A 2-Competitive Algorithm For Online Convex
Optimization With Switching Costs

Nikhil Bansal*!, Anupam Gupta?, Ravishankar Krishnaswamy'3,
Kirk Pruhsi4, Kevin Schewior’®, and CIiff Stein¥¢

1 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands

Computer Science Department, Carnegie Mellon University, USA
Microsoft Research India, India

Computer Science Department, University of Pittsburgh, USA
Department of Mathematics, TU Berlin, Germany

Departmemt of IEOR, Columbia University, USA

S U W N

—— Abstract

We consider a natural online optimization problem set on the real line. The state of the online
algorithm at each integer time ¢ is a location x; on the real line. At each integer time ¢, a convex
function fi(z) arrives online. In response, the online algorithm picks a new location z;. The
cost paid by the online algorithm for this response is the distance moved, namely |z; — z;_1],
plus the value of the function at the final destination, namely f;(x;). The objective is then to
minimize the aggregate cost over all time, namely), (|z; — 1| + fi(z)). The motivating
application is rightsizing power-proportional data centers. We give a 2-competitive algorithm for
this problem. We also give a 3-competitive memoryless algorithm, and show that this is the best
competitive ratio achievable by a deterministic memoryless algorithm. Finally we show that this
online problem is strictly harder than the standard ski rental problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Sequencing
and Scheduling

Keywords and phrases Stochastic, Scheduling

Digital Object Identifier 10.4230/LIPIcs. APPROX-RANDOM.2015.96

1 Introduction

We consider a natural online optimization problem on the real line. The state of the
online algorithm after each integer time ¢ € Z>(is a location on the line. At each integer
time t, a convex function f;(xz) arrives online. In response, the online algorithm from
its previous location z;—1 € R to a new location x; € R. The cost paid by the online
algorithm for this response is the distance moved, namely |z; — z;—1], plus the value of the
function at the final destination, namely f;(x;). The objective is to minimize the aggregate

* Supported by NWO grant 639.022.211 and an ERC consolidator grant 617951.

T Part of this work was done when the author was at Columbia University and supported by NSF grant
CCF-1349602.

¥ Supported in part by NSF grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty
Award.

§ Supported by the Deutsche Forschungsgemeinschaft within the research training group “Methods for
Discrete Structures” (GRK 1408).

9 Supported in part by NSF grants CCF-1349602 and CCF-1421161.

© Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior,
5v and CIiff Stein;
licensed under Creative Commons License CC-BY
18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Eds.: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 96-109

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

cost >, (|z¢ — xe—1| + fi(x¢)) over all time. We refer to this problem as Online Convex
Optimization with Switching Costs (OCO). This problem is also referred to as Smoothed
Online Convex Optimization in the literature.

1.1 Motivation and Related Results

The OCO problem has been extensively studied recently, partly due to its application within
the context of rightsizing power-proportional data centers, see for example [1, 15, 12, 14,
10, 11, 13]. In these applications, the data center consists of a homogeneous collection of
servers/processors that are speed scalable and that may be powered down. The load on the
data center varies with time, and at each time the data center operator has to determine
the number of servers that will be operational. The standard assumption is that there is
some fixed cost for powering a server on, or powering the server off. Most naturally this
cost incorporates the energy used for powering up or down, but this cost may incorporate
ancillary terms such as the cost of the additional wear and tear on the servers. As for the
processor speeds, it natural to assume that the speed of a processor is scaled linearly with
its load (as would be required to maintain a constant quality of service), and that there
is a convex function P(s) that specifies the power consumed as a function of speed. The
most commonly used model for P(s) is s® + 8 for constants o > 1 and 3. Here the first
term s% is the dynamic power and the second term § is the static or leakage power. At each

time, the state of the online algorithm represents the number of servers that are powered on.

In a data center, there are typically sufficiently many servers so that this discrete variable
can be reasonably be modeled a continuous one. Then, in response to a load L; at time ¢,
the data center operator decides on a number of servers x; to use to handle this load. The
algorithm pays a cost of |z;—; — x| for either powering-up or powering-down servers, and
a cost of x;((Ly/x)* 4+ B) for handling the load, which is the most energy efficient way to
service the load L; using x; processors. Note that the function x;((Li/x¢)® + () is convex
in x;, and hence this application can be directly cast in our general online model where
fola) = 2((Le/x)* + B).

Lin et al. [12] observed that the offline problem can be modeled as a convex program,
and thus is solvable in polynomial time, and that if the line/states are discretized, then
the offline problem can be solved by a straight-forward dynamic program. They also give a
3-competitive deterministic algorithm. The algorithm computes (say via solving a convex
program) the optimal solution to date if moving to the left on the line was free, and the
optimal solution to date if moving to the right on the line was free, and then moves the least
distance possible so that it ends up between the final states of these two solutions. Note
that this algorithm solves a (progressively larger) convex program at each time. Andrew et
al. [1] show that there is an algorithm with sublinear regret, but that O(1)-competitiveness
and sublinear regret cannot be simultaneously achieved. They also claim that a particular

randomized online algorithm, RBG, is 2-competitive, but this claim has been withdrawn [16].

The OCO problem is also related to several classic online optimization problems. It is a
special case of the metrical task system problem in which the metric is restricted to be a line
and the costs are restricted to be convex functions on the real line. The optimal deterministic
competitive ratio for a general metrical task system is 2n — 1, where n is the number of points
in the metric [5], and the optimal randomized competitive ratio is Q(logn/loglogn) [4, 3],
and O(log® nloglogn) [8]. The OCO problem is closely related to the allocation problem
defined in [2], that arises when developing a randomized algorithm for the classic k-server
problem using tree embeddings of the underlying metric space [7, 2]. In fact, the algorithm
RBG in [1] is derived from a similar algorithm in [7] for this k-server “subproblem”. The

97

APPROX/RANDOM’15

98

A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

classic ski rental problem, where randomized algorithms are allowed, is a special case of
the OCO problem. The optimal competitive ratio for randomized algorithms for the ski
rental problem is e/(e — 1) [9] and this translates to a matching lower bound for any online
algorithm for the OCO problem. The ski rental problem where only deterministic algorithms
are allowed is a special case of the deterministic version of the OCO problem, and the optimal
deterministic competitive ratio for the ski rental problem is exactly 2.

1.2 Our Results

2-Competitive Algorithm. Our main result, presented in Section 3, is a 2-competitive
algorithm (thus we improve the upper bound on the optimal competitive ratio from 3 to 2).
It will be convenient to first present a “fractional algorithm” A that maintains a probability
distribution p over locations. In Section 2 we show how to convert a fractional algorithm
into a randomized algorithm, and how to convert any c-competitive randomized algorithm
into a c-competitive deterministic algorithm. Although the observation that randomization
is not helpful is straight-forward, as best as we can tell, it has not previously appeared in
the literature on this problem. The deterministic algorithm that results from these two
conversations maintains the invariant that the current location is the expected location given
the probability distribution over the states that A maintains.

We now describe the fractional algorithm 4. In response to the arrival of a new function
fi(x), the algorithm A computes a point x, to the right of the minimizer x,, of f;(x) such
that the derivative of f;(z,) is equal to twice the total probability mass to the right of x,.
Similarly the algorithm A computes a point z; to the left of the minimizer x,, such that the
(negative) derivative of fi(z;) is equal to twice the total probability mass to the left of x;.
Then, the probability mass at each state x € [z}, z,] is increased by half the second derivative
of fi(z) at that point, while the probability mass for each state x & [x;,] is set to 0. A
simple calculation shows that this operation, along with our choices of x; and x,., preserves
the property that p is a valid probability distribution. One can convert such a probability
distribution into a deterministic algorithm by initially picking a random number v € [0, 1],
and at any time ¢, moving to the state x; such that the probability mass to the left of x; in
the current distribution is exactly ~.

The analysis of A uses an amortized local competitiveness argument, using the potential
function

o0

o0 xr
o) =2 [ovbwdy- [[)y deay
Yy=—00 r=—00 Jy=—00
where x* is the position of the adversary. The first term is depends on the expected distance
between A’s state and the adversary’s state, and the second term is proportional to the
expected distance of two randomly drawn states from A’s probability distribution on states.
This potential function can be viewed as a fractional generalization of the potential function
used to show that that the Double Cover algorithm is k-competitive for the k-server problem
on a line metric [6].

3-Competitive Memoryless Algorithm. Our algorithm .4 requires time and memory roughly
proportional to the number of states and/or the number of time steps to date. Similarly, the
3-competitive algorithm from [12], requires solving a convex program (with the entire history)
at each time step. However, as pointed out in [12], this may well be undesirable in settings
where the data center operator wants to adapt quickly to changes in load. Previously it was
not known if O(1)-competitiveness can be achieved by a “memoryless” algorithm. Intuitively

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

in a memoryless algorithm the next state x; only depends upon the previous state z;_; and
the current function f;(z). In Section 4 we show that O(1)-competitiveness is achievable by
a memoryless algorithm — we give a simple memoryless algorithm M, and show that it is
3-competitive. Given function f;(x) at time ¢, this algorithm M moves in the direction of
the minimizer of f;(z) until either it reaches the minimizer, or it reaches a state where its
movement cost equals twice the function cost of this state. The analysis is via an amortized
local-competitiveness argument using the distance between the online algorithm’s state and
the adversary’s state (times three) as the potential function.

Lower Bounds. In Section 5 we show a matching lower bound of 3 on the competitiveness
of any deterministic memoryless online algorithm. We also give a general lower bound of
1.86 on the competitiveness of any algorithm, which shows that in some sense this problem
is strictly harder than ski rental, which has an e/(e — 1)-competitive randomized algorithm.

2 Reduction From Randomized to Deterministic

In this section, we explain how to convert a probability distribution over locations into
randomized algorithm, and present a simple derandomization of any randomized algorithm.

Converting a Fractional Algorithm into a Randomized Algorithm: The randomized al-
gorithm initially picks a number v € [0,1] uniformly at random. Then the randomized
algorithm maintains the invariant that at each time ¢ the location x; has the property that
the probability mass to the left of z; in the distribution for the fractional algorithm is
exactly ~.

» Theorem 2.1. For the OCO problem, if there is a c-competitive randomized algorithm R
then there is a c-competitive deterministic algorithm D.

Proof. Let R denote the randomized algorithm, and let z; denote the random variable for its
position at time ¢. Then, our deterministic algorithm D sets its location to be the expected
location of R, i.e., its location at time ¢ is p; := E [x¢]. It is then a simple application of
Jensen’s inequality to observe that D’s cost is at most R’s expected cost for each time t.
Indeed, first observe that D’s cost at time ¢ is |us — pe—1| + fe(pe), and R’s expected cost is
E[|lz; — 2¢—1|]+E [fi(x¢)]. Now, notice that both the absolute value function and the function
ft(+) are convex functions, and therefore R’s cost is at least |E [z; — x1—1] | + fi(E [2¢]), which
is precisely the cost incurred by the algorithm D. Summing over all ¢ completes the proof. <«

3 The Algorithm A and its Analysis

In this section, we describe the online algorithm 4 and prove that it is 2-competitive. For
simplicity, we will assume that the functions f;(x) are all continuous and smooth. That is,
we assume that the first derivative f/(x) and second derivative f/'(z) of f;(z) are well defined
functions. We also assume that f;(z) has a unique bounded minimizer z,,, and f{(z,,) = 0.
The assumptions are merely to simplify our presentation; we discharge these assumptions in
Section 3.1.

The algorithm A was informally described in the introduction, and is more formally
described in Figure 1. At any time ¢, the state of algorithm A is described by a probability
distribution p¢(z) over the possible states x. So f; pt(x)dz is the probability that z; € [a, b].

99

APPROX/RANDOM’15

100

A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

When a new function f;(-) arrives:
(i) Let z,, = argminf;(x) denote the minimizer of f;, x, > x,, denote the point to the
right of x,, where %fi: f'(y)dy = f;o pi—1(y) dy.
(ii) Let x; < @, denote the point to the left of z,, where i f;l’" ') dy = " pi-1(y) dy.
(iii) We update the probability density function of our online algorithm as p;(z) =
pi—1(z) + 3 f"(z) for all x € [z, 2,] and p,(z) = 0 for all other z.

Figure 1 The 2-competitive Online Algorithm A.

x T Ty
Lz ' (y)dy = 2 prea (y)dy %./f;; ["(y)dy = [3° pe-1(y)dy

Figure 2 Illustration of x,,z; and .

Before beginning our analysis of A, let us introduce some notation. Let Hy = E [fi(z¢)] =
fyoi_oo fi(y)pt(y) dy denote the expected hit cost for algorithm A at time t. Let M; =
E [|xs — x¢—1|], which is equal to the earthmover distance between the two probability
distributions!, denote the ezpected move cost for algorithm A at time ¢. Similarly, let x} be
the adversary’s state after time ¢. Let H; = f;(z}) be the hit cost for the adversary at time
t, and M} = |z} — xf_4| be the movement cost for the adversary at time ¢. The analysis will
use the potential function:

where -
Bilpa) =2 [o7 = ulply)dy
Yy

=—00
and

e A A

Note that & is initially zero. To see that ® is nonnegative, we show that ®;(p,z}) > —P2(p)
as follows:

= [[s dedy

1 Given two distributions, where each distribution is viewed as a unit amount of "dirt" piled on the line,
the earthmover distance (aka Wasserstein metric) is the minimum “cost” of turning one pile into the
other, which is the amount of dirt that needs to be moved times the distance it has to be moved.

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

- /_ / Yl —yldedy
=3 /—_m/ . y) (|2 — 2| + |y — f]) dedy
2(/30_00 <>|xfxt|/) ddy
+/OO |y—$t|/ dmdy)
yffoo —0

1 o N
—3 ([slosilass [T vl silay)
T=—00 Yy=—o0

=/ p(2)|z — of| da

1 *
= Q(I)l(paxt> S (I)l(pwrt)'

Thus, to prove that A is 2-competitive it is sufficient to show that at all times ¢:

Hy + My + ((pe, 27) — ®(pr—1,77_1)) < 2(H] + M). (1)

We first consider the effect on inequality (1) as the adversary moves from z;_; to .

The only term which increases in the LHS of inequality (1) is the first term in ®, and this
increase is at most 2|xz;_; — xf| = 2M;*, so inequality (1) holds. For the rest of the analysis
we consider the effect on inequality (1) when the algorithm .4 moves from p;_1 to p;.

To make this easier we make several simplifying assumptions, and simplify our notation

slightly. Without loss of generality, we assume that fi(x,,) = 0 (i.e., the minimum value is 0).

Indeed, for general f;, we can assume g;(z) = fi(z) — ft(z.,) and prove the entire analysis for
g+, and finally add the valid inequality fi(x.,) < 2f¢(z,) to inequality (1) for g; to get the
corresponding inequality for f;. (Here we use that the functions f; are non-negative.) Also
without loss of generality we will translate the points so that z,, = 0. To further simplify
exposition, let us decompose f; into two separate functions, f; (z) and f;~(x), where the
former function is 0 for all z < x,,, and f;(z) otherwise, and likewise, the latter function is
0 for all z > x,,, and f;(x) otherwise. It is easy to see that fi;(x) = f~(x) + f7 () for all
x. Hence, we can imagine that we first feed f;(-) to the online algorithm, and then feed

J= () to the online algorithm, and separately show inequality (1) for each of these functions.

Henceforth, we shall assume that we are dealing with the function f;”(z). Finally we will
assume without loss of generality that x,, is the leftmost point with non-zero probability
mass.

For notational simplicity, we avoid overuse of subscripts and superscripts by letting d
denote z,, z denote zj, p denote the original distribution p;_1, and ¢ denote the resultant
distribution p;(-). So by the definition of the algorithm A, we have in our new notation,
fj:o % f(z)dx = f;i 4P(7) dx. Here are some simple facts used repeatedly in our analysis.

» Fact 3.1. For any smooth convex function f, and any values a,b and c,

b
[(e- @ e = =0 ®) - (e~ a)f (@) + 56) - f(@)
Proof. This is an application of integration by parts. <

» Fact 3.2. [° p(x)dx = f'(d)/2. And hence, fg;d:o p(z)dr =1— f'(d)/2.

101

APPROX/RANDOM’15

102

A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

Proof. By the definition of A, it is the case that fo f"(z)dz = [;° p(z)dz. Then note
that 1 fo f"(@)dz = 1(f'(d) — f'(0)) = 1 f'(d), where the second equahty follows because 0
is the minimizer of f. <

We now proceed bounding the various terms in the inequality (1).
» Lemma 3.3. The hit cost Hy is exactly szo f(z)p(z)de + 1 f;l:o flz)f"(x)dz

Proof. This follows from the definition of the hit cost, and the following facts: (i) f(z) =0 if
z < 0, and (ii) the distribution ¢() is simply p(z) + % f”(z) for z € [0,d] and 0 if 2 > d. <

» Lemma 3.4. M, = [af(z)ds+ @ _ df’z(d)_

Proof. We can view the updating of the probability distribution as a two step procedure.
First, all the probability mass to the right of d moves to d, and then exactly a probability
mass of 3 f”(x) moves from d to each point = € [0,d]. Thus

dl . [e%)
M, /051‘ <x><d—m>dw+/d p(a)(— d) da

= @ + /doo xp(z) dx — Lf;(d)

Here we used Fact 3.1 to simplify the first term, and Fact 3.2 to simplify the second term. <«
» Lemma 3.5. ®,(q,2) — ®1(p, 2) < 2f(2) — 2M;.

Proof. First consider the case that z < d.
B1(0.2) = 01(p.2) =2 [o~ 2lala) - plo) da
z d 00
:/0 (z—a)f (:E)dach/Z (x—2)f (x)dxf2/d (x — 2)p(z) dz
=2f(z) — f(d) — (z = d) f'(d) — Q/d xp(x) dx + 22/{1 p(x) dx
= 2(:) = d) ~ (= '@ -2 [ap(o)do + 210

—2(:) = fd) + (@) 2 [aple) o

The first equality is by the definition of ®;. The second equality is by the definition of the
algorithm A. The third equality is by application of Fact 3.1 and separating the last integral.
The fourth equality is by Fact 3.2. The final equality is uses Lemma 3.4.

Now consider that case that z > d.

By(g,2) — @1 (p.2) = 2 / e - 2l(¢(z) — pla)) dz
Z(z—x x—Z/OOx—z dz

/
(Zd)f/(d)+f(d)2/dz(zx dxf2/ooxfz dx
—(z—d - /doo(x—z 4/d 2 — o)pla) da

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

<G @+ 1@ -2 [(o ple)da

— (= d)f(d) + f(d) -2 /doo p(a) dz + 2 /doo 2p(x) da
— —df'(d) + f(d) — 2 /d " aple) do+ 22 £(d)

<24(:) = @) + 4@ -2 [op(o)da

= 2f(z) - 2M,

The first equality is by the definition of ®;. The second equality is by the definition of the
algorithm 4. The third equality is an application of integration by parts. The fourth equality

follows from replacing the term 2 [(x — z)p(z) dz by 2 [;°(z — 2)p(x) dz—2 [; (v —2)p(z) dz.

The first inequality from the fact that fdz(z — xz)p(z) dx > 0 since z > d. The sixth equality
uses Fact 3.2. The second inequality holds because, as f is convex, f(z) > f(d)+ (z—d)f'(d),

and hence zf'(d) < f(z) — f(d) + df’(d). The final equality is uses Lemma 3.4.

We now turn to analyzing ®3(q) — P2(p). We can express this as:

_/gpdo/jo(ﬂc—y) (P(x)Jr ;f”@)) (p(y) + ;fﬁ(y)> dy dx
[Fe-memaae
[emwr@raaie g [[@i

Ts

_;/:O/yio(x_y)f” dydx+/l d/yox— Yoly) dy da:

Ts Ty

We now bound the terms T, Ts, T3 and Ty.
» Lemma 3.6. 7} = fo x)f"(z
Proof. This follows by applying Fact 3.1 to the inner integral of T7.
» Lemma 3.7. T, = 3 fo x)dz.

Proof. This follows by applying Fact 3.1 to the inner integral of 5.

» Lemma 3.8. 75 = f(d)f)d:v-l—(df (d) @) (1—@)+%f;=0f(37)17

Proof.

Ty =

<

<

(z) dx.

103

APPROX/RANDOM’15

104 A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

1

d
= =5 | p0) = df @+ @) -)] dy

/ d / d d
_ fg“l;ﬁm@wM%Cﬁf”jg”)L;OMI%;L;dﬂwﬂwdy

- _f/éd) /;0 ap(z) dw + (df;(d) —~ f(2d)> (1 —~ f/(d)) + ;/xiof(w)p(w) dx

The second equality follows as the order of integration is just reversed. The fourth equality
is an application of Fact 3.1. The last equality uses Fact 3.2. |

» Lemma 3.9. Ty < [° ap(x) dw — @ fod xp(x) dx — %””2.

Proof.
T, = /x : /y io(w —y)p(2)p(y) dy dx
= /z ood /y (z — y)p(z)p(y) dz dy + / N /x N (z — y)p(z)p(y) dz dy 3)

=0 y=d Jr=y
The first expression in (3) can be rewritten as

d

0o d)
/ / x —y)p(x)p(y)dmdy—/ zp() dw/ p(y) dy—/ p(z) daf/ yp(y) dy
r=d r=d y=0 r=d y=0
"(d oo "(d d
(1f(>>/ fvp(x)dél?*f“/ yp(y) dy
2 r=d 2 y=0
The second equality follows by Fact 3.2. Similarly, for the second expression in (3), we get
[amenmazay< ([stwar) [~ o= dpia) e
=y y=d r=d
= (/ p(y) dy) / zp(z)de —d / / p(y)p(z) dy d
y=d r=d z=d Jy=d

[=

Here, the inequality uses (z — y) < (z — d), since y > d, and the last equality uses Fact 3.2
again. Summing the expressions (and replacing the variable y by x) completes the proof. <«

We now use Lemmas 3.3 to 3.9 to show that inequality (1) holds as follows:

Hy + My + @(pt) — ®(pe—1)

d d o '
g/ ﬂmmmMi/ ﬂ@M@M+w@/ﬁﬁ@@’“?+ﬁf)

[o
ﬁﬁ)Q_ffﬁ—;L:fw<mw

o d_f/
+ (d)/ioxp(m)dx (2()
_f’éd)/odxp(z)dx_df’(d)Q

2
4

+ /d " apla) da

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

When a new function f;(-) arrives:
(i) Let z,, = argminf;(z) denote the minimizer of f;.
(ii) Move in the direction of x,,, until we reach either (a) a point x s.t. |z —z:—1| = fi(x)/2

or (b) the minimizer x,,. Whichever happens first, set x; to be that point.

Figure 3 The 3-competitive Memoryless Algorithm M.

d 1
—2/() 4§ [@)@ do - LD
1

d '
=2/(z) + 5 (f(d)f’(d> -/ NI

=0

(f’(y))Qdy> -
< 2f(2)

The first equality follows by canceling identical terms. The second equality is an application
of integration by parts. This proves inequality (1) and hence the 2-competitiveness of our
algorithm.

3.1 Discharging the Assumptions

We now explain how to modify the algorithm and analysis if some of our simplifying
assumptions do not hold. If the functions are piecewise linear, then in the algorithm we
can suitably discretize the integral into a summation, and replace the second derivative at a
point by the difference in slopes between consecutive points and increase the probability at
each point by this difference amount. The analysis then goes through mostly unchanged. If
the minimizer is at infinity, then the analysis goes through pretty much unchanged except
that we can not translate so that the minimizer is at 0, and we have to explicitly keep z,,
instead of 0 in the limits of the integration.

4 Memoryless Algorithm

In this section we present a simple 3-competitive memoryless algorithm M. The action of
M at time ¢ depends only upon the past state z;—; and the current function f;(xz). The
algorithm M is described informally in the introduction, and more formally in Figure 3. We
adopt the same notation from the previous section using x; and z; to denote the locations of
the algorithm and of the adversary, using H; and M} to denote the move and hit cost for the
adversary, and we remove the expectations from the algorithm’s costs, so now Hy = fi(x)
and My = |zy — x4—1],

» Theorem 4.1. The online algorithm M is 3-competitive for the ACO problem.

Proof. We use the potential function ®(z,z*) = 3|x — 2*|. Clearly @ is initially zero, and

always nonnegative. Thus it will be sufficient to show that for each time step:

|

Hy + My + (D2, 27) — Q(ze—1,27_1)) < 3(H, + My). (4)

Two simple observations are that if x;_1 = x,, then the algorithm does not move and,
secondly that for all ¢, M; < H;/2. We now argue that equation (4) always holds. Indeed, we
can upperbound the change in potential by first making the adversary move and then moving
the algorithm’s point. Using the triangle inequality and the definition M} = |z} — x|,

Der1,af) — B(we_yaf_,) < 3M; . (5)

105

APPROX/RANDOM’15

106

A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

Therefore, we will assume that the optimal solution has already moved to z}, and show that
Hy+ M+ ®(xy, z;) — O(xp—1,27) < 3H; . (6)

Adding equation (5) and equation (6) gives us equation (4), completing the proof. To
establish eq. (6) we now consider two cases, based on the relative values of H; and Hy.
Case 1: Suppose that H; < H;. We upper bound the change in potential from the algorithm
moving by 3M; (again using the triangle inequality) and using the fact that M; < H;/2, and
the inequality defining the case to obtain:

Ht + Mt + (@(.’I/'h.’l?:) — (I)({L'tfhl':)) S Ht +Ht/2 +3Mt S 3Ht S 3,[?[;5k .

Case 2: Suppose that H; > H;. In this case, all of the algorithm’s movement must have been
towards xj, since it was moving in the direction of decreasing value but did not reach zj.
Thus, the algorithm’s movement must decrease the potential function by 3M;. Furthermore,
since the algorithm is not at x,,, it must be the case that M; = H;/2. We therefore have

Ht+Mt -+ (q)($t,l':) 7@(1’25_171':)) S Ht+Ht/2*3Mt S 0 S 313';5k

This completes the proof. |

5 Lower Bounds

We first show that no memoryless deterministic algorithm can be better than 3-competitive.
We then show that the competitive ratio of every algorithm is at least 1.86.

5.1 Lower Bound for Memoryless Algorithms

We show that no memoryless deterministic algorithm B can be better than 3-competitive.
The first issue is that the standard definition of memorylessness, that the next state only
depends on the current state and the current input, is problematic for the OCO problem.
Because the state is a real number, any algorithm be converted into an algorithm in which all
the memory is encoded in the very low order bits of the current state, and is thus memoryless
under this standard definition. Intuitively we believe that the notion of memoryless for the
setting of OCO should mean that the algorithm’s responses don’t depend on the scale of
the line (e.g. whether distance is measured in meters or kilometers), and the algorithm’s
responses are bilaterally symmetric (so the algorithm’s response would be the mirror of
its current response if the function and the location were mirrored around the function
minimizer). We formalize this in the setting that all functions are “vee-shaped”, that is they
have the form f;(z) = a|z — b| for some constants a > 0 and b. Our lower bound only uses
such functions. In this setting, say that an algorithm is memoryless if the ratio of the distance
that algorithm the moves to the distance from the previous location to the minimizer, namely
(|x¢ — xt—1|/(Jzt—1 — b]) depends only on a, the slope of the vee-shaped function. We can
assume without any real loss of generality that a memoryless algorithm always moves towards
the minimizer, as any algorithm without this property cannot be O(1)-competitive.
Assume that the initial position is the origin of the line. The first function that arrives is
|z — 1| for some small slope €. We consider two cases. In the first case, assume that the
distance § that B moves is less than £/2. Thus B’s hit cost is at least e(1—¢) > e(1—¢/2) =
e—e?/2. In that case we continue bringing in copies of the function €|z —1|. By the definition
of memorylessness, B will maintain the invariant that the ratio of its hit cost to its to its
movement cost is (¢(1 —¢))/d > 2 —e. This continues until B gets very close to 1. Thus B’s

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

move cost is asymptotically 1, and its hit cost is at least 2—¢. Thus B’s cost is asymptotically
3. A cost of 1 is achievable by moving to the state 1 when the first function arrives.

Now consider the case that the distance that B moves in response to the first function
is more than £/2. In this case we bring many copies of the function e|z|, until B has returned
to very near the origin. Thus B’s movement cost is approximately 26. By our assumption of
memorylessness, r; = §(1 — §)*~L. Thus B’s hit cost is asymptotically

e(1—10)+ isé(l —0) 1t =2¢(1 - 9).

Thus B’s total cost is at least 2 + 25(1 —). Using the fact that § > /2 in this case, B’s
cost is at least 3¢ — 2e2. A cost of ¢ is achievable by never leaving state 0.

5.2 General Lower Bound
We now prove a lower bound on the competitive ratio of any online algorithm.
» Theorem 5.1. There is no c-competitive algorithm for the OCO problem when ¢ < 1.86.

Proof. By Lemma 2.1, we can restrict to deterministic algorithms without loss of generality.
Let O be an arbitrary c-competitive deterministic algorithm.

We now define our adversarial strategy. The initial position is 0. Then some number of
functions of the form ¢|1 — x| arrive. We will be interested in the limit as e approaches 0.
Then some number, possibly none, of functions of the form ¢|z| arrive.

For the deterministic algorithm, let b(s) denote the position of O after s/e functions of
the type ¢|1 — x| have arrived. Intuitively, if b(s) is too small for large enough s, then it has
a high hit cost on the first s/e functions whereas the optimal solution would have moved
immediately to the point 1 only incurring the moving cost. Alternately, if the position b(s)
is sufficiently far to the right (i.e., close to 1), then the adversary can introduce a very long
sequence of requests of type |z|, forcing the algorithm to eventually move back to 0 incurring
the movement cost of b(s) again. In this case, the optimal solution would have stayed at 0.

Formally, the total function cost O at time s/e is at least b(s) + [, (1 — b(y)) dy. Now, if
the adversary introduces an infinite sequence of functions of the form e|z|, then the best that
the online algorithm can do is to move immediately to the origin incurring an additional
movement cost of b(s). Meanwhile, the optimal solution would have stayed at 0 throughout
incurring a total cost of s. Hence, if the online algorithm is c-competitive, we must have, for
all s,

W®+KO—MD@Sw)

Alternately, if the functions |1 —z| keep appearing forever, the online algorithm eventually
moves to 1 and its total cost is therefore at least 1+ [~ (1 —b(y)) dy and the optimal solution
would have moved to 1 at time 0 and only incurred the movement cost of 1. Hence, we also
have

1+AmumwMysQ ®)

This establishes the dichotomy using which we complete our lower bound proof. Indeed,
define G(s) = [(1 —b(y)) dy. Then, G'(s) =1 — b(s) and we can write (7) as, for all s we
have

G'(5) > = (2—cs+ G(s)) 9)

N | =

107

APPROX/RANDOM’15

108

A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs

and (8) is simply
G(x)<c-—1.

Now, notice that in order to minimize G(c0), we may assume that (9) is satisfied at equality
for all s (this can only reduce G(s), which in turn reduces G’(s) further), which in turn gives
us a unique solution to G.

Now, writing (9) as equality and differentiating w.r.t s, we get the first-order differential
equation b(s) = 20'(s) — ¢+ 1. It is a simple calculation to verify that its unique solution
satisfying b(0) = 0 is b(s) = (c — 1) - (e*/2 — 1). But now, we can plug this into G(c0) to get
that

2In -2 2In -2
/0 (1fb(s))ds+1:/0 (17(071)(6/%1)) ds+1<ec.

Evaluation of the integral and simplification yields

c— c—1 c—1 c—

2
21n Cl—(c—1)< € _om-° —2)+1=2cln Cl—1gc,

which is false for ¢ < 1.86. <

We conjecture that the optimal competitive ratio for the general problem is strictly less
than 2, and is achieved for the special case where all functions are of the form ¢|z| or |z — 1].
It is implausible that our lower bound for this special case is tight. Intuitively, the optimal
competitive ratio would be 2 if and only if the optimally competitive algorithm doesn’t
accelerate the rate of probability mass transfer, whereas it seems beneficial to accelerate the
rate of probability mass transfer.

Acknowledgements. We thank Adam Wierman for his assistance and for many stimulating

conversations. We thank Neal Barcelo and Michael Nugent for their assistance with the
general lower bound.

—— References

1 Lachlan L. H. Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson,
Alan Roytman, and Adam Wierman. A tale of two metrics: Simultaneous bounds on
competitiveness and regret. In COLT 2013 — The 26th Annual Conference on Learning
Theory, June 12-14, 2018, Princeton University, NJ, USA, pages 741-763, 2013.

2 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Towards the randomized k-server con-
jecture: A primal-dual approach. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 40-55, 2010.

3 Yair Bartal, Béla Bollobéds, and Manor Mendel. Ramsey-type theorems for metric spaces
with applications to online problems. J. Comput. Syst. Sci., 72(5):890-921, 2006.

4 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phe-
nomena. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Comput-
ing, STOC’03, pages 463-472, New York, NY, USA, 2003. ACM.

5 Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745-763, 1992.

6 M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server prob-
lems. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’90, pages 291-300, Philadelphia, PA, USA, 1990. Society for Industrial and Applied
Mathematics.

N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein

10

11

12

13

14

15

16

Aaron Coté, Adam Meyerson, and Laura Poplawski. Randomized k-server on hierarch-
ical binary trees. In Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, STOC’08, pages 227-234, New York, NY, USA, 2008. ACM.

Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM J. Comput., 32(6):1403—-1422, 2003.

Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan S. Owicki. Competitive
randomized algorithms for nonuniform problems. Algorithmica, 11(6):542-571, 1994.
Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online al-
gorithms for geographical load balancing. In 2012 International Green Computing Confer-
ence, IGCC 2012, San Jose, CA, USA, June 4-8, 2012, pages 1-10, 2012.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Online dy-
namic capacity provisioning in data centers. In 2011 49th Annual Allerton Conference on
Communication, Control, and Computing, Allerton Park € Retreat Center, Monticello, IL,
USA, 28-30 September, 2011, pages 1159-1163, 2011.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-
sizing for power-proportional data centers. IEEE/ACM Trans. Netw., 21(5):1378-1391,
2013.

Minghong Lin, Adam Wierman, Alan Roytman, Adam Meyerson, and Lachlan L. H. An-
drew. Online optimization with switching cost. SIGMETRICS Performance FEvaluation
Review, 40(3):98-100, 2012.

Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L. H. Andrew.
Greening geographical load balancing. In SIGMETRICS 2011, Proceedings of the 2011
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, San Jose, CA, USA, 07-11 June 2011 (Co-located with FCRC 2011), pages 233—
244, 2011.

Kai Wang, Minghong Lin, Florin Ciucu, Adam Wierman, and Chuang Lin. Characterizing
the impact of the workload on the value of dynamic resizing in data centers. In Proceedings
of the IEEE INFOCOM 2018, Turin, Italy, April 14-19, 2013, pages 515-519, 2013.
Adam Wierman. Personal communication, 2015.

109

APPROX/RANDOM’15

	Introduction
	Motivation and Related Results
	Our Results

	Reduction From Randomized to Deterministic
	The Algorithm A and its Analysis
	Discharging the Assumptions

	Memoryless Algorithm
	Lower Bounds
	Lower Bound for Memoryless Algorithms
	General Lower Bound

