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Abstract
We consider the reconstruction of a phylogeny from multiple genes under the multispecies coales-
cent. We establish a connection with the sparse signal detection problem, where one seeks to
distinguish between a distribution and a mixture of the distribution and a sparse signal. Using
this connection, we derive an information-theoretic trade-off between the number of genes, m,
needed for an accurate reconstruction and the sequence length, k, of the genes. Specifically, we
show that to detect a branch of length f , one needs m = Θ(1/[f2

√
k]).
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1 Introduction

In the sparse signal detection problem, one is given m i.i.d. samples X1, . . . , Xm and
the goal is to distinguish between a distribution P(m)

0

H
(m)
0 : Xi ∼ P(m)

0 ,

and the same distribution corrupted by a sparse signal P(m)
1

H
(m)
1 : Xi ∼ Q(m) := (1− σm)P(m)

0 + σm P(m)
1 .

Typically one takes σm = m−β , where β ∈ (0, 1). This problem arises in a number of
applications [19, 27, 7, 30]. The Gaussian case in particular is well-studied [26, 20, 5]. For
instance it is established in [26, 20] that, in the case P(m)

0 ∼ N(0, 1) and P(m)
1 ∼ N(λm, 1)
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with λm =
√

2r logm, a test with vanishing error probability exists if and only if r exceeds
an explicitly known detection boundary r∗(β).

In this paper, we establish a connection between sparse signal detection and the re-
construction of phylogenies from multiple genes or loci under a population-genetic model
known as the multispecies coalescent [43]. The latter problem is of great practical interest
in computational evolutionary biology and is currently the subject of intense study. See
e.g. [31, 17, 2, 42] for surveys. There is in particular a growing body of theoretical res-
ults [15, 16, 14, 38, 32, 1, 45, 10, 46, 47], although much remains to be understood. The
problem is also closely related to another very active area of research, the reconstruction of
demographic history in population genetics. See e.g. [41, 4, 29] for some recent theoretical
results.

By taking advantage of the connection to sparse signal detection, we derive a detection
boundary for the multilocus phylogeny estimation problem and use it to characterize the
trade-off between the number of genes needed to accurately reconstruct a phylogeny and
the quality of the signal that can be extracted from each separate gene. Our results apply
to an important class of reconstruction methods known as distance-based methods. Before
stating our results more formally, we begin with some background. See e.g. [48] for a general
introduction to mathematical phylogenetics.

1.1 Species tree estimation
An evolutionary tree, or phylogeny, is a graphical representation of the evolutionary rela-
tionships between a group of species. Each leaf in the tree corresponds to a current species
while internal vertices indicate past speciation events. In the classical phylogeny estimation
problem, one sequences a single common gene (or other locus such as pseudogenes, introns,
etc.) from a representative individual of each species of interest. One then seeks to reconstruct
the phylogeny by comparing the genes across species. The basic principle is simple: because
mutations accumulate over time during evolution, more distantly related species tend to have
more differences between their genes.

Formally, phylogeny estimation boils down to learning the structure of a latent tree
graphical model from i.i.d. samples at the leaves. Let T = (V,E, L, r) be a rooted leaf-labelled
binary tree, with n leaves denoted by L = {1, . . . , n} and a root denoted by r. In the
Jukes-Cantor model [28], one of the simplest Markovian models of molecular evolution, we
associate to each edge e ∈ E a mutation probability

pe = 1− e−νete , (1)

where νe is the mutation rate and te is the time elapsed along the edge e. (The analytical
form of (1) derives from a continuous-time Markov process of mutation along the edge. See
e.g. [48].) The Jukes-Cantor process is defined as follows:

Associate to the root a sequence sr = (sr,1, . . . , sr,k) ∈ {A, C, G, T}k of length k where each
site sr,i is uniform in {A, C, G, T}.
Let U = {r}.
Repeat until U = ∅:

Pick a u ∈ U .
Let u− be the parent of u.
Associate a sequence su ∈ {A, C, G, T}k to u as follows: su is obtained from su− by
mutating each site in su− independently with probability p(u−,u); when a mutation
occurs at a site i, replace su,i with a uniformly chosen state in {A, C, G, T}.
Remove u from U and add the children (if any) of u to U .
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Let T−r be the tree T where the root is suppressed, i.e., where the two edges adjacent to
the root are combined into a single edge. We let L[T, (pe)e, k] be the distribution of the
sequences at the leaves s1, . . . , sn under the Jukes-Cantor process. We define the single-locus
phylogeny estimation problem as follows:

Given sequences at the leaves (s1, . . . , sn) ∼ L[T, (pe)e, k], recover the (leaf-labelled)
unrooted tree T−r.

(One may also be interested in estimating the pes, but we focus on the tree. The root is
in general not identifiable.) This problem has a long history in evolutionary biology. A
large number of estimation techniques have been developed. See e.g. [24]. For a survey
of the learning perspective on this problem, see e.g. [40]. On the theoretical side, much is
known about the sequence length—or, in other words, the number of samples—required
for a perfect reconstruction with high probability, including both information-theoretic
lower bounds [49, 34, 35, 39] and matching algorithmic upper bounds [22, 11, 12, 44].
More general models of molecular evolution have also been considered in this context; see
e.g. [23, 9, 37, 13, 3].

Nowadays, it is common for biologists to have access to multiple genes—or even full
genomes. This abundance of data, which on the surface may seem like a blessing, in fact comes
with significant new challenges. See e.g. [18, 42] for surveys. One important issue is that
different genes may have incompatible evolutionary histories—represented by incongruent
gene trees. In other words, if one were to solve the phylogeny estimation problem separately
for several genes, one may in fact obtain different trees. Such incongruence can be explained
in some cases by estimation error, but it can also result from deeper biological processes such
as horizontal gene transfer, gene duplications and losses, and incomplete lineage sorting [33].
The latter phenomenon, which will be explained in Section 2, is the focus of this paper.

Accounting for this type of complication necessitates a two-level hierarchical model for
the input data. Let S = (V,E, L, r) be a rooted leaf-labelled binary species tree, i.e., a tree
representing the actual succession of past divergences for a group of organisms. To each
gene j shared by all species under consideration, we associate a gene tree Tj = (Vj , Ej , L),
mutation probabilities (pje)e∈Ej

, and sequence length kj . The triple (Tj , (pje)e∈Ej
, kj) is

picked at random according to a given distribution G[S, (νe, te)e∈E ] which depends on the
unknown species tree, mutation parameters νe and inter-speciation times te. It is standard
to assume that the gene trees are conditionally independent given the species tree. In the
context of incomplete lineage sorting, the distribution of the gene trees, G, is given by the
so-called multispecies coalescent, which is a canonical model for combining speciation history
and population genetic effects [43]. The detailed description of the model is deferred to
Section 2, as it is not needed for a high-level overview of our results. For the readers not
familiar with population genetics, it is useful to think of Tj as a noisy version of S (which, in
particular, may result in Tj having a different (leaf-labelled) topology than S).

Our two-level model of sequence data is then as follows. Given a species tree S, parameters
(νe, te)e∈E and a number of genes m:
1. [First level: gene trees] Pick m independent gene trees and parameters

(Tj , (pje)e∈Ej
, kj) ∼ G[S, (νe, te)e∈E ], j = 1, . . . ,m.

2. [Second level: leaf sequences] For each gene j = 1, . . . ,m, generate sequence data at
the leaves L according to the (single-locus) Jukes-Cantor process, as described above,

(sj1, . . . , sjn) ∼ L[Tj , (pje)e, kj ], j = 1, . . . ,m,

independently of the other genes.

APPROX/RANDOM’15
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We define the multi-locus phylogeny estimation problem as follows:

Given sequences at the leaves (sj1, . . . , sjn), j = 1, . . . ,m, generated by the process
above, recover the (leaf-labelled) unrooted species tree S−r.

In the context of incomplete lineage sorting, this problem is the focus of very active research
in statistical phylogenetics [31, 17, 2, 42]. In particular, there is a number of theoretical
results, including [15, 16, 14, 38, 32, 1, 45, 10, 46, 47]. However, many of these results
concern the statistical properties (identifiability, consistency, convergence rate) of species
tree estimators that (unrealistically) assume perfect knowledge of the Tjs. We only have a
very incomplete picture of the properties of estimators that are based on sequence data, i.e.,
that do not require the knowledge of the Tjs. (See below for an overview of prior results.)

Here we consider the data requirement of such estimators based on the sequences. To
simplify, we assume that all genes have the same length, i.e., that kj = k for all j = 1, . . . ,m
for some k. (Because our goal is to derive a lower bound, such simplification is largely
immaterial.) Our results apply to an important class of methods known as distance-based
methods, which we briefly describe now. In the single-locus phylogeny estimation problem, a
natural way to infer T−r is to use the fraction of substitutions between each pair, i.e., letting
‖ · ‖1 denote the `1-distance,

θ(sa, sb) := ‖sa − sb‖1, ∀a, b ∈ [n]. (2)

We refer to reconstruction methods relying solely on the θ(sa, sb)s as distance-based methods.
Assume for instance that νe = ν for all e, i.e., the so-called molecular clock hypothesis.
Then it is easily seen that single-linkage clustering (e.g., [25]) applied to the distance matrix
(θ(sa, sb))a,b∈[n] converges to T−r as k → +∞. (In this special case, the root can be recovered
as well.) In fact, T can be reconstructed perfectly as long as, for each a, b, 1

kθ(sa, sb) is close
enough to its expectation (e.g. [48])

θab := 3
4(1− e−dab) with dab :=

∑
e∈P (a,b)

νete,

where P (a, b) is the edge set on the unique path between a and b in T . Here “close enough”
means O(f) where f := mine νete. This observation can been extended to general νes. See
e.g. [22] for explicit bounds on the sequence length required for perfect reconstruction with
high probability.

Finally, to study distance-based methods in the multi-locus case, we restrict ourselves to
the following multi-locus distance estimation problem:

Given an accuracy ε > 0 and distance matrices θ(sja, s
j
b)a,b∈[n], j = 1, . . . ,m, estimate

dab as defined above within ε for all a, b.

Observe that, once the dabs are estimated within sufficient accuracy, i.e., within O(f), the
species tree can be reconstructed using the techniques referred to in the single-locus case.

1.2 Our results
How is all this related to the sparse signal detection problem? Our main goal here is to
provide a lower bound on the amount of data required for perfect reconstruction, in terms of
m (the number of genes) and k (the sequence length). Consider the three possible (rooted,
leaf-labelled) species trees with three leaves, as depicted in Figure 1, where we let the time
to the most recent divergence be 1− f (from today) and the time to the earlier divergence
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1 2 3 1 3 2

2 3 1

f

1

Figure 1 Three species trees.

be 1. In order for a distance-based method to distinguish between these three possibilities,
i,e., to determine which pair is closest, we need to estimate the dabs within O(f) accuracy.
Put differently, within the multi-locus distance estimation problem, it suffices to establish
a lower bound on the data required to distinguish between a two-leaf species tree S with
d12 = 2 and a two-leaf species tree S+ with d12 = 2− 2f , where in both cases νe = 1 for all
e. We are interested in the limit f → 0.

Let P0 and Q be the distributions of θ(s1
1, s1

2) for a single gene under S and S+ respectively,
where for ease of notation the dependence on k is implicit. For m genes, we denote the
corresponding distributions by P⊗m0 and Q⊗m. To connect the problem to sparse signal
detection we observe below that, under the multispecies coalescent, Q is in fact a mixture of
P0 and a sparse signal P1, i.e.,

Q = (1− σf )P0 + σf P1, (3)

where σf = O(f) as f → 0.
When testing between P⊗m0 and Q⊗m, the optimal sum of Type-I (false positive) and

Type-II (false negative) errors is given by (e.g. [8])

inf
A
{P⊗m0 (A) + Q⊗m(Ac)} = 1− ‖P⊗m0 −Q⊗m‖TV, (4)

where ‖ · ‖TV denotes the total variation distance. Because σf = O(f), for any k, in order to
distinguish between P0 and Q one requires that, at the very least, m = Ω(f−1). Otherwise
the probability of observing a sample originating from P1 under Q is bounded away from
1. In [38] it was shown that, provided that k = Ω(f−2 log f−1), m = Ω(f−1) suffices. At
the other end of the spectrum, when k = O(1), a lower bound for the single-locus problem
obtained by [49] implies that m = Ω(f−2) is needed. An algorithm achieving this bound
under the multispecies coalescent was recently given in [10].

We settle the full spectrum between these two regimes. Our results apply when k = f−2+2κ

and m = f−1−µ where 0 < κ, µ < 1 as f → 0.

I Theorem 1 (Lower bound). For any δ > 0, there is a c > 0 such that

‖P⊗m0 −Q⊗m‖TV ≤ δ,

APPROX/RANDOM’15
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whenever
m ≤ c 1

f2
√
k
.

Notice that the lower bound on m interpolates between the two extremal regimes discussed
above. As k increases, a more accurate estimate of the gene trees can be obtained and one
expects that the number of genes required for perfect reconstruction should indeed decrease.
The form of that dependence is far from clear however. We in fact prove that our analysis is
tight.

I Theorem 2 (Matching upper bound). For any δ > 0, there is a c′ > 0 such that

‖P⊗m0 −Q⊗m‖TV ≥ 1− δ,

whenever
m ≥ c′ 1

f2
√
k
.

Moreover, there is an efficient test to distinguish between P⊗m0 and Q⊗m in that case.

Our proof of the upper bound actually gives an efficient reconstruction algorithm under the
molecular clock hypothesis. We expect that the insights obtained from proving Theorem 1
and 2 will lead to more accurate practical methods as well in the general case.

1.3 Proof sketch
Let Z be an exponential random variable with mean 1. We first show that, under P0
(respectively Q), θ(s1

1, s1
2) is binomial with k trials and success probability 3

4
(
1− e−2(ζ+Z)),

where ζ = 1 (respectively ζ = 1−f). Equation (3) then follows from the memoryless property
of the exponential, where σf is the probability that Z ≤ f .

A recent result of [6] gives a formula for the detection boundary of the sparse signal
detection problem for general P0, P1. However, applying this formula here is non-trivial.
Instead we bound directly the total variation distance between P⊗m0 and Q⊗m. Similarly to
the approach used in [6], we work instead with the Hellinger distance H2(P⊗m0 ,Q⊗m) which
tensorizes as follows (see e.g. [8])

1
2H

2(P⊗m0 ,Q⊗m) = 1−
(

1− 1
2H

2(P0,Q)
)m

, (5)

and further satisfies

‖P⊗m0 −Q⊗m‖2
TV ≤ H2(P⊗m0 ,Q⊗m)

[
1− 1

4H
2(P⊗m0 ,Q⊗m)

]
. (6)

All the work is in proving that, as f → 0,

H2(P0,Q) = O
(
f2
√
k
)
.

More details are given in Section 3.1.
The proof of Theorem 2 on the other hand involves the construction of a statistical

test that distinguishes between P⊗m0 and Q⊗m. In the regime k = O(1), an optimal test
(up to constants) compares the means of the samples [10]. In the regime k = ω(f−2), an
optimal test (up to constants) compares the minima of the samples [38]. A natural way to
interpolate between these two tests is to consider an appropriate quantile. We show that the
1/
√
k-quantile leads to the optimal choice.
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1 2 3

Figure 2 An incomplete lineage sorting event. Although 1 and 2 are more closely related in the
species tree (fat tree), 2 and 3 are more closely related in the gene tree (thin tree). This incongruence
is caused by the failure of the lineages originating from 1 and 2 to coalesce within the shaded branch.

1.4 Organization.
The gene tree generating model is defined in Section 2. The proofs of the main theorems
are omitted from this extended abstract. These can be found at the Arxiv version of the
paper [36].

2 Further definitions

In this section, we give more details on the model.

2.1 A little coalescent theory
As we mentioned in the previous section, our gene tree distribution model G[S, (νe, te)e∈E ]
is the multispecies coalescent [43]. We first explain the model in the two-species case. Let
1 and 2 be two species and consider a common gene j. One can trace back in time the
lineages of gene j from an individual in 1 and from an individual in 2 until the first common
ancestor. The latter event is called a coalescence. Here, because the two lineages originate
from different species, coalescence occurs in an ancestral population. Let τ be the time of
the divergence between 1 and 2 (back in time). Then, under the multispecies coalescent, the
coalescence time is τ + Z where Z is an exponential random variable whose mean depends
on the effective population size of the ancestral population. Here we scale time so that the
mean is 1. (See e.g. [21] for an introduction to coalescent theory.)

We immediately get for the two-level model of sequence data:

I Lemma 3 (Distance distribution). Let S be a two-leaf species tree with d12 = 2τ and νe = 1
for all e and let θ(s1

1, s1
2) be as in (2) for some k. Then the distibution of θ(s1

1, s1
2) is binomial

with k trials and success probability 3
4
(
1− e−2(τ+Z)).

The memoryless property of the exponential gives:

I Lemma 4 (Mixture). Let S be a two-leaf species tree with d12 = 2 and let S+ be a two-leaf
species tree with d12 = 2 − 2f , where in both cases νe = 1 for all e. Let P0 and Q be the
distributions of θ(s1

1, s1
2) for a single gene under S and S+ respectively. Then, there is P1

APPROX/RANDOM’15
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such that,

Q = (1− σf )P0 + σf P1,

where σf = O(f), as f → 0. More specifically, P1 is obtained by conditioning Q on the event
that Z is ≤ f and σf is the probability of that event.

More generally (this paragraph may be skipped as it will not play a role below), consider
a species tree S = (V,E;L, r) with n leaves. Each gene j = 1, . . . ,m has a genealogical
history represented by its gene tree Tj distributed according to the following process: looking
backwards in time, on each branch of the species tree, the coalescence of any two lineages
is exponentially distributed with rate 1, independently from all other pairs; whenever
two branches merge in the species tree, we also merge the lineages of the corresponding
populations, that is, the coalescence proceeds on the union of the lineages. More specifically,
the probability density of a realization of this model for m independent genes is

m∏
j=1

∏
e∈E

exp
(
−
(
Oej
2

)[
σ
e,Oe

j +1
j − σe,O

e
j

j

]) Ie
j−O

e
j∏

`=1
exp

(
−
(
`

2

)[
σe,`j − σ

e,`−1
j

])
,

where, for gene j and branch e, Iej is the number of lineages entering e, Oej is the number
of lineages exiting e, and σe,`j is the `th coalescence time in e; for convenience, we let σe,0j
and σe,I

e
j−O

e
j +1

j be respectively the divergence times of e and of its parent population. The
resulting trees Tjs may have topologies that differ from that of the species tree S. This may
occur as a result of an incomplete lineage sorting event, i.e., the failure of two lineages to
coalesce in a population. See Figure 2 for an illustration.

2.2 A more abstract setting
Before discussing the proofs, we re-set the problem in a more generic setting that will make
the computations more transparent. We consider two distributions P0 and P1 for a random
variable θ taking values in {0, . . . , k} for some k. We assume that the distribution of θ takes
the form

P0[θ = `] =
(
k

`

)
E0[X`(1−X)k−`],

where E0 is the expectation operator corresponding to P0, and X is some random variable
admitting a density over [0, 1]. The distribution is similarly defined under P1. We make the
following assumptions, which are satisfied in the setting of the previous section:

A1. Under P0 and P1, X admits a density whose support is (p0, p
0) under P0 and (p0−φf , p0)

under P1, where 0 < p0 < p0 < 1 (independent of f) and φf = O(f). (In the setting of
Lemma 4, p0 = 3

4 (1− e−2), p0 − φf = 3
4 (1− e−(2−2f)), and p0 = 3/4.)

A2. Under P0, the density of X (on its support) is in [ρ, ρ−1] for some ρ > 0 (independent of
f) away from p0, that is, below some p0 < p̄ < p0. (In the setting of Lemma 4, under P0

the density of X on (p0, p
0) is 4e1/2

3 (1− 4x/3)−3/4.)
As before, we let

Q = (1− σf )P0 + σf P1,

for some σf = O(f).

3 Main steps of the proof

We give a few more details on the proofs.
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3.1 Lower bound
We briefly sketch the main steps of the proof of the lower bound. In the abstract setting of
Section 2, the Hellinger distance can be written as

H2(P0,Q) =
k∑
j=0

[√
Q[θ = j]−

√
P0[θ = j]

]2

=
k∑
j=0

[√
1 + σf

(
P1[θ = j]
P0[θ = j] − 1

)
− 1
]2

P0[θ = j]

=
k∑
j=0

[√
1 + σf

(
E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ] − 1

)
− 1
]2

P0[θ = j] (7)

We prove the following proposition, which implies Theorem 1.

I Proposition 5. Assume that k = f−2+2κ where 0 < κ < 1 and that Assumptions A1 and
A2 hold. As f → 0,

H2(P0,Q) = O
(
f2
√
k
)
.

From (7), in order to bound the Hellinger distance, we need to control the ratio E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ]

and the probability P0[θ = j]. Because the standard deviation of θ/k is O(1/
√
k) and

f
√
k = o(1), the dominant term in the sum (7) turns out to come from X being within

O(1/
√
k) of p0 under E0 (an event of probability O(1/

√
k)) and θ/k being within O(1/

√
k)

of p0 as well (in which case the ratio E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ] is of order O(1)). The contribution of

the dominant term is then indeed of order O(f2
√
k). The full details are somewhat delicate

and appear in the Arxiv version of the paper [36].

3.2 Upper bound
To prove the upper bound, we use (4) and construct an explicit test A. Let W be the
number of genes such that θ/k ≤ p0. Let w = P0[θ/k ≤ p0] and w′ = Q[θ/k ≤ p0]. Then
W ∼ Bin(m,w) under P0 and W ∼ Bin(m,w′) under Q. Let

w∗ = mw + m

2 (w′ − w) = mw′ − m

2 (w′ − w),

and consider the event
A = {W ≥ w∗}.

We show in the Arxiv version of the paper [36] that P⊗m0 [A] ≤ δ
2 , and Q⊗m [Ac] ≤ δ

2 when
c′ is large enough.
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