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——— Abstract

We study two clustering problems, STARFOREST EDITING, the problem of adding and deleting
edges to obtain a disjoint union of stars, and the generalization BICLUSTER EDITING. We show
that, in addition to being NP-hard, none of the problems can be solved in subexponential time
unless the exponential time hypothesis fails.

Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number
of connected components in the solution should not make the problem easier: In particular,
they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-
CLUSTER EDITING) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather
than the rule. Here, p is a secondary parameter, bounding the number of components in the

solution.

However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms
which run in time O(23VP* 4+ 4+ m) for p-STARFOREST EDITING and O(20PVE08(k) 4 4 )
for p-BICLUSTER EDITING. We obtain a similar result for the more general case of ¢-PARTITE
p-CLUSTER EDITING. This is subexponential in k for a fixed number of clusters, since p is then
considered a constant.

Our results even out the number of multivariate subexponential time algorithms and give
reasons to believe that this area warrants further study.

1998 ACM Subject Classification G.2.2 Graph Theory
Keywords and phrases graph editing, subexponential algorithms, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.402

1 Introduction

Identifying clusters and biclusters has been a central motif in data mining research [22]
and forms the cornerstone of algorithmic applications in, e.g., biology [25] and expression
data analysis [7]. Cai [6] showed that clustering — among many other graph modification
problems of similar flavor — is solvable in fixed-parameter tractable time. Parallel to these
general results, some progress was made in the area of structurally sparse graphs: many
problems are, when restricted to classes characterized by a finite set of forbidden minors,
solvable in subexponential parameterized time, i.e. they admit algorithms with time complexity
2°(F) . poly(n).

The complexity class of problems admitting such an algorithm is called SUBEPT and was
defined by Flum and Grohe in the seminal textbook on parameterized complexity [14]. They
simultaneously noticed that most natural problems did, in fact, not live in this complexity
class: The classical NP-hardness reductions paired with the ezponential time hypothesis of
Impagliazzo, Paturi, and Zane [20] is enough to show that no 2°(%) . poly(n) algorithm exists.
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In this context, Jianer Chen posed the following open problem in the field of parameterized
algorithms [5]: Are there examples of natural problems on graphs, that do not have such
a topological constraint, and also have subexponential parameterized running time? Alon,
Lokshtanov, and Saurabh [1] partially answered this question in the positive by providing a
subexponential time algorithm for FEEDBACK ARC SET on tournament graphs. However,
the aforementioned graph classes with topological constraints are sparse, and tournament
graphs are extremely dense. Chen’s question is therefore not fully answered — are there
problems which are in SUBEPT on general graphs?

This is indeed the case. Fomin and Villanger [16] showed that MiNIMUM FILL-IN was
solvable in time 20(Vklogk) | poly(n). MINIMUM FILL-IN is the problem of completing a
graph into a chordal graph by adding as few edges as possible. Following this, a line of
research was established investigating whether more graph modification problems admit such
algorithms. It proved to be a fruitful area; Since the result by Fomin and Villanger (ibid.), we
now know that several graph modification problems towards classes such as split graphs [17],
threshold graphs [10], trivially perfect graphs [11], (proper) interval graphs [3, 4], and more
admit subexponential time algorithms.

While these classes are rather “simple”, they certainly are much more complex than
simple cluster or bicluster graphs. Therefore, the problems CLUSTER EDITING and CLUSTER
DELETION were a logical candidate for subexponential time algorithms. Surprisingly, we
cannot expect that such algorithms exist. Komusiewicz and Uhlmann gave an elegant
reduction proving that both parameterized and exact subexponential time algorithms were
not achievable, unless ETH fails [21]. On the other hand, the problem p-CLUSTER EDITING,
where the number of components in the target class is fixed to be at most p — rather
surprisingly — does indeed admit a subexponential parameterized time algorithm; This
was shown by Fomin et al. [15], who designed an algorithm solving this problem in time
20(\/ph) . poly(n).

Misra, Panolan, and Saurabh explicitly stated their surprise about this result: In their
opinion, bounding the number of components in the target graph should in general not
facilitate subexponential time algorithms [23]: “We show that this sub-exponential time
algorithm for the fized number of cliques is rather an exception than a rule.”

We show that the related problem BICLUSTER EDITING and its generalization ¢-PARTITE
p-CLUSTER EDITING as well as the special case STARFOREST EDITING also belong to this
exceptional class of problems where a bound on the number of target components greatly
improves their algorithmic tractability. Since BICLUSTER EDITING is an important tool in
molecular biology and biological data analysis, and the necessary second parameter is not
outlandish in these settings, we feel that this is a noteworthy insight. We complement these
results with NP-completeness proofs for BICLUSTER EDITING and ¢t-PARTITE p-CLUSTER
EDITING on subcubic graphs and further show that, unless ETH fails, no parameterized or
exact subexponential algorithm is possible without the secondary parameter. That a bound
on the maximal degree does not contribute towards making these problems more tractable
contrasts many other graph modification problems (like modifications towards split and
threshold graphs [24]) which are polynomial-time solvable in this setting.

Previously, it was known BICLUSTER EDITING in general is NP-complete [2], and Guo,
Hiuffner, Komusiewicz, and Zhang [18] studied the problem from a parameterized point of
view, giving a linear problem kernel with 6k vertices, and an algorithm solving the problem
in time O(3.24% 4+ m).
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Our contribution. In this paper, we study both the very general t-PARTITE p-CLUSTER
EDITING as well as editing to the aforementioned special cases. On the positive side, we
show that
P-STARFOREST EDITING is solvable in time 0(23\/1’TC +n+m), and
both p-BICLUSTER EDITING and the more general ¢t-PARTITE p-CLUSTER EDITING are
solvable in time 20(PVE0s8(PR) 4 O(n 4 m) facilitated by a kernel of size O(ptk), where
t = 2 in the case of p-BICLUSTER EDITING.
In many cases, p is considered a constant, and in this case our kernel has size linear in k. We
supplement these algorithms with hardness results; Specifically, we show that
assuming ETH, STARFOREST EDITING and BICLUSTER EDITING cannot be solved in
time 2°(%) . poly(n) and thus neither can ¢t-PARTITE CLUSTER EDITING, and finally,
p-STARFOREST EDITING is W[1]-hard if parameterized by p alone.

Organization of the paper. In Section 3 we give a subexponential time parameterized
algorithm for the STARFOREST EDITING problem when parameterized by the editing budget
and the number of stars in the solution simultaneously. One ingredient for our subexponential
algorithms is a polynomial kernel. A kernel for BICLUSTER EDITING exists already [18] and
we provide one for the t-partite case in Section 4. In Section 5 we show that p-BICLUSTER
EDITING is solvable in subexponential time in k; We give a 20(pvklog(pk)) +0O(n+m) algorithm
and generalize it to editing to t-partite p-cluster graphs. The parameter p is usually considered
to be a fixed constant, hence the running time is truly subexponential, 2°(%) + O(n+m) in
the editing budget k. However, for a more fine-grained complexity analysis and for lower
bounds, we treat p as a parameter.

In Section 6 we show that we cannot expect such an algorithm without an exponential
dependency on p; The problem is not solvable in time 2°*) poly(n) unless ETH fails. Further,
we show that STARFOREST EDITING is W[1]-hard if parameterized by p alone, before we
conclude in Section 7. Due to page limits, some proofs have been deferred to the full version,
available online [12].

2 Preliminaries

We consider only finite simple graphs G = (V| E) and we use n and m to denote the size of
the vertex set and edge set, respectively. We denote by N (v) the set of neighbors of v in G,
and let degn(v) = |[Ng(v)|. We omit subscripts when the graph in question is clear from
context. We refer to the monograph by Diestel [9] for graph terminology and notation not
defined here. For information on parameterized complexity, we refer to the textbook by Flum
and Grohe [14]. We consider an edge in E(G) to be a set of size two, i.e., e € E(G) is of the
form {u,v} C V(G) with u # v. We denote by [V (G)]? the set of all size two subsets of G.
When F C [V(G)]?, we write G A F to denote G = (V, EAF), where A is the symmetric
difference, i.e., EAF = (E\ F)U (F\ E). When the graph is clear from context, we will
refer to F' simply as a set of edges rather than F C [V (G)]°.

Let us fix the following terminology: A star graph is a tree of diameter at most two (a
graph isomorphic to K7 ¢ for some ¢). The degree-one vertices are called leaves and the vertex
of higher degree the center. A starforest is a forest whose connected components are stars or,
equivalently, a graph that does not contain {K3, Py, C4} as induced subgraphs. A biclique is
a complete bipartite graph K, ; for some a,b € N, and a bicluster graph is a disjoint union
of bicliques. A t-partite clique graph is a graph whose vertex set can be partitioned into
at most ¢ independent sets, all pairwise fully connected, and a t-partite cluster graph is a
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disjoint union of ¢-partite cliques. The problem of editing towards a starforest (resp. bicluster
and t-partite cluster) is the algorithmic problem of adding and deleting as few edges as
possible to convert a graph G to a starforest (resp. bicluster and ¢-partite cluster). We write
f(n) = poly(n) to mean f(n) =n°W) i.e., that there exists a ¢ € N such that f(n) = O(n°).

Exponential time hypothesis. To show that there is no subexponential time algorithm for
STARFOREST EDITING we give a linear reduction from 3SAT, that is, a reduction which
constructs an instance whose parameter is bounded linearly in the size of the input formula.
The constructed instance will also have size bounded linearly in the size of the formula,
and we use this to also rule out an exact subexponential algorithm of the form 2°("+m)
Pipelining such a reduction with an assumed subexponential parameterized algorithm for
the problem would give a subexponential algorithm for 3SAT, contradicting the complexity
hypothesis of Impagliazzo, Paturi, and Zane [20]. Their Sparsification Lemma shows that,
unless the exponential time hypothesis (ETH) fails, 3SAT cannot be solved in time go(n+m)
where n and m here refer to the number of variables and the number of clauses, respectively.

3 Editing to starforests in subexponential time

A first natural step in handling modification problems related to bicluster graphs is modi-
fication towards the subclass of bicluster graphs called starforest. Recall that a graph is
a starforest if it is a bicluster where every biclique has one side of size exactly one, or
equivalently, every connected component is a star.

STARFOREST EDITING parameterized by k

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set of at most k edges F' such that G A F' is a disjoint union of
stars?

The problem where we only allow to delete edges is referred to as STARFOREST DELETION.
These two problems can easily be observed to be equivalent; Adding an edge to a forbidden
induced subgraph will create one of the other forbidden subgraphs, or simply put, it never
makes sense to add an edge.

In Section 6 we show that this problem is NP-hard, and that it is not solvable in time
2°(F) poly(n) unless the exponential time hypothesis fails.

Multivariate analysis. Since no subexponential algorithm is possible under ETH, we in-
troduce a secondary parameter by p which bounds the number of connected components
in a solution graph. This has previously been done with success in the CLUSTER EDITING
problem [15]. Hence, we define the following multivariate variant of the above problem.

p-STARFOREST EDITING parameterized by p, k
Input: A graph G = (V, E) and a non-negative integer k.

Question: Is there a set F' of edges of size at most k such that G A F is a disjoint
union of exactly p stars?

Observe that this problem is not the same as p-STARFOREST DELETION since we might need
to merge stars to achieve the desired value p for the number of connected components. In
Section 6 we show that the problem is W[1]-hard parameterized by p alone, and that we
therefore need to parameterize on both p and k.
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» Lemma 1. Let (G, k) be input to p-STARFOREST EDITING. If (G, k) is a yes-instance,
there can be at most p + 2k vertices with degree at least 2.

The following bound will be key to obtain the subexponential running time.
» Proposition 2 ([15]). If a and b are non-negative integers, then (“:b) < 92Vab,

» Lemma 3. Given a graph G and a vertex set S, we can compute in linear time O(n + m)
an optimal editing set F' such that G A F is a starforest, when restricted to have S as the set
of centers in the solutions.

We now describe an algorithm which solves p-STARFOREST EDITING in time 0(23\/’E +
n+m).

The algorithm. Let (G, k) be an input instance for p-STARFOREST EDITING. If the number
of vertices of degree at least two is greater than p+ 2k, we say no in accordance with Lemma 1.
Otherwise we split the graph into G; and G2 as follows: Let X C V(G) be the collection
of vertices contained in connected components of size one or two, i.e., G[X] is a collection
of isolated vertices and edges. Let G; = G[X] and G2 = G[V(G) \ X]. Clearly, there are
no edges going out of X in G. We will treat G1, G2 as (almost) independent subinstances
by guessing the budgets k1 + k2 = k and the number of components in their respective
solutions p; 4+ p2 = p. The only time we cannot treat them as independent instances is when
p1 or py is zero; Let pf be the number of stars completely contained in G; in an optimal
solution. If both p} > 0, then there always exist an optimal solution that does not add any
edge between G and Gs.

Solving (G1, k1) with p; components: Assume G; contains s isolated edges and ¢ isolated
vertices, with py > 0. If |[V(Gy)| < p1, we immediately say no, since we need exactly
p1 connected components. Depending on the values of s and ¢, we execute the following
operations as long as the budget k; is positive. If s < p; and s+t < p;, we have too few
stars, and we arbitrarily delete edges to increase the number of connected components to p;.
If s = 0 we turn the isolated vertices arbitrarily into p; stars. Otherwise, fix an arbitrary
endpoint ¢ of an isolated edge. Assume that s < p;: then we connect enough isolated vertices
to ¢ such that the number of stars is p;. Finally, if s > p;, we first dissolve s — p; edges and
continue as in the previous case. It is easy to check that the above solutions are optimal.

Solving (G2, k2) with p» components: By Lemma 1, the number of vertices of degree at
least two is bounded by ps + 2ko. Every vertex of degree one in G5 is adjacent to a vertex of
larger degree, thus it never makes sense to choose it as a center (its neighbor will always be
cheaper). Hence, it suffices to enumerate every set Sy of po vertices of degree larger than one
and test in linear time, as per Lemma 3, whether a solution inside the budget k, is possible.
Using Proposition 2 we can bound the running time by

<p2 + 2ko

b2
We are left with the cases where p; or p, are equal to zero: then the only possible solution
is to remove all edges within GG; or Gs, respectively, and connect all the resulting isolated
vertices to an arbitrary center in the other instance. We either follow through with the
operation, if within the respective budget, or deduce that the subinstance is not solvable.
We conclude that the above algorithm will at some point guess the correct budgets for G
and G, and thus find a solution of size at most k. The theorem follows.

) pk+O0(n+m) =02*V¥#2F2 . pk 4 n 4+ m) = O(23VP2F2 L 4 m).

» Theorem 4. p-STARFOREST EDITING is solvable in time 0(23\/}E +n+m).
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4 A polynomial kernel for t-partite p-cluster editing

We show a simple O(ktp) kernel for the ¢t-PARTITE p-CLUSTER EDITING problem — which
will be the foundation of the subsequent subexponential algorithms — with a single rule,
Rule 1, which can be exhaustively applied in time O(n + m). The problem at hand is the
following generalization of p-BICLUSTER EDITING:

t-PARTITE p-CLUSTER EDITING parameterized by p, k

Input: A graph G = (V, E) and a non-negative integer k.

Question: Is there a set F' C [V]® of edges of size at most k such that G A F is a
disjoint union of exactly p complete t-partite graphs?

For our rule, we say that a set X C V(G) is a non-isolate twin class if for every v and v’
in X, Ng(v) = Ng(v') # (). Note that this is by definition a false twin class, i.e., v’ ¢ E(G),
or in other words, a non-isolate twin class is an independent set.

» Rule 1. If there is a non-isolate twin class X C V(G) of size at least 2k + 2, then delete
all but 2k + 1 of them.

» Lemma 5. Rule 1 is sound and can be exhaustively applied in linear time.
The following result is an immediate consequence of the above rule and its correctness.

» Theorem 6. The problem t-PARTITE p-CLUSTER EDITING admits a kernel where the
number of vertices is bounded by pt(2k + 1) + 2k = O(ptk).

Proof. We now count the number of vertices we can have in a yes instance after the rule
above has been applied. We claim that if G has more than pt(2k + 1) 4+ 2k vertices, it
is a no instance. Let (G, k) be the reduced instance according to Rule 1 and let F be a
solution of size at most k. At most 2k vertices can be touched by F, so the rest of the
graph remains as it is, and is a disjoint union of at most p complete t-partite graphs, each
of which has at most ¢ non-isolate twin classes. It follows that in a yes instance, G has at
most pt(2k + 1) 4+ 2k = O(ptk) vertices. <

5 Editing to bicluster graphs in subexponential time

In this section we lift the result of Section 3 by showing that the following problem is solvable
in time 20(Vklog(Pk) O(n 4+ m). Observe that we lose the subexponential dependence
on p, however, contrary to the result of Misra et al. [23], for fixed (or small, relative to k) p,
this still is truly subexponential parameterized by k.

p-BICLUSTER EDITING parameterized by p, k

Input: A graph G = (V, E) and a non-negative integer k.

Question: Is there a set F' C [V]? of edges of size at most k such that G A F is a
disjoint union of p complete bipartite graphs?

We denote a biclique of G as C' = (A4, B) and call the sets A, B the sides of C. Before
describing the algorithm for the general problem, we show that the following simpler problem
is solvable in linear time using a greedy algorithm:
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ANNOTATED BICLUSTER EDITING

Input: A bipartite graph G = (A4, B, E), a partition A = {A1,A4>,...,Ap} of A
and a non-negative integer k.
Question: Is there a set F' C [V]? of edges of size at most k such that G A F is a

disjoint union of p complete bipartite graphs with each one side in A?

» Lemma 7. ANNOTATED BICLUSTER EDITING is solvable in time O(n + m).

Proof. Let G = (A,B,E), A= {A1,...,A,}, k be an instance of ANNOTATED BICLUSTER
EDITING. Consider a vertex v € B and define cost;(v) to be the cost of placing v in B;
where C; = (A;, B;) is the ith biclique of the solution, i.e.,

costi(v) = [Ai] — 2degy, (v) + deg(v),

where deg 4, (v) = |N(v) N A;]. We prove the following claim which implies that we can
greedily assign each vertex v € B to a biclique of minimum cost.

» Claim 8. An optimal solution will always have v € B in a biclique C; = (A;, B;) which
minimizes cost;(v).

Suppose that cost,(v) is minimal but v is placed by a solution F in a biclique C; = (4;, B;)
with cost;(v) > cost;(v). Deleting from F' all edges E; between v and A; and adding all
edges E; between v and A; creates a new solution F’ = (F'\ E;) U E;. Since cost;(v) >
cost;(v), we have that |F| > |F’| hence F' is not optimal. This concludes the proof of the
claim and the lemma. <

5.1 Subexponential time algorithm

We now show that the problem p-BICLUSTER EDITING is solvable in subexponential time by
using the kernel from Theorem 6, guessing the annotated sets and applying the polynomial
time algorithm for the annotated version of the problem. The important ingredient will be
cheap vertices, by which we mean vertices that are known to receive very few edits. Intuitively,
a cheap vertex is a “pin” that in subexponential time reveals for us its neighborhood in the
solution, and thus can be leveraged to uncover parts of said solution.

We adopt the following notation and vocabulary. For an instance (G, k) of p-BICLUSTER
EDITING, and a solution F', we call H = G A F the target graph. A vertex v is called cheap
with respect to F' if it receives at most vk edits. Observe that any set X of size larger
than 2v/k has a cheap vertex. We call such a set large and all sets that contain at most 2v/k
vertices small. We will further classify the bicliques in the target graph into two different
classes: A biclique is small if its vertex set is small and large otherwise.

The algorithm now works as follows. Given an input instance (G, k) of p-BICLUSTER
EDITING, we try all combinations of ps 4+ p; = p, with the intended meaning that p, is the
number of small bicliques and py is the number of large bicliques in the target graph.

Handling small bicliques. We enumerate a set of p, sets A, C 2V with the property that
they are pairwise disjoint, and each of size at most 2v/k. Furthermore, G[|J A, contains at
most k edges. Delete all edges in A and reduce the budget accordingly. These are going to
be all the left sides in small bicliques. This enumeration takes time

iy () < i (P <00 vieson,
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Handling large bicliques. The large bicliques have the following nice property. Since the
vertex set of each such biclique is large, every biclique contains a cheap vertex. We guess
a set By of size py. For the biclique Cj, the vertex v; of By will be a cheap vertex in B;.
Now, we enumerate all combinations of p; sets N' = (Ny, Na,...,N,,), each of size at
most 2v/%k which will be the edited neighborhood of each cheap vertex, and we conclude
that A; = Ng(v;) = Ng(v;) A N;. The enumeration of this asymptotically takes time

() i ()= (45 ) e

Putting things together. With the above two steps, in time 20(®PVF1og(Pk) we obtained
all the left sides A, partitioned into A, and A,. Using this information, we can in polyno-
mial time compute whether the ANNOTATED BICLUSTER EDITING instance (G, k,.A) is a
yes-instance. If so, we conclude yes, otherwise, we backtrack.

» Theorem 9. p-BICLUSTER EDITING is solvable in time 20(pVklog(pk)) O(n+m).

Proof. We now show that the algorithm described above correctly decides p-BICLUSTER
EDITING given an instance (G, k). Suppose that the algorithm above concludes that (G, k)
is a yes instance. The only time it outputs yes, is when ANNOTATED BICLUSTER EDITING
for a given set A and a given budget k&’ outputs yes. Since this budget is the leftover budget
from making A an independent set, it is clear that any ANNOTATED BICLUSTER EDITING
solution of size at most k’ gives a yes instance for p-BICLUSTER EDITING.

Suppose now for the other direction that (G, k) is a yes instance for p-BICLUSTER EDITING
and let I be a solution. Consider the left sides A,..., A, of G A F with the restriction
that the smaller of the two sides in C; is named A;. First we observe that during our
subexponential time enumeration of sets, all the A;s that are of size at most 2vk will
be enumerated in one of the branches where p; is set to the number of small bicliques.
Furthermore, if A; is large, then both are large, and then, for each of the large bicliques,
there is a branch where we selected exactly one cheap vertex for each of the largest sides.
Given these cheap vertices, there is a branch where we guess exactly the edits affecting
each of the cheap vertices, hence we can conclude that in some branch, we know the entire
partition A. From Lemma 7, we can conclude that the algorithm described above concludes
correctly that we are dealing with a yes-instance. |

5.2 The t-partite case

We can in fact obtain similar (we treat ¢ here as a constant so the results are up to some
constant factors in the exponents) results for the more general case of t-PARTITE p-CLUSTER
EDITING. Again we need the polynomial kernel described in Theorem 6. The only difference
now to the bicluster case is that we define a cluster to be small if every side is small. In this
case, we can enumerate () " sets, which will form the small clusters.

In the other case a cluster C' = (Ay, A, ..., Ay) is divided into Ay, Ag, ..., A;, small sides
and Ay 41, A +o,..., Ay large sides. For this case, we guess all the small sides and for each
of the large sides we guess a cheap vertex. Guessing the neighborhoods Ny, 41, N¢, 42,..., N:
for the cheap vertices v 41, vt +2,-..,v gives us complete information on C'; To compute
what A; is, if j > t,, we simply take the intersection ﬂt8<igt7i# N; and remove Uz‘gts A;.
We arrive at the following lemma whose proof is directly analogous to that of Theorem 9.

» Theorem 10. The problem t-PARTITE p-CLUSTER EDITING is solvable in subexponential
time 20(VE108(eR) 4 O(n + m).
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Figure 1 Reduction from 3SAT to starforest editing on subcubic graphs.

6 Lower bounds

We show that (a) STARFOREST EDITING is NP-hard and that we cannot expect a subexpo-
nential algorithm unless the ETH fails; and (b) that p-STARFOREST EDITING is W[1]-hard
parameterized only by p.

6.1 Starforest editing

In the following we describe a linear reduction from 3SAT to STARFOREST EDITING. Fur-
thermore, the instance we reduce to has maximal degree three, thus not only showing that
STARFOREST EDITING is NP-hard on graphs of bounded degree, but also not solvable in
subexponential time on subcubic graphs.

» Theorem 11. The problem STARFOREST EDITING is NP-complete and, assuming ETH,
does not admit a suberponential parameterized algorithm when parameterized by the solution
size k, i.e., it cannot be solved in time 2°(F) - poly(n), nor in exact exponential time go(n+m)
even when restricted to subcubic graphs.

To prove the theorem above we will reduce from 3SAT. But to obtain the result, it
is crucial that in our reduction, both the parameter k, and the size of the instance G
are bounded in linearly in n and m. Such results have been shown earlier, in particular
by Komusiewicz and Uhlmann for CLUSTER EDITING [21] and Drange and Pilipczuk for
TRIVIALLY PERFECT EDITING [13]. Thus we resort to similar reductions as used there,
however, the reductions here are tweaked to work for the problem at hand. We also achieve
lower bounds for subcubic graphs. See Figures la and 1b for figures of the gadgets.

Variable gadget. Let ¢ be an input instance of 3SAT, and denote its variable set and
clause set as V() and C(¢p), respectively. We construct for x € V(p) a graph G, = Cgp,
where p, is the number of clauses in ¢ which = appears in. The vertices of G, are labeled,
consecutively, T¥, L7 A? BY C7,D? for i € [0,p, — 1].
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There are exactly three ways of deleting GG, into a starforest using at most k, = 6p,
edges. Clearly a collection of P3s is a starforest and is our target graph. We will define
the T-deletion for G, as the deletion set S% = {CFD?¥, LTA¥ | i < p, —1} and the L-deletion
for G, as the deletion set ST = {A7BY, DfT7,, | i < p, — 1}, taking the i + 1 in the index
of T#,; modulo p,. In other words, in the gadget G, we are keeping the edges

Dy [ T#1% A?BFCY, when z is set to true, and

T?LYA7, BYCFDY, when z is set to false.

Observe that when z is set to true, we will have paths on three vertices, where T is the
middle vertex, and if x is set to false, we will have paths on three vertices with L¥ being the
middle vertex. Later, we will see that if = satisfies a clause ¢, the ith clause x appears in,
then either T7? or L¥ will be the middle vertex of a claw, depending on whether x appears
positively or negatively in c.

» Observation 12. In an optimal edge edit of a cycle of length divisible by 6, no edge is
added and exactly every third consecutive edge is deleted.

Clause gadget. A clause gadget simply consists of one vertex, i.e., for a clause ¢ € C(y),
we construct the vertex v.. This vertex will be connected to G, Gy, and G, for z,y, z being
its variables, in appropriate places, depending on whether or not the variable occurs negated
in ¢. In fact, it will be connected to T7 if ¢ is the ith clause x appears in, and z appears
positively in ¢, and it is connected to L¥ if ¢ is the ith clause x appears in, and = appears
negatively in c.

Let k, = 2|C| 4+ 23", ps = 2|C| + 3 - 2|C| = 8|C| be the budget for a formula ¢. We now
observe that the budget is tight.

» Lemma 13. The graph G, has no starforest editing set of size less than k,, and if the
editing set has size ko it contains only deletions.

We now continue to the main lemma, from which Theorem 11 follows.

» Lemma 14. A 3SAT instance ¢ is satisfiable if and only if (G, k,) is a yes instance for
STARFOREST EDITING.

Observing that the maximum degree of G, is three — the clause vertices have exactly
degree three, and the variable gadgets are cycles with some vertices connected to at most
one clause vertex — this concludes the proof of Theorem 11. From the discussions above, the
following result is an immediate consequence:

» Corollary 15. The problem STARFOREST DELETION 4s NP-complete and not solvable in
subexponential time under ETH, even on subcubic graphs.

Before going into parameterized lower bounds of STARFOREST EDITING, we show that
the exact same reduction above simultaneously proves similar results for the bicluster case.
We note that the NP-hardness was shown by Amit [2], but their reduction suffers a quadratic
blowup and is therefore not suitable for showing subexponential lower bounds.

» Corollary 16. The problems BICLUSTER EDITING and BICLUSTER DELETION are NP-
complete and not solvable in subexponential time under ETH, even on subcubic graphs.
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6.2 W][1]-hardness parameterized by p

In this section we show that the parameterization by k is necessary, even for the case
of p-STARFOREST EDITING. That is, we show that when we parameterize by p alone,
the problem becomes W[1]-hard, and we can thus not expect any algorithms of the form
f(p)-poly(n) for any function f solving p-STARFOREST EDITING. We reduce from the problem
MULTICOLORED REGULAR INDEPENDENT SET. An instance of this problem consists of a
regular graph colored into p color classes, each color class inducing a complete graph, and we
are asked to find an independent set of size p.

» Proposition 17 ([8]). The problem MULTICOLORED REGULAR INDEPENDENT SET is
WI(1]-complete.

Since each color class is complete, any independent set will be of size at most p and any
independent set of size p is maximum. The reduction is direct; In fact we have that given a
budget k£ = (n — p)(d — 1), where d is the regularity degree, the following direct translation
between the two problems holds:

» Lemma 18. Let G be a d-regular graph on n vertices, p < mn and k = (n—p)(d—1). Then
(G, p) is a yes instance for MULTICOLORED REGULAR INDEPENDENT SET if and only if
(G, k) is a yes instance for p-STARFOREST EDITING.

Combining Proposition 17 with Lemma 18 yields the following result:

» Theorem 19. p-STARFOREST EDITING is W[1]-hard when parameterized by p alone.

7 Conclusion

We presented subexponential time algorithms for editing problems towards bicluster graphs,
and more generally, t-partite cluster graphs when the number of connected components in
the target graph is bounded. We supplemented these findings with lower bounds, showing
that this dual parameterization is indeed necessary.

As an interesting open problem, we pose the question of whether ¢-PARTITE p-CLUSTER
EDITING can be solved in time 20(V/?) poly(n), i.e., in subexponential time with respect to
both parameters. It is known that BICLUSTER EDITING admits a linear kernel, but when
introducing the secondary parameter, we only obtain a kernel whose size is bounded by
the product of both parameters; Recall that we got a tp(2k + 1) + 2k kernel, which in the
bicluster case is p(4k + 2) + 2k. Does BICLUSTER EDITING admit a truly linear kernel, i.e., a
kernel with O(p + k) vertices?

Finally, in many practical applications of biclustering problems, the input can often be
considered bipartite. The proof of the NP-completeness and subexponential algorithm lower
bounds is highly non-bipartite, hence a natural question is whether it is possible to get
similar lower bounds for the problem BIPARTITE BICLUSTER EDITING, the problem where
you are given a bipartite graph and asked to respect the bipartition.
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