≤ e+(v). Using 5.3 one can show that local pseudovarieties are precisely the
classes of Σ-generated finite T-algebras presentable by profinite inequations over Σ. Similarly,
if D is a variety of algebras, local pseudovarieties are presentable by profinite equations.

Eilenberg’s theorem considers regular languages over arbitrary alphabets. In contrast, in a
sorted setting one may need to make a choice of alphabets to capture the proper languages
(e.g. alphabets of the form (Σ, ∅) in 2.3.2). On the algebraic side, this requires us to restrict to
T-algebras with certain generators. From now on, let A ⊆ SetSf be a fixed class of alphabets.

I Definition 5.5. A T-algebra (A,α) is A-generated if there is a surjective T-homomorphism
e : T⊀� (A,α) with Σ ∈ A. A pseudovariety of T-algebras is a class V of A-generated finite
T-algebras closed under A-generated subalgebras of finite products (i.e. for A1, . . . , An ∈ V

and any A-generated subalgebra A�
∏n
i=1Ai, one has A ∈ V) and quotients.

N.B. We emphasize that, in contrast to Definition 5.1, an A-generated T-algebra (A,α) is
not equipped with a fixed quotient e : T⊀� (A,α). Only the existence of e is required.

I Example 5.6.

1. Every finite T-algebra (A,α) is SetSf -generated: since D is locally finite, there is a
surjective morphism e : ⊀ � A with Σ ∈ SetSf , so (A,α) is a quotient of T⊀ via
(T⊀ Te−−→ TA α−→ (A,α)). Consequently, for A = SetSf , a pseudovariety is a class of finite
T-algebras closed under quotients, subalgebras, and finite products. This concept was
studied in [9]. For the monad T∗ on Set we recover the original concept of Eilenberg [12]:
a class of finite monoids closed under quotients, submonoids, and finite products.

2. Let T = T∞ on Set2. As suggested by Example 2.3.2, we chooseA = { (Σ, ∅) : Σ ∈ Setf }.
A finite T∞-algebra (= finite ω-semigroup) A is A-generated iff it is complete, i.e. every
element a ∈ Aω can be expressed as an infinite product a = π(a0, a1, . . .) for some ai ∈ A+.
Clearly complete ω-semigroups are closed under finite products. Thus a pseudovariety of
T∞-algebras is a class of finite complete ω-semigroups closed under quotients, complete
ω-subsemigroups, and finite products. This concept is due to Wilke [35]; see also [19].

I Remark 5.7. Every T-homomorphism g : TD′ → TD with D,D′ ∈ DS
f extends uniquely

to a T̂-homomorphism ĝ : T̂D′ → T̂D with ιD · g = V ĝ · ιD′ (for ιD recall Remark 2.10.2).

I Definition 5.8. A profinite theory is a family % = ( %Σ : T̂⊀� PΣ )Σ∈A such that (i) %Σ
is a Σ-generated profinite T̂-algebra for each Σ ∈ A, and (ii) for every T-homomorphism
g : T�→ T⊀ with Σ,∆ ∈ A, there exists a T̂-homomorphism gP : P∆ → PΣ with %Σ · ĝ =
gP · %∆. Profinite theories are ordered by % ≤ %′ iff %Σ factors through %′Σ for each Σ ∈ A.

I Remark 5.9. Profinite theories generalize the varieties of filters of congruences introduced
by Almeida [4] for algebras over a finitary signature, and earlier by Thérien [32] for monoids.
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I Theorem 5.10 (Reiterman Theorem). The lattice of pseudovarieties of T-algebras (ordered
by inclusion) is isomorphic to the lattice of profinite theories. The isomorphism maps a theory
(%Σ : T̂⊀� PΣ)Σ∈A to the class of all finite T-algebras arising as a quotient of some PΣ.

I Remark 5.11. Theorem 5.10 has again an interpretation in terms of profinite (in-)equations.
If D is a variety of ordered algebras, we say that a finite T-algebra (A,α) satisfies a profinite
inequation u ≤ v over Σ ∈ A if h(u) ≤ h(v) for all T̂-homomorphisms h : T̂⊀ → (A,α+).
Using 5.10 one can show that pseudovarieties are precisely the classes of A-generated finite
T-algebras presentable by profinite inequations over A. In the unordered case, one takes
profinite equations u = v. For A = SetSf , this was proved in [9, Thm. 4.12, Rem. 5.7].

6 The Variety Theorem

To investigate varieties of languages in our categorical setting, we need a notion of language
derivatives extending the classical concept. To this end, we make use of our Assumption
2.1(iii) that the variety C has a constant in the signature. Choosing a constant gives a natural
transformation from the constant functor C1C

on 1C to the identity functor IdC. It dualizes
to a natural transformation ⊥ : Id

D̂
→ COD

. The purpose of ⊥ is to model the empty set:

I Example 6.1. For our categories D of Example 2.2 and the corresponding objects OD (see
Remark 2.11.2) we choose ⊥ : D → OD for D ∈ D̂ to be the constant morphism with value 0.

I Definition 6.2. Let L : T⊀→ OD be a language. Then we define the following languages:

1. the preimage g−1L of L under a T-homomorphism g : T�→ T⊀ by T� g−→ T⊀ L−→ OD;
2. the derivative u−1L : T⊀→ OD of L w.r.t. a unary operation u : (T⊀)s → (T⊀)t by

(u−1L)s = (T⊀)s
u−−→ (T⊀)t

Lt−−→ OD ; (u−1L)r = (T⊀)r
ι⊀−−→ (V T̂⊀)r

V⊥−−−→ OD (r 6= s)

N.B. In the single-sorted case S = 1 the derivative u−1L is equal to L · u and the natural
transformation ⊥ is not used. Therefore Assumption 2.1(iii) can be dropped.

I Example 6.3.

1. T = T∗ on Set: consider the unary operations of Example 4.3.1 presenting Σ∗. The
induced derivatives of a language L ⊆ Σ∗ are exactly the classical ones, i.e. the languages
y−1L = {x ∈ Σ∗ : yx ∈ L } and Ly−1 = {x ∈ Σ∗ : xy ∈ L } for y ∈ Σ∗.

2. T = T∞ on Set2: consider the unary operations of Example 4.3.2 presenting T∞(Σ, ∅) =
(Σ+,Σω). The induced derivatives of L ⊆ Σ+ ∪ Σω are {x ∈ Σ+ : yx ∈ L }, {x ∈ Σ+ :
xy ∈ L }, {x ∈ Σ+ : xz ∈ L }, {x ∈ Σ+ : xω ∈ L }, and { z ∈ Σω : yz ∈ L }, where
y ∈ Σ∗ and z ∈ Σω. These are the derivatives for ∞-languages studied by Wilke [35].

3. Let T be any monad on SetS , and consider the unary operations [p] of Example 4.3.3
presenting TΣ. The induced derivatives of L ⊆ TΣ are the languages p−1L ⊆ TΣ
with (p−1L)s = {x ∈ (TΣ)s : [p](x) ∈ Lt } and (p−1L)r = ∅ for r 6= s, where p : 1t →
T (TΣ + 1s) is a polynomial. These polynomial derivatives were studied by Bojańczyk [8].

I Definition 6.4. Given an S-indexed family L = (Ls : T⊀→ OD )s∈S of languages over Σ,
the diagonal of L is the language ∆L over Σ with (∆L)s = Lss : (T⊀)s → OD for all s ∈ S.

I Notation 6.5. Recall that we work with a fixed class A ⊆ SetSf of alphabets. Fix for each
Σ ∈ A a unary presentation UΣ of the free T-algebra T⊀.
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I Definition 6.6.

1. A local variety of languages over Σ ∈ A is a subobject WΣ ⊆ Rec(Σ) in C closed under
UΣ-derivatives (L ∈WΣ implies u−1L ∈WΣ for u ∈ UΣ) and diagonals.

2. A variety of languages is a family of local varieties (WΣ ⊆ Rec(Σ) )Σ∈A closed under
preimages, i.e. L ∈WΣ implies g−1L ∈W∆ for all Σ,∆ ∈ A and g : T�→ T⊀ in Alg T.

I Remark 6.7.

1. Using the isomorphism Rec(Σ) ∼=
∏
s P (T̂⊀)s of Remark 3.4, one can show that a

subobject WΣ ⊆ Rec(Σ) is closed under diagonals iff it has the form
∏
sms :

∏
s(W ′Σ)s�∏

s P (T̂⊀)s where ms : (W ′Σ)s� P (T̂⊀)s is a monomorphism in C.
2. There are two important cases where the closure under diagonals in Definition 6.6.1 is

trivially satisfied and thus can be dropped. First, if S = 1, clearly every subobject of
Rec(Σ) is closed under diagonals. Secondly, if C is one of the categories of Example 2.2 and
UΣ contains all identity morphisms, one can show that every subobject of Rec(Σ) closed
under UΣ-derivatives is closed under diagonals. This will hold in all our applications.

We are ready to state the main result of our paper, which holds under the Assumptions 2.1.

I Theorem 6.8 (Variety Theorem).
1. For each Σ ∈ A, local varieties of languages over Σ and local pseudovarieties of Σ-

generated T-algebras form isomorphic lattices.
2. Varieties of languages and pseudovarieties of T-algebras form isomorphic lattices. The

isomorphism maps a pseudovariety V to the variety of all languages recognized by some
algebra in V.

Proof sketch. Duality + Reiterman! For 1. one shows that a diagonal-closed subobject
WΣ ⊆ Rec(Σ), given by a monomorphism ( ms : (W ′Σ)s� P (T̂⊀)s )s∈S in CS by Rem. 6.7.1,
is closed under derivatives iff the dual epimorphism ( P−1ms : (T̂⊀)s � P−1(W ′Σ)s )s∈S in
D̂S carries a Σ-generated profinite T̂-algebra. Then the Local Reiterman Theorem 5.3 gives
the isomorphism. For 2. one shows that a family (WΣ )Σ∈A of local varieties is closed under
preimages iff its dual family in D̂S is a profinite theory, and uses the Reiterman Theorem. J

7 Applications

In this section, we derive some concrete variety theorems, including new results, as special
instances of Theorem 6.8. In each case, we follow the three-step plan from the introduction.

Languages of finite words. Eilenberg’s theorem [12] relates varieties of regular languages
to pseudovarieties of monoids. It was later extended to ordered monoids [20], idempotent
semirings [24] and K-algebras [26]. In [1,3,10] we unified all these results to an Eilenberg
theorem for D-monoids in a commutative variety D, based on the dual view of automata
as algebras and coalgebras. Recall that a variety D is commutative if for any A,B ∈ D the
hom-set D(A,B) carries a subalgebra of B|A| in D. A D-monoid is an object D ∈ D with a
monoid structure (|D|, •, 1) whose multiplication is a D-bimorphism, i.e. for every y ∈ |D|
the maps y • − : |D| → |D| and − • y : |D| → |D| carry endomorphisms on D. Monoids in
D = Set, Pos, JSL0, VecK are classical monoids, ordered monoids, idempotent semirings
and K-algebras, respectively. For any set Σ, the free D-monoid (⊀∗, •, ε) on ⊀ consists of the
free D-object ⊀∗ on Σ∗, the multiplication • extending the concatenation of words, and the
empty word ε. The variety theorem for D-monoids emerges from our three steps as follows:
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1. Let TM be the free-monoid monad on D. Thus TM⊀ = ⊀∗ and Alg TM is isomorphic to
the category of D-monoids. A language L : ⊀∗ → OD is TM -recognizable iff its restriction
L@ : Σ∗ → |OD| is a regular behavior, i.e. a function computed by some finite automaton
with output set |OD|. If |OD| ∼= {0, 1} (e.g., for D = Set, Pos, JSL0), regular behaviors
are exactly the characteristic functions of regular languages over Σ.

2. Generalizing Example 4.3.1, the free D-monoid TM⊀ = ⊀∗ has the unary presentation
UΣ = {⊀∗ y•−−−→ ⊀∗, ⊀∗ −•y−−→ ⊀∗ : y ∈ Σ∗ }. Thus the UΣ-derivatives of a language
L : ⊀∗ → OD are (after identifying L with L@) the classical derivatives of Example 6.3.1.

3. LetA = Setf . Instantiating Definition 6.6 gives the notion of a variety of regular behaviors
in C: a family (WΣ ⊆ Rec(Σ))Σ∈A of regular behaviors closed under C-algebraic operations
(see Rem. 3.4), derivatives and preimages of D-monoid morphisms, i.e. g−1L ∈W∆ for
any L : ⊀∗ → OD in WΣ and any D-monoid morphism g : �∗ → ⊀∗. Theorem 6.8 gives

I Theorem 7.1 ([1,3,10]). Let C and D be varieties satisfying the Assumptions 2.1(i),(ii),(iv),
and suppose that the variety D is commutative. Then the lattice of (local) varieties of regular
behaviors in C is isomorphic to the lattice of (local) pseudovarieties of D-monoids.

Four special instances are listed below. The third column describes the C-algebraic operations
under which (local) varieties are closed, and the fourth one states what D-monoids are. All
correspondences are known in the literature, and are uniformly covered by Theorem 7.1.

C D (local) var. of behav. closed under ∼= (local) pseudovarieties of proved in
BA Set boolean operations monoids [12,14]
DL01 Pos finite union and finite intersection ordered monoids [14,20]
JSL0 JSL0 finite union idempotent semirings [24]
VecK VecK addition of weighted languages K-algebras [26]

Polynomial varieties. Next, we derive Bojańczyk’s polynomial variety theorem [8]. 1. Let
T be a monad on SetS . 2. Choose the polynomial presentation of TΣ. 3. Let A = SetSf .
Applying Def. 6.6, a polynomial variety of languages is a family of T-recognizable languages
closed under boolean operations, polynomial derivatives (see Ex. 6.2.3), and preimages of
T-homomorphisms. Thm. 6.8 gives Bojańczyk’s variety theorem [8] and a new local version:

I Theorem 7.2. The lattice of (local) polynomial varieties of T-recognizable languages is
isomorphic to the lattice of (local) pseudovarieties of T-algebras.

∞-languages. Finally, we derive two variety theorems for ∞-languages. For the first one,
1. let T = T∞ on Set2. 2. Choose A = { (Σ, ∅) : Σ ∈ Setf }, and for each Σ ∈ Setf the
unary presentation of T∞(Σ, ∅) = (Σ+,Σω) as in Example 4.3.2. 3. Def. 6.6 yields the notion
of a variety of ∞-languages: a family of∞-regular languages closed under boolean operations,
derivatives (see Example 6.3.2) and preimages of ω-semigroup morphisms. Theorem 6.8 gives

I Theorem 7.3. The lattice of (local) varieties of ∞-languages is isomorphic to the lattice
of (local) pseudovarieties of ω-semigroups.

The non-local part is due to Wilke [19, 35] and the local part is a new result, extending the
local variety theorem of [14] to infinite words. Similarly, we can obtain an ordered version
of Theorem 7.3: 1. take the monad T∞,≤ on Pos2 representing ordered ω-semigroups (i.e.
ω-semigroups on a poset with monotone products). 2. Choose A and the unary presentation
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of T∞,≤(⊀, ∅) as above. 3. Since C = DL01, Def. 6.6 gives positive varieties of ∞-languages,
emerging from varieties by dropping closure under complement. Then Theorem 6.8 yields the
theorem below. Its non-local part is due to Pin [21], and the local part is again a new result.

I Theorem 7.4. The lattice of (local) positive varieties of ∞-languages is isomorphic to the
lattice of (local) pseudovarieties of ordered ω-semigroups.

The two above theorems do not follow from Theorem 7.1/7.2, which shows that our framework
has a wider scope than the earlier work in [1,3,8, 10]. For many more applications, including
variety theorems for tree languages [29] and cost functions [11], see the full paper [34].

8 Conclusions and Future Work

We presented a categorical framework for algebraic language theory that captures, as special
instances, the bulk of the Eilenberg theorems in the literature for pseudovarieties of finite
algebras and varieties of recognizable languages. Let us mention directions for future work.

First, we aim to investigate if it is possible to obtain a variety theorem for data languages
based on nominal Stone duality [13]. On a similar note, it would also be interesting to see
whether dualities modeling probabilistic phenomena (e.g. Gelfand or Kadison duality) lead
to a meaningful algebraic language theory for probabilistic automata and languages.

Secondly, although finite structures are of most relevance from the automata-theoretic
perspective, there has been some work on variety theorems with relaxed finiteness restrictions.
One example is Reutenauer’s theorem [26] for weighted languages over arbitrary fields K. To
cover this in our setting the results of Section 5 should be presented for (E ,M)-structured
categories D in lieu of varieties. This has been worked out in [33] and, independently, in the
recent preprint [27]. In the latter, also a formal “Eilenberg correspondence” is stated for dual
(E ,M)-categories. An important conceptual difference to our present work is that in loc. cit.
one uses discrete dualities (e.g. complete atomic boolean algebras/sets instead of boolean
algebras/Stone spaces) and that unary presentations do not appear. This makes the concept
of a variety of languages (called a coequational theory) and the Eilenberg correspondence
in [27] easy to state, but much harder to apply in practice. The results of [27] and of our
paper do not entail each other, and we leave it for future work to find a common roof.
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