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Abstract
The problem of finding factors of a text string which are identical or similar to a given pattern
string is a central problem in computer science. A generalised version of this problem consists in
implementing an index over the text to support efficient on-line pattern queries. We study this
problem in the case where the text is weighted: for every position of the text and every letter
of the alphabet a probability of occurrence of this letter at this position is given. Sequences
of this type, also called position weight matrices, are commonly used to represent imprecise or
uncertain data. A weighted sequence may represent many different strings, each with probability
of occurrence equal to the product of probabilities of its letters at subsequent positions. Given
a probability threshold 1

z , we say that a pattern string P matches a weighted text at starting
position i if the product of probabilities of the letters of P at positions i, . . . , i + |P | − 1 in the
text is at least 1

z . In this article, we present an O(nz)-time construction of an O(nz)-sized index
that can answer pattern matching queries in a weighted text over a constant-sized alphabet in
optimal time. This improves upon the state of the art by a factor of z log z in construction time
and space. Other applications of this data structure include an O(nz)-time construction of the
weighted prefix table and an O(nz)-time computation of all covers of a weighted sequence, which
improve upon the time complexity of the state of the art by the same factor.
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1 Introduction

Finding factors of a text resembling a pattern constitutes a classical problem in computer
science. Apart from its theoretical interest, it is the core computation of many applications [14]
such as search engines, bioinformatics, natural language processing and database search.
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In many situations the text can be considered as fixed and the patterns may arrive later.
The algorithmic challenge is then to provide fast and direct access to all the factors of the
text via the implementation of an index. The most widely used data structures for this
purpose are the suffix tree and the suffix array [7]. These data structures can be constructed
in O(n) time for a text of length n. Then all locations of a pattern of length m can be found
in the optimal time O(m+ Occ), where Occ is the number of occurrences.

The pattern matching problem for uncertain sequences has been less explored [12]. In
this work we consider a type of uncertain sequences called weighted sequences (also known as
position weight matrices, PWM). In a weighted sequence every position contains a subset
of the alphabet and every letter is assigned a probability of occurrence such that at each
position the probabilities sum up to 1. Such sequences are common in various applications:
(i) data measurements such as imprecise sensor measurements; (ii) flexible modelling of
DNA sequences such as DNA binding profiles; (iii) when observations are private and thus
sequences of observations may have artificial uncertainty introduced deliberately.

In the weighted pattern matching (WPM) problem we are given a string of length m

called a pattern, a weighted sequence of length n called a text, both over an alphabet Σ of
size σ, and a threshold probability 1

z . The task is to find all positions in the text where the
fragment of length m represents the pattern with probability at least 1

z . Each such position
is called an occurrence of the pattern; we also say that the fragment and the pattern match.
An O(σn logm)-time solution for the WPM problem based on Fast Fourier Transform was
proposed in [6]. This problem was also considered in [1] where a reduction to property
matching in a text of size O(nz2 log z) was proposed.

In this article, we are interested in the indexing version of the WPM problem, that is,
constructing an index to provide efficient procedures for answering queries related to the
content of a fixed weighted sequence. In [11], the authors presented the weighted suffix
tree allowing O(m+ Occ)-time WPM queries; the construction time and size of that data
structure is O(nσz log z). A direct application of the results in [1] reduces the construction
time and the size of that index to O(nz2 log z). The index structure built in [11] consists of
a compacted trie of all of the factors with probability greater than or equal to 1

z . A similar –
though more general – indexing data structure, which assumes z = O(1), was presented in [4]
with query time O(m+m×Occ). Here we propose a tree-like data structure that is similar
to the aforementioned ones which is, however, constructed and stored much more efficiently.
Note that the proposed index is constructed and works for a predetermined parameter z, as
opposed to the one of [4] which can additionally answer queries for z′ < z.

Our model of computations. We assume word-RAM model with word size w = Ω(log(nz)).
We consider the log-probability model of representations of weighted sequences in which
probabilities can be multiplied exactly in O(1) time.

A common assumption in practice is that σ = O(1) since the most commonly studied
alphabet is Σ = {A, C, G, T}. In this case a weighted sequence of length n has a representation
of O(n) size. We describe the indexing data structure under this assumption. In the
Conclusions Section we briefly discuss the construction of the index for larger alphabets.

Our contribution. We present an O(nz)-time construction of an O(nz)-sized index that
answers weighted pattern matching queries in optimal O(m+ Occ) time improving upon [1]
by a factor of z log z. Applications of our data structure include an O(nz)-time construction
of the weighted prefix table and an O(nz)-time computation of all covers of a weighted
sequence, which improve upon [2] and [11], respectively, by the same factor in the complexity.
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Structure of the article. In Section 2 basic notation related to weighted sequences, tries and
compacted tries is presented. In particular, we introduce an important notion of extensions
of solid prefixes, which is then used to construct an intermediate data structure that is
crucial to our index, called solid factor trie, in Section 3. The weighted index is described in
Section 4. First, in Section 4.1, we show how the main component of the index, compacted
trie of maximal solid factors, is obtained from the solid factor trie, and then, in Section 4.2,
a black-box description of the weighted index together with all the auxiliary data structures
is given. Section 5 contains two examples of applications of the weighted index. We end
with a Conclusions Section where we sketch changes to be made to the index in the case of a
superconstant-sized integer alphabet.

2 Preliminaries

Let Σ = {s1, s2, . . . , sσ} be an alphabet. A string S over Σ is a finite sequence of letters
from Σ. By S[i], for 1 ≤ i ≤ |S|, we denote the i-th letter of S. The empty string is denoted
by ε. By S[i..j] we denote the string S[i] . . . S[j] called a factor of S (if i > j, then the factor
is an empty string). A factor is called a prefix if i = 1 and a suffix if j = |S|. A factor U of a
string S is called proper if U 6= S. By SR we denote the reversal (the mirror image) of S.

I Definition 1 (Weighted sequence). A weighted sequence X = x1x2 . . . xn of length |X| = n

over an alphabet Σ = {s1, s2, . . . , sσ} is a sequence of sets of pairs of the form:

xi = {(sj , π(X)
i (sj)) : j ∈ {1, 2, . . . , σ}}.

If the considered weighted sequence is unambiguous, we write πi instead of π(X)
i . Here, πi(sj)

is the occurrence probability of the letter sj at the position i ∈ {1, . . . , n}. These values are
non-negative and sum up to 1 for a given i.

The probability of matching of a string P with a weighted sequence X, both having the
same length, equals

P(P,X) =
|P |∏
i=1

π
(X)
i (P [i]).

We say that a string P matches a weighted sequence X with probability at least 1
z , denoted

by P ≈ 1
z
X, if P(P,X) ≥ 1

z . By X[i..j] we denote a weighted sequence called a factor of
X and equal to xi . . . xj (if i > j, then the factor is an empty weighted sequence). We then
say that a string P occurs in X at position i if P matches the factor X[i..i+ |P | − 1]. We
also say that P is a solid factor of X (starting, occurring) at position i. By Occ 1

z
(P,X) we

denote the set of all positions where P occurs in X. The main problem considered in the
article can be formulated as follows.

I Problem (Weighted Indexing).
Input: A weighted sequence X of length n over an alphabet Σ of size σ and a threshold
probability 1

z .
Queries: For a given pattern string P of length m, check if Occ 1

z
(P,X) 6= ∅, compute

|Occ 1
z
(P,X)|, or report all elements of Occ 1

z
(P,X).

We say that P is a (right-)maximal solid factor of X at position i if P is a solid factor of
X at position i and no string P ′ = Ps, for s ∈ Σ, is a solid factor of X at this position.

CPM 2016
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I Fact 2 (Amir et al. [1]). A weighted sequence has at most z different maximal solid factors
starting at a given position.

For each position of a weighted sequence X we define the heaviest letter as the letter
with the maximum probability (breaking ties arbitrarily). By X we denote a string obtained
from X by choosing at each position the heaviest letter. We call X the heavy string of X.

2.1 Extensions of solid factors

Let us fix a weighted sequence X of length n. If F is a solid factor of X starting at position
i and ending at position j, j ≥ i− 1, then the string FX[j + 1..n] is called the extension of
the solid factor F . By E we denote the set of extensions of all solid factors of X.

I Observation 3. E is exactly the set of extensions of all maximal solid factors of X.

Proof. Let FX[j + 1..n] ∈ E be an extension of a solid factor F starting at position i and let
k ∈ {j, . . . , n} be the maximum index such that FX[j + 1..k] is a solid factor of X starting
at position i. Then M = FX[j + 1..k] is a maximal solid factor, as it cannot be extended by
the most probable letter X[k + 1], and FX[j + 1..n] = MX[k + 1..n] is its extension. J

The following observation shows that E is closed under suffixes.

I Observation 4. If S ∈ E, S 6= ε, then the longest proper suffix S′ of S also belongs to E.

Proof. Assume that S is an extension of a solid factor F . If |F | ≥ 1, then S′ is an extension
of the longest proper suffix of F . Otherwise, S′ is an extension of an empty factor. J

2.2 Tries

We consider rooted labeled trees with labels on edges, called tries. The labels are letters from
Σ; edges going down from a single node have distinct labels. The root is denoted by root.

If T is a trie and u, v are its two nodes such that v is an ancestor of u, then by str(u, v)
we denote the string spelled by the edge labels on the path from u to v. We say that
{str(u, root) : u ∈ T} are the suffixes of the trie T . As usual by lca(x, y) we denote the
lowest common ancestor of the nodes x and y. By Li for i ≥ 0 we denote the i-th level of T
that consists of nodes at depth i in the trie.

A compacted trie is a trie in which maximal paths whose inner nodes have degree 2 are
represented as single edges with string labels. Usually such labels are not stored explicitly, but
as pointers to a base string (or base strings); only the first letters are stored. The remaining
nodes are called explicit, whereas the nodes that are removed due to compactification are
called implicit. A well-known example of a compacted trie is a suffix tree of a string [7].

A suffix tree of a trie T , denoted by S(T ), is a compacted trie of the strings str(u, root)
for u ∈ T ; see [5, 15, 16]. The explicit nodes of S(T ) that correspond to str(u, root) for u ∈ T
are called terminal nodes. The string labels of the edges of S(T ) are not stored explicitly,
but correspond to upward paths in the trie T . For a node v of S(T ), by str(v) we denote the
concatenation of labels of the edges from the root of S(T ) to v.

I Fact 5 (Shibuya [16]). The suffix tree of a trie with N nodes has size O(N) and can be
constructed in O(N) time.



C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski 4:5

3 Solid factor trie

For a weighted sequence X of length n, a solid factor trie of X, denoted by T , is a trie
having as suffixes the reversals of the strings from E . By this definition:

I Observation 6. If S is a solid factor of X, then there exist nodes u, v in T such that
str(u, v) = S.

It turns out that the solid factor trie represents all maximal solid factors of X much more
efficiently than if each of them was stored separately.

I Lemma 7. The solid factor trie T has at most z nodes at each level.

Proof. By Observation 4, each node at the level i in T comes from a string of length i in E .
By Observation 3 and Fact 2, there are at most z strings of length i in E . J

We proceed with a construction of the solid factor trie in time linear in the size of the trie.
For this, we need to equip the data structure with additional values; these enhancements
will also turn out useful in the construction of the weighted index.

For each edge of the trie we store, in addition to its letter label, its probability defined
as the probability of this letter at the respective position in X. If v is an ancestor of u,
then by π(u, v) we denote the product of probabilities of edges on the path from u to v.
Let H be the heavy path in T that corresponds to X and let h be the leaf on this path.
For each node v of T we retain the node back(v) defined as lca(v, h) and the probability
π-back(v) = π(v,back(v)). We also denote str-back(v) = str(v,back(v)) (those values are
not stored).

I Theorem 8. The solid factor trie T of a weighted sequence X of length n can be constructed
in O(nz) time.

Proof. The trie is constructed by the algorithm Construct-T (X, n). We add new nodes to
T level by level. First we extend the heavy path. A node v at level i− 1 receives a child with
an edge labeled by a letter s if and only if s str-back(v) is a solid factor at position n− i+ 1;
this condition is checked using the π-back(v) values. Then we assign the child its values of
back and π-back. The correctness of the algorithm follows from the claim below.

I Claim. After the i-th step of the outmost loop of the algorithm Construct-T (X, n), the
trie’s suffixes are the reversals of the strings from E of length at most i.

Proof. The proof goes by induction on i. The case of i = 0 is trivial. Let us assume that
the claim holds for i− 1 and prove that it then also holds for i. We need to show that if a
node u is created by the algorithm at the i-th level, then str(u, root) ∈ E and, conversely,
if S ∈ E is a string of length i, then a node u such that str(u, root) = S is created by the
algorithm at the i-th level. We prove the two implications separately.

(⇒) If the node u is created for some letter s, then, by the inductive hypothesis and the
condition checked in the algorithm, s str-back(v) is a solid factor of X starting at position
n− i+ 1. Let j be the level of the node back(v). Then:

str(u, root) = s str-back(v) X[n− j + 1..n] ∈ E .

CPM 2016
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Algorithm Construct-T (X, n)

h0 := root; L0 := {h0};
for i := 1 to n do

Create a new node hi being a child of hi−1 with the letter X[n− i+ 1];
back(hi) := hi;
π-back(hi) := 1;
Li := {hi};
foreach v ∈ Li−1 do

foreach s ∈ Σ in order of non-increasing π(X)
n−i+1(s) do

if v = hi−1 and s = X[n− i+ 1] then continue;
if π(X)

n−i+1(s) · π-back(v) ≥ 1
z then

Create a new node u being a child of v with the letter s;
back(u) := back(v);
π-back(u) := π

(X)
n−i+1(s) · π-back(v);

Li := Li ∪ {u};
else break;

(⇐) Let S′ be the longest proper suffix of S. Then S′ ∈ E due to Observation 4. By the
inductive hypothesis, there exists a node v in Li−1 such that str(v, root) = S′. Then S is an
extension of the solid factor s str-back(v), so indeed π(X)

n−i+1(s) · π-back(v) ≥ 1
z and the node

u corresponding to S will be created. J

Let us proceed with the complexity analysis. In each step of the innermost foreach-loop
(apart from the step involving a node of the heavy path), either a new node is created or
the execution of the loop is interrupted. For a given i, the former takes place |Li| times in
total and the latter takes place at most |Li−1| times in total. The whole algorithm works in
O(

∑n
i=0 |Li|) = O(nz) time due to Lemma 7. J

Let us introduce additional values to T that enable recovering the maximal solid factors
of X. For a node u ∈ Li, by end(u) we denote its ancestor v such that str(u, v) is a maximal
solid factor at position n− i+ 1 in X. Moreover, by len(u) we denote |str(u, v)|.

I Lemma 9. The values end(u) and len(u) for all nodes u of T can be computed in O(nz)
time.

Proof. Clearly, it suffices to focus on the end-pointers, as the len-values can be computed
from these pointers in linear time if only we store for each node its level in the trie.

For each node u, end(u) is an ancestor of back(u) (possibly equal to back(u)), therefore
it is located on the heavy path H. For each node v ∈ H from the leaf h up to the root we
will set the end-pointers for all nodes u such that end(u) = v. In the computation we use
the following property of the pointers:

I Observation 10. If x is an ancestor of y, then end(x) is an ancestor of end(y).

A node will be called active if it is a descendant of v such that its end-pointer has not
been computed yet but its children’s end-pointers have all been computed. After a node
v ∈ H has been considered, a set A containing all the active nodes u together with the values
π(u, v) is stored. Initially the set is empty.
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For the next node v ∈ H we first update the set A. If v = h, then we simply insert v to
A with the probability 1. Otherwise, we iterate through all the nodes u in the set A and
multiply their probabilities by the probability of the edge π(v′, v) where v′ is the child of v
on the heavy path. Then we insert to A all the leaves in the subtrees of T corresponding to
children of v other than v′; their probabilities in A are the values of π-back.

Next, we try to set the end-pointers for the elements of A and their ancestors. If v is
the root, we simply set the pointers to the root to all the elements of A and their ancestors.
Otherwise, let w ∈ H be the parent of v. We iterate through all the elements u ∈ A and for
each of them check if π(u,w) = π(u, v)π(v, w) is at least 1

z . If so, we simply leave u in A
for the next iterations. Otherwise, we set end(u) = v. If u was the last child of its parent
for which we computed the end-pointer, we add the parent of u to A. In order to efficiently
check this condition, each node counts its children whose end-pointer is yet to be determined.

The correctness of the algorithm follows from Observation 10. The running time is
proportional to the total number of times a node from A is visited. When a node v ∈ H
is considered, for each node u ∈ A either its end-pointer is set, which obviously happens
at most |T | = O(nz) times in total, or str(u, v) corresponds to a left-maximal solid factor
ending at position corresponding to the level of v in T , which can happen at most z times
by Fact 2. This implies O(nz) time complexity of the whole algorithm. J

I Example 11. The figure below shows an example of T for z = 4 and

X = [(a, 0.5), (b, 0.5)]bab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)]aaba.

Among a few heavy strings of X, we can select X = ababaaaaba.

abaa

a

a
b

a
b

a

b

b
b

a
ba

b

b

a
b

a
b

b
b

a
b

root

4 Construction of the weighted index

Our index for a weighted sequence X is based on a compacted trie of all maximal solid factors
of X. We first show how this compacted trie can be constructed from the suffix tree S(T )
of the solid factor trie T . Next, we describe in detail all the components of the resulting
weighted index.

CPM 2016
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4.1 Compacted trie of maximal solid factors
First of all, from Fact 5 and Lemma 7 we obtain an efficient construction of S(T ):

I Lemma 12. The suffix tree of the solid factor trie can be constructed in O(nz) time.

The trie T represents more than the (maximal) solid factors of X, and so does S(T ). However,
the len-values that we computed in T let us delimit the maximal solid factors. Using them
we can transform S(T ) into a compacted trie T ′ of all maximal solid factors of X. Assume
that in S(T ) each terminal node stores, as its label, the starting position in X of the string
from E that it represents (i.e., its depth). Then in T ′ a terminal’s label is a list of starting
positions in X of occurrences of the corresponding maximal solid factor.

I Theorem 13. A compacted trie T ′ of all maximal solid factors of a weighted sequence X
of length n can be constructed in O(nz) time.

Proof. We start by constructing the solid factor trie T of X, together with the len-values,
and its suffix tree S(T ). By Theorem 8 and Lemmas 9 and 12, these steps take O(nz) time.
Now it suffices to properly trim S(T ). For a terminal node v in S(T ) corresponding to
str(u, root) in T , as len(v) we store len(u). Then we need to “lift” such a terminal node to
depth len(v) in S(T ). In practice we proceed as follows.

For an (explicit or implicit) node u of S(T ), by maxlen(u) we denote the maximum value
of len(v) for a descendant terminal node v. As a result of trimming we leave only those
(explicit or implicit) nodes u for which maxlen(u) is at least as big as their depth in the trie;
we call such nodes relevant nodes and the remaining nodes irrelevant nodes.

This procedure can be implemented in linear time. Indeed, the maxlen-values for all
explicit nodes can be computed with a single bottom-up traversal. In another bottom-up
traversal, we consider all irrelevant explicit nodes. Let w be such a node and let v be its
explicit parent. Assume that v is located at depth d. If maxlen(w) ≤ d, w is removed from
S(T ) and its label is appended to its parent’s label. Otherwise, we cut the edge connecting
v and w at depth maxlen(w) and move the irrelevant node w there, making it relevant. J

4.2 The weighted index
As already mentioned, our weighted index is based on the compacted trie T ′ of all maximal
solid factors of X. We also need to store the solid factor trie T which lets us access the
string labels of the edges of the compacted trie. For convenience we extend each maximal
solid factor in T ′ by a symbol $ 6∈ Σ. As a result, each maximal solid factor corresponds to a
leaf in T ′ which is labeled with a list of starting positions of its occurrences in X.

We assume left-to-right orientation of the children of each node (e.g., lexicographic). A
global occurrence list OL is stored being a concatenation of the lists of occurrences in all the
leaves of the trie T ′ in pre-order. Each node v stores, as OL(v), the occurrence list of leaves
in its subtree represented as a pair of pointers to elements of the global list OL. We enhance
the occurrence list OL by a data structure for the following colored range listing problem.

I Problem (Colored range listing). Preprocess a sequence A[1..N ] of elements from [1..S] so
that, given a range A[i..j], one can list all the distinct elements in that range.

I Fact 14 (Muthukrishnan [13]). A data structure for the colored range listing problem of
O(N) size can be constructed in O(N + S) time and answers queries in O(k+ 1) time where
k is the number of distinct elements reported.
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For all nodes of T ′ we also compute the following values (for the purpose of this computation
we replace each leaf v with |OL(v)| bogus leaves with single occurrences).

I Fact 15 (Color set size, Hui [10]). Given a rooted tree of size N with L leaves colored from
[1..S], in O(N + S) time one can find for each node u the number of distinct leaf colors in
the subtree of u.

We denote the resulting data structure as I.

I Theorem 16. The index I for a weighted sequence X can be constructed in O(nz) time. It
answers decision and counting variants of weighted pattern matching queries in O(m) time,
and, if required, reports all occurrences of the pattern in O(m+ |Occ 1

z
(P,X)|) time.

Proof. The compacted trie T ′ can answer queries if Occ 1
z
(P,X) 6= ∅ in O(m) time. We

can use Fact 15 to equip each explicit node with the number of positions where the string
represented by the node occurs. This way, |Occ 1

z
(P,X)| can also be determined in O(m) time.

With the aid of the data structure for colored range listing, we can also report Occ 1
z
(P,X)

in time proportional to the number of reported elements. J

I Example 17. The figure below shows the trie T ′ constituting the weighted index for the
solid factor trie T shown in Example 11.
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5 Applications of the weighted index

In this section we present two non-trivial applications of the weighted index. In both cases
we improve the time complexity of the previously known results by a factor of z log z.

5.1 Weighted longest common prefixes and weighted prefix table
For a weighted sequence X of length n and a pair of indices i, j, 1 ≤ i, j ≤ n, by wlcp(i, j)
we denote the length of the longest solid factor that occurs in X at both positions i and j.
After some preprocessing our weighted index allows to answer such queries in O(z) time.

CPM 2016
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I Theorem 18. Given a weighted sequence X of length n, after O(nz)-time preprocessing
we can answer wlcp(i, j) queries for any 1 ≤ i, j ≤ n in O(z) time.

Proof. For each position i in X we precompute the list of leaves L(i) of the weighted index
I that contain i in their occurrence lists. Prior to that, all leaves are numbered in pre-order,
and the elements of L(i) are stored in this order. By Fact 2, |L(i)| ≤ z for each i.

Observe that wlcp(i, j) is the maximum depth of a lowest common ancestor (lca) of a
leaf in L(i) and a leaf in L(j). To determine this value, we merge the lists L(i) and L(j)
according to the pre-order. The claim below (Lemma 4.6 in [7]) implies that, computing
wlcp(i, j), it suffices to consider pairs of leaves that are adjacent in the resulting list.

I Claim. If l1, l2 and l3 are three leaves of a (compacted) trie such that l2 follows l1 and l3
follows l2 in pre-order, then depth(lca(l1, l3)) = min(depth(lca(l1, l2)),depth(lca(l2, l3))).

Merging two sorted lists, each of length at most z, takes O(z) time. Finally let us recall that
lca-queries in a tree can be answered in O(1) time after linear-time preprocessing [3, 9]. J

The weighted prefix table WPT [1..n] of X is defined as WPT [i] = wlcp(1, i); see [2]. As
a consequence of Theorem 18 we obtain an O(nz)-time algorithm for computing this table.
It outperforms the algorithm of [2], which works in O(nz2 log z) time.

I Theorem 19. The weighted prefix table WPT of a given weighted sequence of length n
can be computed in O(nz) time.

5.2 Efficient computation of covers
A cover of a weighted sequence X is a string P whose occurrences as solid factors of X
cover all positions in X; see [11]. More formally, if we define maxgap of an ordered set
A = {a1, . . . , ak} (with a1 < . . . < ak) as

maxgap(A) = max{ai − ai−1 : i = 2, . . . , k},

then P is a cover of X if and only if

1 ∈ Occ 1
z
(P,X) and maxgap(Occ 1

z
(P,X) ∪ {n+ 1}) ≤ |P |.

Note that the former condition means exactly that P is a solid prefix of X. An O(n)-time
algorithm computing a representation of all the covers of a weighted sequence under the
assumption that z = O(1) was presented in [11]. Here we show an algorithm that works in
O(nz) time.

The algorithm of [11] uses a data structure (which we denote here by D) to store a
multiset of elements A from the set {2, . . . , n} allowing three operations:
1. initialisation with a given multiset of elements A;
2. computing maxgap(D) = maxgap(A ∪ {1, n+ 1}) for the currently stored multiset A;
3. removing a specified element from the currently stored multiset A.
The data structure has O(n) size, executes operation 1. in O(|A| + n) time and supports
operations 2. and 3. in constant time. It consists of: (1) an array C[1..n+ 1] that counts the
multiplicity of each element; (2) a list L that stores all distinct elements of A ∪ {1, n+ 1} in
ascending order and retains its maxgap; and (3) an array P [1..n+ 1] that stores, for each
distinct element of A ∪ {1, n+ 1}, a pointer to its occurrence in L.

The algorithm of [11], formulated in terms of our index I, works as follows. For a node v
let D(v) be the D-data structure storing the multiset OL(v) \ {1}. The path from the root
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to each terminal node that represents a maximal solid prefix of X is traversed, and at each
explicit node v the data structure D(v) is computed. To this end, when we move from a node
v to its child w on the path, from D(v) we remove all elements from OL(w′) for w′ being
children of v other than w. Afterwards for the node w we perform the following check, which
we call cover-check(w): if maxgap(D(w)) ≤ depth(w), report the covers being prefixes of
str(w) of length [max(maxgap(D(w)),depth(v) + 1)..depth(w)]. The whole procedure works
in O(nz2) time, as a single traversal works in linear time w.r.t. the size of the index and
there are at most z maximal solid prefixes of X (Fact 2).

Let us show how this algorithm can be implemented to run in O(nz) time. We will call
an explicit node of I a prefix node if it corresponds to a solid prefix of X. To implement
the solution, it suffices for each prefix node to compute the D-data structure and apply the
cover-check routine. A prefix node will be called branching if it has more than one child
being a prefix node, and starting if it is the root or its parent is branching. A maximal
path going down the trie from a starting prefix node and passing only through non-starting
prefix nodes will be called a covering path. Considering the prefix node subtree of I, which
contains at most z leaves and, consequently, at most z − 1 branching nodes, we make the
following easy but important observation.

I Observation 20. There are O(z) covering paths and each prefix node belongs to exactly
one of them.

In the algorithm we compute the D-data structures for all starting prefix nodes (by first
computing the C-arrays) and then update the data structure efficiently along each covering
path. The proofs of the following two lemmas are deferred to the full version of the article.

I Lemma 21. D(v) for all starting prefix nodes v can be computed in O(nz) time.

I Lemma 22. The values maxgap(D(v)) for all prefix nodes can be computed in O(nz) time.

I Theorem 23. A representation of size O(nz) of all covers of a weighted sequence X of
length n can be computed in O(nz) time. In particular, all shortest covers of X can be
determined in O(nz) time.

Proof. To annotate all the covers on the edges of the index, we compute the maxgaps for all
the prefix nodes using Lemma 22 and then apply the constant-time cover-check routine for
each of the nodes. As for the shortest covers, there are at most z of them (as there are at
most z different solid prefixes of X of a specified length, each with probability of occurrence
at least 1

z ), so they can all be listed explicitly in O(nz) time and space. J

6 Conclusions

We have presented an index for weighted pattern matching queries which for a constant-sized
alphabet has O(nz) size and admits O(nz) construction time. It answers queries in optimal
O(m + Occ) time. We have also mentioned two applications of the weighted index. Our
index outperforms the previously existing solutions by a factor of z log z in the complexity.

Generalization to integer alphabets. Let us briefly discuss how to adapt our index to a
general integer alphabet. The size of the input is then the total length R of the lists in the
representation of the weighted sequence. In the construction of the solid factor trie we need
the list at each position to be ordered according to the probabilities of letters. As the size
of each list to be sorted is min(z, σ) (at most z letters can have probability at least 1

z ), the

CPM 2016
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sorting requires O(R log min(σ, z)) time. The construction of a suffix tree of a tree of [16]
works for any integer alphabet. Finally, our weighted index is a compacted trie with children
of a node being indexed by the letter of the alphabet. Hence, to avoid an increase of the
complexity of a query for a particular child of a node, for a general alphabet one requires to
store a hash table of children. With perfect hashing [8] the complexity does not increase but
becomes randomized (Las Vegas, running time w.h.p.).

An open question is whether our weighted index, constructed for a predetermined z, can
be adapted to answer weighted pattern matching queries for z′ < z, as it is in the case of [4].
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