
Improved Approximation Algorithms for Balanced
Partitioning Problems
Harald Räcke1 and Richard Stotz2

1 Technische Universität München, Garching, Germany
raecke@in.tum.de

2 Technische Universität München, Garching, Germany
stotz@in.tum.de

Abstract
We present approximation algorithms for balanced partitioning problems. These problems are
notoriously hard and we present new bicriteria approximation algorithms, that approximate the
optimal cost and relax the balance constraint.

In the first scenario, we consider Min-Max k-Partitioning, the problem of dividing a graph
into k equal-sized parts while minimizing the maximum cost of edges cut by a single part. Our
approximation algorithm relaxes the size of the parts by (1 + ε) and approximates the optimal
cost by O(log1.5 n log logn), for every 0 < ε < 1. This is the first nontrivial algorithm for this
problem that relaxes the balance constraint by less than 2.

In the second scenario, we consider strategies to find a minimum-cost mapping of a graph
of processes to a hierarchical network with identical processors at the leaves. This Hierarch-
ical Graph Partitioning problem has been studied recently by Hajiaghayi et al. who presented
an (O(logn), (1 + ε)(h + 1)) approximation algorithm for constant network heights h. We use
spreading metrics to give an improved (O(logn), (1 + ε)h) approximation algorithm that runs in
polynomial time for arbitrary network heights.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases graph partitioning, dynamic programming, scheduling

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.58

1 Introduction

The problem of scheduling the processes of a parallel application onto the nodes of a parallel
system can in its full generality be viewed as a graph mapping problem. Given a graph
G = (VG, EG) that represents the workload, and a graph H = (VH , EH) that represents the
physical computing resources, we want to map G onto H such that on the one hand the
processing load is well balanced, and on the other hand the communication load is small.

More concretely, nodes of G represent processes and are weighted by a weight function
w : VG → R+. Edges of G represent communication requirements between processes, and are
weighted by cG : EG → R+. Nodes and edges of H represent processors and communication
links, respectively, and may also be weighted with wH : VH → R+ representing the processing
capacity of a physical node, and cH : EH → R+ representing the bandwidth capacity of a
communication link. The goal is to map nodes of G to nodes of H, and to map edges of G
to paths in H between the corresponding end-points such that a) every node in H obtains
approximately the same weight and b) the communication load is small.

This general problem is very complex, and research has therefore focused on special cases.
Many results can be interpreted as mapping to a star graph H with k leaves where the center

© Harald Räcke and Richard Stotz;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Improved Approximation Algorithms for Balanced Partitioning Problems

node x has wH(x) = 0, i.e., processes may not be mapped to the center (cH(e) is assumed
to be uniform). When the goal is to minimize total communication load (sum over all edge
loads in H) this problem is known as Min-Sum k-partitioning. You want to partition G into
k disjoint pieces V1, . . . , Vk such that the weight of any piece is at most w(Vi) ≤ w(V)/k but
the total capacity of edges between partitions is minimized.

For this problem it is not possible to obtain meaningful approximation guarantees without
allowing a slight violation of the balance constraints (w(Vi) ≤ w(V)/k). Even et al. [5] obtain
a bicriteria approximation guarantee of (O(logn), 2), which means they obtain a solution
that may violate balance constraints by a factor of 2, and that has a cost that is at most an
O(logn)-factor larger than the cost of the optimum solution that does not violate balance
constraints. This has been improved by Krauthgamer et al. [9] to (O(

√
logn log k), 2). If one

aims to violate the balance constraints by less than 2, completely different algorithms seem
to be required that are based on Dynamic Programming. Andreev and Räcke [1] obtain an
(O(log1.5 n), 1 + ε)-approximation which has been improved by Feldmann and Foschini to
(O(logn), 1 + ε). For the case that the weight function wH is non-uniform Krauthgamer et
al. [10] obtain an (O(logn),O(1))-approximation, which has been improved by Makarychev
and Makarychev [11] to (O(

√
logn log k), 5 + ε).

When the goal is to minimize the congestion (maximum load of a link) in the star network
H, instead of the total communication load, the problem turns into the so-called Min-Max k-
Partitioning problem. You want to partition a given graph G into k-parts V1, . . . , Vk of equal
size such that maxi c(Vi) is minimized, where c(Vi) denotes the total weight of edges leaving
Vi in G. For this problem Bansal et al. [2] obtain an (O(

√
logn log k), 2 + ε)-approximation

but no non-trivial approximation that violates the balance constraint by less than 2 is known.
Hajiaghayi et al. [7] consider the mapping problem when H is not just a star but exhibits

parallelism on many different levels. For example, a large parallel system may consist of
many workstations, each equipped with several CPUs, etc. Such parallel systems are usually
highly symmetric. Therefore, Hajiaghayi et al. model them as a tree in which all subtrees
routed at a specific level are isomorphic. They develop an approximation algorithm for a
Hierarchical Graph Partitioning problem which then gives rise to a scheduling algorithm for
such a regular tree topology with an approximation guarantee of (O(logn), (1 + ε)(h+ 1)).
This algorithm runs in polynomial time as long as the height h of the hierarchy is constant.

1.1 Our Contribution

In this paper we first consider the Min-Max k-Partitioning problem and show how to obtain
a polylogarithmic approximation on the cost while only violating the balance constraints by
a factor of 1 + ε. For this we use a dynamic programming approach on trees, and then use
an approximation of the graph by a single tree to obtain our result. Note that results that
approximate the graph by a convex combination of trees [12] are not useful for obtaining an
approximation for Min-Max k-Partitioning, as the objective function is not linear.

I Theorem 1. There is a polynomial-time (1+ε, 1+ε)-approximation algorithm for Min-Max
k-Partitioning on trees. This gives rise to an (O(log1.5 n log logn), 1 + ε)-approximation
algorithm for general graphs.

Then we consider the Hierarchical Graph Partitioning problem as introduced by Hajiaghayi
et al. [7]. We give a slight improvement on the factor by which the balance constraints are
violated, while maintaining the same approximation w.r.t. cost. More crucially, our result
also works if the height h is not constant.

H. Räcke and R. Stotz 58:3

I Theorem 2. There exists an (O(logn), (1 + ε)h) approximation algorithm for Hierarchical
Graph Partitioning whose running time is polynomial in h and n.

Our technique is heavily based on spreading metrics and we show that a slight variation of
the techniques in [5] can be applied.

At first glance the result of Theorem 2 does not look very good as the factor by which
the balance constraints are violated seems to be very high as it depends on h. However, we
give some indication that a large dependency on h might be necessary. We show that an
approximation guarantee of α ≤ h/2 implies an algorithm for the following approximate
version of parallel machine scheduling (PMS). Given a PMS instance I, with a set T of tasks,
a length wt, t ∈ T for every task, and a deadline d, we define the g-copied instance of I
(g ∈ N) as the instance where each task is copied g times and the deadline is multiplied by
g. The approximate problem is the following: Given I, either certify that I is not feasible
or give a solution to the g-copied instance of I for some g ≤ α. It seems unlikely that this
problem can be solved efficiently for constant α, albeit we do not have a formal hardness
proof. These results have been deferred to the full version.

1.2 Basic Notation
Throughout this paper, G = (V,E) denotes the input graph with n = |V | vertices. Its edges
are given a cost function c : E → N and its vertices are weighted by w : V → N. For a subset
of vertices S ⊆ V , w(S) denotes the total weight of vertices in S and c(S) denotes the total
cost of edges leaving S, i.e., c(S) =

∑
e={x,y}∈E, |{x,y}∩S|=1 c(e). We will sometimes refer to

w(S) as the size of S and to c(S) as its boundary cost. In order to simplify the presentation,
we assume that all edge costs and vertex weights are polynomially bounded in the number of
vertices n. This can always be achieved with standard rounding techniques at the loss of a
factor (1 + ε) in the approximation guarantee.

A partition P of the vertex set V is a collection P = {Pi}i of pairwise disjoint subsets of
V with

⋃
i Pi = V . We define two different cost functions for partitions, namely costsum(P) =∑

i c(Pi) and costmax(P) = maxi c(Pi). We drop the superscript whenever the type is clear
from the context. A (k, ν)-balanced partition is a partition into at most k parts, such that
the inequality w(Pi) ≤ ν · w(V)/k holds for all parts. The costs of the (k, 1)-balanced
partition with minimum cost w.r.t. costsum and costmax are denoted with OPTsum(k,G) and
OPTmax(k,G), respectively.

A hierarchical partition H = (P1, . . . ,Ph) of height h is a sequence of h partitions, where
P`+1 is a refinement of P`, i.e., for every S ∈ P`+1, there is a set S′ ∈ P` with S ⊆ S′. We
call P` the level-`-partition of H. For any cost vector ~µ ∈ Rh, the cost of H is given by
cost~µ(H) =

∑h
`=1 µ` costsum(P`). A (~k, ν)-balanced hierarchical partition is a hierarchical

partition where P` is (k`, ν)-balanced. The minimum cost of a (~k, 1)-balanced hierarchical
partition w.r.t. ~µ is denoted with OPT~µ(~k,G).

An (α, β)-approximate hierarchical partition with respect to ~µ and ~k is a (~k, β)-balanced
hierarchical partition whose cost is at most α·OPT~µ(~k,G). An (α, β)-approximation algorithm
for Hierarchical Graph Partitioning finds an (α, β)-approximate hierarchical partition for any
given input graph and cost vector. This also gives an (α, β)-approximation for scheduling on
regular tree topologies (see [7]).

2 Min-Max K-Partitioning

In this section, we present an approximation algorithm for Min-Max k-Partitioning. Recall
that this problem asks to compute a (k, 1)-balanced partition P of a given graph that

STACS 2016

58:4 Improved Approximation Algorithms for Balanced Partitioning Problems

minimizes costmax(P). We first consider instances, where the input graph is a tree T = (V,E).
A suitable approximation of the graph by a tree (see [3], [8], [13]) allows to extend the results
to arbitrary graphs with a small loss in the approximation factor. Our algorithm is a decision
procedure, i.e., it constructs for a given bound b a solution whose cost is at most (1 + ε)b or
proves that b < OPTmax(k,G). A (1 + ε, 1 + ε)-approximation algorithm follows by using
binary search. In order to simplify the presentation, we assume throughout this chapter that
all vertex weights are 1 and that k divides n. We further assume that the approximation
constant ε is at most 1.

The algorithm heavily relies on the construction of a decomposition of T , which is defined
as follows. A decomposition of T w.r.t. k and b is a partition D = {Di}i, whose parts Di

are connected components, have size w(Di) ≤ n/k and boundary cost c(Di) ≤ b. With each
decomposition D we associate a corresponding vector set ID. This set ID contains a vector
(c(Di)/b, w(Di)k/n) that encodes the size and boundary cost of Di in a normalized way. By
this ID contains (most of) the information about D and our algorithm can just work with
ID instead of the full decomposition D. Note that every vector in ID is bounded by (1, 1).

We call a partition of ID into k subsets {Ii}i, s.t. the vectors in each subset sum to at
most α in both dimensions, an α-packing of ID. The decomposition D is called α-feasible
if an α-packing of ID exists. Note that this implies α ≥ 1. Also note that this definition
of feasibility may be nonstandard, as feasibility incorporates the decomposition cost, i.e., a
1-packing has cost b (the bound that we guessed for the optimal solution).

Determining whether there is an α-packing of a given vector set is an instance of
the NP-hard Vector Scheduling problem. Chekuri and Khanna [4] gave a polynomial-time
approximation scheme (PTAS) for the Vector Scheduling problem which leads to the following
result.

I Lemma 3. Let D be an α-feasible decomposition of T w.r.t. k and b, then there is a
polynomial-time algorithm to construct a (k, (1 + ε)α)-balanced partition of T of cost at most
(1 + ε)α · b, for any ε > 0.

Proof. The proof has been deferred to the full version. J

An optimal (but slow) algorithm for Min-Max k-Partitioning could iterate over all possible
decompositions of the graph and check if any of these decompositions is 1-feasible. If a
1-feasible decomposition is found, the corresponding 1-packing is computed, otherwise the
bound b is rejected.

We modify this approach to obtain a polynomial-time approximation algorithm. As
the number of decompositions is exponential, we partition them into a polynomial number
of classes. This classification is such that decompositions of the same class are similar
w.r.t. feasibility. More precisely, we show that if a decomposition is α-feasible, then all
decompositions of the same class are (1 + ε)α-feasible.

We present a dynamic program that, for every class, checks whether a decomposition in
that class exists and that computes some representative decomposition that is in this class.
Then, we check the feasibility of every representative. As an exact check is NP-hard, we use
the approximate Vector Scheduling as described above. If a 1-feasible decomposition exists,
then a representative of the same class has been computed and furthermore, this representative
is (1 + ε)-feasible. Consequently, we obtain a (1 + ε)2-packing of the representative, which
induces a (k, (1 + ε)2)-balanced partition of T with cost at most (1 + ε)2b.

H. Räcke and R. Stotz 58:5

2.1 Classification of Decompositions
We now describe the classification of decompositions using the vector set ID. A vector ~p ∈ ID
is small, if both its coordinates are at most ε3 , otherwise it is large. Small and large vectors
are henceforth treated separately.

We define a type of a large vector ~p = (p1, p2) as follows. Informally, the type of a large
vector classifies the value of both coordinates. Let i = 0 if p1 < ε4, otherwise let i be
the integer such that p1 lies in the interval [(1 + ε)i−1ε4, (1 + ε)iε4). Let j = 0 if p2 < ε4,
otherwise let j be the integer such that p2 lies in [(1 + ε)j−1ε4, (1 + ε)jε4). Note that i and
j can each take t = dlog1+ε(1/ε4)e+ 1 different values because ~p is upper-bounded by (1, 1).
This is a consequence of normalizing the vectors in ID as mentioned earlier. The pair (i, j)
is the type of ~p. We number types from 1, . . . , t2 arbitrarily.

We next define the type of a small vector ~q = (q1, q2). Informally, the type of a small
vector approximates the ratio q1/q2 of its coordinates. Let s = dlog1+ε(1/ε)e and subdivide
[ε, 1/ε] into 2s intervals of the form [(1 + ε)i, (1 + ε)i+1) for i = −s, . . . , s− 1. Crop the first
and the last interval at ε and 1/ε respectively. Add two outer intervals [0, ε) and [1/ε,∞)
to obtain a discretization of the positive reals into 2s+ 2 types −(s+ 1), . . . , s. The vector
~q = (q1, q2) has type i, if its ratio q1/q2 falls into the i-th interval.

Using these terms, we define the size signature and ratio signature of a vector set ID.
The size signature stores the number of large vectors of every type while the ratio signature
stores the sum of small vectors of every type. Let I large

D denote the subset of large vectors
and Ismall

D,j denote the subset of small vectors of type j.

I Definition 4 (Signature). Let D be a set of disjoint connected components. The vector
~̀= (`1, . . . , `t2) is the size signature of ID, if I large

D contains exactly `i vectors of type i for
i = 1, . . . , t2. The vector ~h = (~h−(s+1), . . . ,~hs) is the ratio signature of ID if ~hj =

∑
~p∈Ismall

D,j
~p

for j = −(s+ 1), . . . , s. We call ~g = (~̀,~h) the signature of D and ID.

We prove in the following that decompositions with the same signature have nearly the same
feasibility properties. We start with a technical claim whose proof is omitted here.

I Claim 5. Let 0 < ε ≤ 1 and s = dlog1+ε(1/ε)e. Then s · ε3 ≤ 2ε.

Proof. The proof has been deferred to the full version. J

I Lemma 6. Assume that D is an α-feasible decomposition of signature ~g and that D′ has
the same signature. Then D′ is (1 + 9ε)α-feasible.

Proof. Given an α-packing {Ii}i of ID, we describe a (1 + 9ε)α-packing {I ′i}i of ID′ . For
every vector ~p ∈ ID′ , we have to select a set I ′i to add this vector to. We only argue about the
first coordinate of the resulting packing, the reasoning for the second coordinate is analogous.

We start with the large vectors. We choose an arbitrary bijection π : I large
D′ → I large

D
such that only vectors of the same type are matched. This can be done easily, since ID and
ID′ have the same size signature. Now, we add a vector ~p ∈ I large

D′ to set I ′i if and only if
π(~p) ∈ Ii.

As vector ~p = (p1, p2) and π(~p) share the same signature, their sizes are similar in both
coordinates. More precisely if the first coordinate of ~p is larger than ε4, then the first
coordinate of π(~p) is at most (1 + ε)p1. If p1 is smaller than ε4, then p2 must be larger than
ε3 because ~p is a large vector. Consequently there can be at most α/ε3 large vectors with
such a small first coordinate in the same part of α-packing {Ii}i. Their sum is bounded by

STACS 2016

58:6 Improved Approximation Algorithms for Balanced Partitioning Problems

αε in the first coordinate. Let (Li,large, Ri,large) denote the sum of large vectors in Ii and let
(L′i,large, R

′
i,large) denote the sum of large vectors in I ′i. We have

L′i,large ≤ (1 + ε)Li,large + αε . (1)

We now consider small vectors; recall that they are classified by their ratio. Let (Li,j , Ri,j)
denote the sum of small vectors of type j in Ii. We call types j ≥ 0 left-heavy as they fulfill
Li,j ≥ Ri,j , and accordingly we call types j < 0 right-heavy as they fulfill Li,j < Ri,j .

For left-heavy types, add vectors of Ismall
D′,j to I ′i until the sum (L′i,j , R′i,j) of these vectors

exceeds Li,j in the first coordinate. It follows that L′i,j ≤ Li,j + ε3, as the excess is at most
one small vector. Summing over all left-heavy types gives

s∑
j=0

L′i,j ≤ (s+ 1)ε3 +
s∑
j=0

Li,j ≤ 3εα+
s∑
j=0

Li,j , (2)

where we used α ≥ 1 and Claim 5 in the last step.
For right-heavy types, add vectors of Ismall

D′,j to I ′i until the sum of these vectors exceeds
Ri,j in the second coordinate. It follows that R′i,j ≤ Ri,j + ε3. We remark that the above
procedure distributes all small vectors of any type j. This follows because on the one hand
the ratio signature ensures that the sum of vectors of type j is the same in ID and ID′ ,
and on the other hand our Greedy distribution assigns at least as much mass in the heavier
coordinate as in the solution for {Ii}i. It remains to show an upper bound on L′i,j for
right-heavy types.

First consider Type −(s+ 1), which corresponds to interval [0, ε). Combining the upper
bound on R′i,j for right-heavy types and the fact that L′i,−(s+1)/R

′
i,−(s+1) < ε, it follows that

L′i,−(s+1) ≤ ε(Ri,−(s+1) + ε3). As ε3 ≤ α and Ri,−(s+1) ≤ α, this implies L′i,−(s+1) ≤ 2εα.
The remaining types correspond to an interval [(1 + ε)j , (1 + ε)j+1) and both Li,j/Ri,j

and L′i,j/R′i,j must lie in that interval. We derive a bound on L′i,j as follows:

L′i,j ≤ (1 + ε)j+1R′i,j ≤ (1 + ε)j+1(Ri,j + ε3) ≤ (1 + ε)j+1(Li,j
(1 + ε)j + ε3)

= (1 + ε)Li,j + (1 + ε)j+1ε3 ≤ (1 + ε)Li,j + ε3 .

The first step uses the fact that L′i,j/R′i,j < (1 + ε)j+1. The second step uses the upper
bound on R′i,j for right-heavy types and the third step uses the bound Li,j/Ri,j ≥ (1 + ε)j .
As j < 0 for right-heavy types and ε > 0, the last step follows. Summing up the bounds on
all right-heavy types and using Claim 5 gives

−1∑
j=−(s+1)

L′i,j ≤ sε3 + 2εα+ (1 + ε)
−1∑

j=−(s+1)

Li,j ≤ 4εα+ (1 + ε)
−1∑

j=−(s+1)

Li,j . (3)

We now combine all bounds derived for part I ′i. Let (Li, Ri) be the sum of vectors in
Ii and let (L′i, R′i) denote the sum of vectors in I ′i. Clearly L′i = L′i,large +

∑s
j=−(s+1) L

′
i,j

and a respective equality holds for Li. The first term L′i,large is upper-bounded in Equation
(1). The sum

∑s
j=0 L

′
i,j is upper-bounded in Equation (2), and the sum

∑−1
j=−(s+1) L

′
i,j is

H. Räcke and R. Stotz 58:7

upper-bounded in Equation (3). Combining these bounds gives

L′i = L′i,large +
−1∑

j=−(s+1)

L′i,j +
s∑
j=0

L′i,j

≤ (1 + ε)Li,large + 8εα+
s∑
j=0

Li,j + (1 + ε)
−1∑

j=−(s+1)

Li,j

= (1 + ε)Li + 8εα ≤ (1 + 9ε)α .

The last step follows from the assumption that {Ii}i is an α-packing. J

2.2 Finding Decompositions of the Tree

We now present a dynamic program that computes a set of decompositions D with the
following property: If there exists a decomposition of T with signature ~g, then D contains
a decomposition with that signature. The dynamic program adapts a procedure given by
Feldmann and Foschini [6]. We first introduce some terminology.

Fix an arbitrary root r of the tree and some left-right ordering among the children of
each internal vertex. This defines the leftmost and rightmost sibling among the children. For
each vertex v, let Lv be the set of vertices that are contained in the subtree rooted at v or in
a subtree rooted at some left sibling of v. The dynamic program iteratively constructs sets
of connected components of a special form, defined as follows.

A lower frontier F is a set of disjoint connected components with nodes, such that vertices
that are not covered by F form a connected component including the root. In addition we
require that components of a lower frontier have at most size n/k and at most cost b. We
define the cost of a lower frontier F as the total cost of edges with exactly one endpoint
covered by F . Note that this may be counter-intuitive, because the cost of a lower frontier
does not consider the boundary cost of the individual connected components.

The algorithm determines for every vertex v, signature ~g, cost κ ≤ b and number of
vertices m ≤ n, if there exists a lower frontier of Lv with signature ~g that covers m vertices
with cost κ. It stores this information in a table Dv(~g,m, κ) and computes the entries
recursively using a dynamic program. Along with each positive entry, the table stores the
corresponding lower frontier. In the following paragraphs, we describe the dynamic program
in more detail.

First, consider the case where v is a leaf and the leftmost among its siblings. Let vp be
the parent of v. As Lv = {v}, the lower frontier of Lv is either empty or a single connected
component {v}. Therefore Dv((~0,~0), 0, 0) = 1 and Dv(~g(1, c(v, vp)), 1, c(v, vp)) = 1. Here,
we use ~g(|S|, c(S)) to denote the signature of a set that just contains connected component
S (recall that c(S) denotes the cost of S). For all other values, Dv(~g,m, κ) = 0.

Second, we consider the case where v is neither a leaf, nor the leftmost among its siblings.
The case when v is a leaf but not leftmost sibling and the case when v is an inner vertex
that is leftmost sibling and follow from an easy adaption. Let w be the left sibling of v and
u its rightmost child. Observe that Lv is the disjoint union of Lu, Lw and {v}.

If the edge from v to its parent is not cut by a lower frontier F of Lv, then v is not
covered by F . Consequently F splits into two lower frontiers Fu and Fw of Lu and Lw
respectively. Denote their signatures with ~gu and ~gw; they must sum up to ~g. If Fu covers
mu vertices, then Fw needs to cover m−mu vertices. Similarly, if Fu has cost κu, then Fw

STACS 2016

58:8 Improved Approximation Algorithms for Balanced Partitioning Problems

needs cost κ− κu. Hence, if the edge from v to its parent is not cut, Dv(~g,m, κ) is equal to∨
mu≤m, κu≤κ,
~gu+~gw=~g

(Dw(~gw,m−mu, κ− κu) ∧Du(~gu,mu, κu)) . (4)

If the edge from v to its parent vp is cut by the lower frontier F of Lv, then F covers
the entire subtree of v. It follows that F consists of three disjoint parts: a component S
that contains v, a lower frontier Fu of Lu and a lower frontier Fw of Lw. Denote the cost of
Fu by κu and the cost of Fw by κw. Let Tv denote the subtree of v. The cost c(S) equals
κu + c(v, vp), because S is connected to vp in the direction of the root and with the highest
vertices of Fu in the direction of the leaves. The cost κ of the lower frontier F is κw+c(v, vp),
because all edges leaving Fu have their endpoints in F . The signatures of the three parts of
F must sum up to ~g, therefore ~g = ~gu + ~gw + ~g(|S|, c(S)). Hence, if the edge from v to its
parent is cut, Dv(~g,m, κ) is equal to

∨
|S|≤n/k, c(S)≤b,

~gu+~gw+~g(|S|,c(S))=~g

(
Dw(~gw,m−|Tv|, κ−c(v, vp)) ∧Du(~gu, |Tv|−|S|, c(S)−c(v, vp))

)
. (5)

We conclude that Dv(~g,m, κ) = 1, if Term (4) or Term (5) evaluate to 1.
The running time of the dynamic program depends on the number of signatures that

need to be considered at each vertex. The following lemma bounds their number, its proof is
omitted due to space constraints.

I Lemma 7. At vertex v, the dynamic program considers |Lv|t+4s+4(2b)2s+2γ signatures,
where |Lv| is the size of Lv and γ = (k/ε2)t2 .

Proof. The proof has been deferred to the full version. J

As the number of signatures is polynomial in n and k, it follows that the above dynamic
program only needs a polynomial number of steps.

I Observation 8. Let D be the set of decompositions corresponding to positive entries of
Dr(~g, n, 0) as computed by the dynamic program. Then for any decomposition of T with
signature ~g, there exists a decomposition in D with the same signature.

Combining the dynamic program with the properties of signatures, we obtain an approxima-
tion algorithm for Min-Max k-Partitioning on trees.

I Theorem 9. There is a polynomial-time (1+ε, 1+ε)-approximation algorithm for Min-Max
k-Partitioning on trees.

Proof. Follows from Lemmas 6, 7 and Observation 8. The running time is polynomial as
both the dynamic program and the Vector Scheduling subroutine run in polynomial time. J

We extend our results to arbitrary undirected graphs G = (V,E, c) with the help of a
decomposition tree that acts as a cut sparsifier (see Räcke and Shah [13]). Theorem 1 follows
by standard arguments that are deferred to the full version.

H. Räcke and R. Stotz 58:9

Algorithm 1 merge(H′ = (P ′1, . . . ,P ′h),~k)
P1 ← Merge two sets of P ′1 with minimum combined weight until |P ′1| = k1.
for `← 2, . . . , h do
d← k`/k`−1.
for all P`−1,i ∈ P`−1 do
Q← {P ′ ∈ P ′` | P ′ ∩ P`−1,i 6= ∅}. // Subclusters of P`−1,i
P`,1 ← ∅, . . . , P`,d ← ∅.
while Q 6= ∅ do
Assign Q’s next element to P`,j with smallest weight.

end while
P` ← P` ∪

⋃
j P`,j .

end for
end for
Return H = (P1, . . . ,Ph).

3 Hierarchical Partitioning

In this section, we present a bicriteria approximation algorithm for Hierarchical Graph
Partitioning. In the Hierarchical Graph Partitioning problem, we are given a graph G = (V,E)
and parameters ~k and ~µ. We are asked to compute a (~k, 1)-balanced hierarchical partition
P of G that minimizes cost~µ(P) among all such partitions. We assume furthermore that
a (~k, 1)-balanced partition of G exists and therefore k`+1/k` is integral for all levels. This
assumption is fulfilled in particular when ~k is derived from a regular hierarchical network.
Note that this is an extension of Min-Sum k-Partitioning and that cost~µ minimizes the
weighted sum of all edges cut by all subpartitions. This contrasts with the objective function
costmax considered in the previous section.

Our algorithm relies on the construction of graph separators. Graph separators are
partitions in which the maximum weight of a part is bounded, but the number of parts is
arbitrary. More precisely, a σ-separator of G is a partition P of G, such that w(Pi) ≤ w(V)/σ
for every i.

For any positive vector ~σ ∈ Rh, a ~σ-hierarchical separator of G is a hierarchical partition
of G, where on every level P` is a σ`-separator. Note that any (k, ν)-balanced partition
is a (k/ν)-separator and any (~k, ν)-balanced hierarchical partition is a (~k/ν)-hierarchical
separator. An α-approximate ~σ-hierarchical separator w.r.t. ~k and ~µ is a σ-hierarchical
separator whose cost is at most α · OPT~µ(~k,G).

Approximate hierarchical separators can be transformed into approximate hierarchical
partitions using the merging procedure described in Algorithm 1. It is essentially a greedy
strategy for bin packing on every level that makes sure that partitions remain refinements of
each other. The next lemma states that the approximation error of the merging procedure is
linear in the height h.

I Lemma 10. Let H′ = (P ′1, . . . ,P ′h) be an α-approximate ~k/(1 + ε)-hierarchical separator
w.r.t. ~k and ~µ. Then Algorithm 1 constructs an (α, (1 + ε)(h+ 1))-approximate hierarchical
partition H w.r.t. ~µ and ~k.

Moreover, if P ′1 contains at most k1 parts, then H is an (α, (1 + ε)h)-approximate
hierarchical partition w.r.t. ~µ and ~k.

Proof. We use induction over h. For h = 1, assume without loss of generality that P1,1 ∈ P1
has maximum weight. If w(P1,1) > 2(1 + ε)w(V)/k1, then some merging must have occurred

STACS 2016

58:10 Improved Approximation Algorithms for Balanced Partitioning Problems

in the first line of the algorithm. It follows that all distinct parts P1,i, P1,j ∈ P1 have
combined weight at least 2(1 + ε)w(V)/k1. This is a contradiction to the fact that the total
weight of all parts is w(V).

Assume that the claim holds for some h ≥ 1, i.e., the weight of all parts of Ph is upper-
bounded by (1 + ε)(h + 1)w(V)/kh. Use d = kh+1/kh. Assume without loss of generality
that Ph+1,1 receives the last element S from Q when considering Ph,i in the fourth line of
the algorithm; this implies that the weight of Ph+1,1 is smallest before receiving S. To derive
a contradiction, assume that w(Ph+1,1) > (1 + ε)(h+ 2)w(V)/kh+1. It follows that

w(Ph,i) ≥ w(S) +
d∑
j=1

w(Ph+1,1 \ S) >
d∑
j=1

(w(Ph+1,1)− w(S))

> d ·
(

(1 + ε)(h+ 2)w(V)
kh+1

− (1 + ε)w(V)
kh+1

)
The last line equals (1+ε)(h+1)·w(V)/kh which is a contradiction to the induction hypothesis.
For the first inequality, we used that part Ph+1,1 had the smallest weight before receiving S.
The last step uses the fact that the weight of all S ∈ Q is at most (1 + ε)w(V)/kh+1.

As merging sets does not increase the cost of a hierarchical partition, the approximation
factor α on the cost does not change. This finishes the proof of the first statement.

To see the second statement, observe that if P ′1 contains at most k1 parts, then there is
nothing to do in the first line of the algorithm. As no merging occurs, every set in P ′1 has at
most weight (1 + ε)w(V)/k1. With a similar induction argument as above, it follows that
the merging procedure returns an (α, (1 + ε)h)-approximate hierarchical partition. J

In the following, we describe an algorithm that computes an O(logn)-approximate ~k/(1 + ε)-
hierarchical separator H′ = (P ′1, . . . ,P ′h). We use µ̃` as a shorthand for

∑h
j=` µj .

Our algorithm first computes partition P ′1 using the Min-Sum k-Partitioning algorithm
by Feldmann and Foschini [6]. It can easily be adapted to handle polynomial vertex weights.

The following theorem states the result for the Min-Sum k-Partitioning algorithm.

I Theorem 11 ([6]). There is a polynomial-time algorithm that computes a (k1, 1+ε)-balanced
partition of G with cut cost at most O(logn) · OPTsum(k1, G).

Note that µ̃1 ·OPTsum(k1, G) is an upper bound on the cost of any (~k, 1)-balanced hierarchical
partition.

The algorithm to construct (P ′2, . . . ,P ′h) is an adaptation of the algorithm by Even et al.
for Min-Sum k-Partitioning. Note that the following description is basically the description
in [5]. It relies on a distance assignment {d(e)}e∈E to the edges of G, the spreading metric.
The distances are used in a procedure called cut-proc that permits to find within a subgraph
of G a subset of vertices T , whose cut cost is bounded by its volume vol(T). The volume of
a set of vertices is approximately the weighted length of the edges in its cut.

Given the procedure cut-proc, the algorithm constructs all the remaining partitions
(P ′2, . . . ,P ′h) as follows. First recall that P ′1 is already given by Theorem 11. For ` ≥ 2,
the algorithm constructs P ′` by examining all parts of P ′`−1 separately. On a given part
P ′`−1 ∈ P ′`−1, it uses procedure cut-proc to identify a subgraph H of P ′`−1. This subgraph
becomes a part of P ′` and cut-proc is restarted on P`−1 \H. This process is repeated until
less than (1 + ε)w(V)/k` vertices are left. The remaining vertices also constitute a part of
P ′`.

It is important to note during the following discussion that the boundary cost c(S) of a
set S ⊆ V depends on the subgraph that S was chosen from. Sometimes, we will choose S
from a subgraph H of G; in this case, c(S) only counts the cost of edges leaving S towards H.

H. Räcke and R. Stotz 58:11

The spreading metric used is an optimal solution to the following linear program, called
spreading metrics LP.

min
∑
e∈E

c(e)d(e)

s.t.
∑
u∈S

distV (v, u) · w(u) ≥ µ̃`
(
w(S)− w(V)

k`

)
, 1 ≤ ` ≤ h, S ⊆ V, v ∈ S (6)

0 ≤ d(e) ≤ µ̃1, e ∈ E .

Using the distances d(e), distS(v, u) denotes the length of the shortest path between vertices
v and u in subgraph S. Let τ denote the optimal value of the spreading metrics LP.

The following two lemmas prove the basic properties of solutions of the spreading metrics
LP. Their proofs are omitted due to space constraints.

I Lemma 12. Any (~k, 1)-balanced hierarchical partition H = (P1, . . . ,Ph) induces a feasible
solution to the spreading metrics LP of value cost~µ(H).

Proof. The proof has been deferred to the full version. J

The above lemma implies that τ is a lower bound on cost~µ(H). We define the radius of
vertex v in some S ⊆ V as radius(v, S) := max{distS(v, u) | u ∈ S}.

The following lemma proves that any set of sufficient weight has at least constant radius.

I Lemma 13. If S ⊆ V satisfies w(S) > (1 + ε)w(V)/k` for some level `, then for every
vertex v ∈ S, radius(v, S) > ε

1+ε µ̃`.

Proof. The proof has been deferred to the full version. J

Even though the spreading metrics LP contains an exponential number of constraints, it can
be solved in polynomial time using the ellipsoid algorithm and a polynomial-time separation
oracle. By rewriting the Constraints (6), we obtain for all levels `, S ⊆ V and v ∈ S the
constraint

∑
u∈S(distV (u, v)− µ̃`)w(u) ≥ w(V)/k`.

For any vertex v, the left-hand side of the constraint is minimized when the subset
Sv = {u ∈ V | distV (v, u) ≤ µ̃`} is chosen. Consequently, h single-source shortest path
computations from every vertex provide a polynomial-time separation oracle for the spreading
metrics LP.

The notation introduced next serves the definition of procedure cut-proc in Algorithm 2.
A ball B(v, r) in subgraph G′ = (V ′, E′) is the set of vertices in V ′ whose distance to v is
strictly less than r, thus B(v, r) := {u ∈ V ′ | distV ′(u, v) < r}. The set E(v, r) denotes the
set of edges leaving B(v, r). The volume of B(v, r), denoted by vol(v, r), is defined by

vol(v, r) := η · τ +
∑

(x,y)∈E(v,r),
x∈B(v,r)

c(x, y)(r − distB(v,r)(v, x)) , (7)

where η = 1
hn . Note that the volume only considers the edges in the cut, not the edges within

the ball, which is different from [5]. The following lemma is a corollary of Even et al. [5].

I Lemma 14. Given a subgraph G′ = (V ′, E′) that satisfies w(V ′) > (1 + ε)w(V)/k`, and
given a spreading metric {d(e)}e, procedure cut-proc finds a subset T ⊆ V ′ that satisfies
w(T) ≤ (1 + ε)w(V)/k`.

STACS 2016

58:12 Improved Approximation Algorithms for Balanced Partitioning Problems

Algorithm 2 cut-proc(V ′, E′, {c(e)}e∈E′ , {d(e)}e∈E′ , µ̃`)
Choose an arbitrary v ∈ V ′
r̃ ← ε

1+ε µ̃`
T ← {v}
v′ ← closest vertex to T in V ′ \ T
while c(T) > 1

r̃ · ln(vol(v,r̃)
vol(v,0)) · vol(v,distV ′(v, v′)) do

T ← T ∪ {v′}
v′ ← closest vertex to T in V ′ \ T

end while
Return T

Proof. The proof has been deferred to the full version. J

The approximation guarantee on the cost induced by partitions P ′1 to P ′h is given by the
next theorem.

I Theorem 15. The sequence H′ = (P ′1, . . . ,P ′h) is a ~k/(1 + ε)-hierarchical separator with
|P ′1| ≤ k1 and cost~µ(H) ≤ α · OPT~µ(~k,G), where α = O(logn).

Proof. The fact that H′ is a ~k/(1 + ε)-hierarchical separator follows immediately from the
construction and Algorithm 2. In particular, Theorem 11 ensures that |P ′1| ≤ k1. The cost
of P ′2 to P ′h w.r.t. ~µ equals

∑h
`=2 µ`P ′`. By Lemma 14, the algorithm constructs sets T` for

P ′` whose cost c(T`) is at most

1 + ε

εµ̃`
· ln
(

vol(v`, εµ̃`/(1 + ε))
vol(v`, 0)

)
· vol(v`, distV ′(v`, v′`)) , (8)

where v` and v′` are some vertices in T`. Recall from the description of the algorithm that
the left-hand side of this inequality ignores all edges that have been cut on a higher level or
that have been cut previously on the same level. By using the shorthand µ̃`, we account for
cuts on subsequent levels, thus obtaining

∑h
`=2 µ`P` ≤

∑h
`=2 µ̃`

∑
T`
c(T`).

Observe that vol(v, 0) ≥ ητ and vol(v, εµ̃`/(1 + ε)) ≤ (1 + η)τ for all v ∈ V . We apply
this to Equation (8) and obtain

c(T`) ≤
1 + ε

εµ̃`
· ln
(

1 + η

η

)
· vol(v`,distV ′(v`, v′`)) . (9)

It follows that
h∑
`=2

∑
T`

µ̃` · c(T`) ≤
1 + ε

ε
ln
(

1 + η

η

) h∑
`=2

∑
T`

vol(v`, distV ′(v`, v′`))

= 1 + ε

ε
ln
(

1 + η

η

) h∑
`=2

∑
T`

(ητ +
∑

e∈E(v`,distV ′ (v`,v′
`
))

c(e)d(e))

≤ 1 + ε

ε
ln
(

1 + η

η

)
(hnητ +

h∑
`=2

∑
T`

∑
e

c(e)d(e)) .

We plug in Equation (9) to obtain the first step and use the definition of the volume in
Equation (7) for the second step.

We now claim that every edge e ∈ E appears at most once in the triple sum above. If e is
cut by cut-proc for P ′`, it is removed from the subgraph for all further iterations of cut-proc

H. Räcke and R. Stotz 58:13

on the same level `. Moreover, edge e is not considered on all remaining levels `′ > `, because
procedure cut-proc is initiated on these levels with subgraphs of the parts of P`. It follows
that the triple sum is upper-bounded by τ .

Using η = 1
hn and the fact that ε is constant, we conclude that

h∑
`=2

∑
T`

µ̃` · c(T`) ≤
1 + ε

ε
ln
(

1 + η

η

)
(hnη + 1)τ = O(logn)τ .

Recall that by Theorem 11, the weighted cost of the first partition µ̃1 · costsum(P ′1) is at most
O(logn) times the cost of the optimal hierarchical partition OPT~µ(~k,G). As furthermore
τ ≤ OPT~µ(~k,G), the theorem follows. J

In other words, the above theorem states that H′ is an O(logn)-approximate ~k/(1 + ε)-
hierarchical separator. Combining Lemma 10 and Theorem 15 gives the following.

I Theorem 16. There exists a (O(logn), (1 + ε)h) approximation algorithm for Hierarchical
Graph Partitioning whose running time is polynomial in h and n.

References
1 Konstantin Andreev and Harald Räcke. Balanced graph partitioning. Theory Comput.

Syst., 39(6):929–939, 2006. doi:10.1007/s00224-006-1350-7.
2 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Naga-

rajan, Joseph (Seffi) Naor, and Roy Schwartz. Min-max graph partitioning and small set
expansion. In Proc. of the 52nd FOCS, pages 17–26, 2011. doi:10.1109/FOCS.2011.79.

3 Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for
constructing oblivious routing schemes. In Proc. of the 15th SPAA, pages 24–33, 2003.
doi:10.1145/777412.777418.

4 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM J.
Comput., 33(4):837–851, 2004. doi:10.1137/S0097539799356265.

5 Guy Even, Joseph (Seffi) Naor, Satish Rao, and Baruch Schieber. Fast approximate graph
partitioning algorithms. SIAM J. Comput., 28(6):2187–2214, 1999. Also in Proc. 8th SODA,
1997, pp. 639–648. doi:10.1137/S0097539796308217.

6 Andreas E. Feldmann and Luca Foschini. Balanced partitions of trees and applications. In
Proc. of the 29th STACS, pages 100–111, 2012. doi:10.4230/LIPIcs.STACS.2012.100.

7 Mohammad Taghi Hajiaghayi, Theodore Johnson, Mohammad Reza Khani, and Barna
Saha. Hierarchical graph partitioning. In Proc. of the 26th SPAA, pages 51–60, 2014.
doi:10.1145/2612669.2612699.

8 Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minimize congestion. In Proc. of the 15th SPAA, pages 34–43, 2003. doi:10.1145/
777412.777419.

9 Robert Krauthgamer, Joseph (Seffi) Naor, and Roy Schwartz. Partitioning graphs into
balanced components. In Proc. of the 20th SODA, pages 942–949, 2009. arXiv:soda:
1496770.1496872.

10 Robert Krauthgamer, Joseph (Seffi) Naor, Roy Schwartz, and Kunal Talwar. Non-uniform
graph partitioning. In Proc. of the 25th SODA, pages 1229–1243, 2014. arXiv:soda:
2634165.

11 Konstantin Makarychev and Yuri Makarychev. Nonuniform graph partitioning with un-
related weights. In Proc. of the 41st ICALP, pages 812–822, 2014. doi:10.1007/
978-3-662-43948-7_67.

STACS 2016

http://dx.doi.org/10.1007/s00224-006-1350-7
http://dx.doi.org/10.1109/FOCS.2011.79
http://dx.doi.org/10.1145/777412.777418
http://dx.doi.org/10.1137/S0097539799356265
http://dx.doi.org/10.1137/S0097539796308217
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.100
http://dx.doi.org/10.1145/2612669.2612699
http://dx.doi.org/10.1145/777412.777419
http://dx.doi.org/10.1145/777412.777419
http://arxiv.org/abs/soda:1496770.1496872
http://arxiv.org/abs/soda:1496770.1496872
http://arxiv.org/abs/soda:2634165
http://arxiv.org/abs/soda:2634165
http://dx.doi.org/10.1007/978-3-662-43948-7_67
http://dx.doi.org/10.1007/978-3-662-43948-7_67

58:14 Improved Approximation Algorithms for Balanced Partitioning Problems

12 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in net-
works. In Proc. of the 40th STOC, pages 255–264, 2008.

13 Harald Räcke and Chintan Shah. Improved guarantees for tree cut sparsifiers. In Proc. of
the 22nd ESA, pages 774–785, 2014. doi:10.1007/978-3-662-44777-2_64.

http://dx.doi.org/10.1007/978-3-662-44777-2_64

	Introduction
	Our Contribution
	Basic Notation

	Min-Max K-Partitioning
	Classification of Decompositions
	Finding Decompositions of the Tree

	Hierarchical Partitioning

