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Abstract
We introduce the notion of one-way communication schemes with partial noiseless feedback. In
this setting, Alice wishes to communicate a message to Bob by using a communication scheme
that involves sending a sequence of bits over a channel while receiving feedback bits from Bob for
δ fraction of the transmissions. An adversary is allowed to corrupt up to a constant fraction of
Alice’s transmissions, while the feedback is always uncorrupted. Motivated by questions related
to coding for interactive communication, we seek to determine the maximum error rate, as a
function of 0 ≤ δ ≤ 1, such that Alice can send a message to Bob via some protocol with δ

fraction of noiseless feedback. The case δ = 1 corresponds to full feedback, in which the result
of [1] implies that the maximum tolerable error rate is 1/3, while the case δ = 0 corresponds
to no feedback, in which the maximum tolerable error rate is 1/4, achievable by use of a binary
error-correcting code.

In this work, we show that for any δ ∈ (0, 1] and γ ∈ [0, 1/3), there exists a randomized
communication scheme with noiseless δ-feedback, such that the probability of miscommunication
is low, as long as no more than a γ fraction of the rounds are corrupted. Moreover, we show
that for any δ ∈ (0, 1] and γ < f(δ), there exists a deterministic communication scheme with
noiseless δ-feedback that always decodes correctly as long as no more than a γ fraction of rounds
are corrupted. Here f is a monotonically increasing, piecewise linear, continuous function with
f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is constant (dependent
on δ and γ but independent of the input length).
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1 Introduction

Motivated by questions in interactive coding, we introduce the model of communication with
partial noiseless feedback. Alice wishes to communicate a message, say in {0, 1}k, to Bob.
Alice sends a total of N bits to Bob, and she receives δN bits of feedback from Bob for some
fixed δ > 0. We have an adversary who can corrupt γN of the bits sent by Alice, but the
feedback bits are left uncorrupted. We wish to find the maximal tolerable error fraction γ
(on Alice’s transmissions) under which we can guarantee that Bob is able to receive Alice’s
message correctly. This problem is summarized in Figure 1.

We introduce this problem as a generalization of the problem of communication with
complete noiseless feedback (corresponds to δ = 1 above), where after each bit sent by Alice,
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Figure 1 Communication with partial noiseless feedback.

Bob sends the received bit as feedback, so that Alice can use her knowledge of exactly what
Bob has received thus far to possibly adapt her future transmissions. Indeed, Berlekamp
showed that in this setting, one can tolerate any error rate less than 1/3 with non-vanishing
communication rate if we require that any possible error pattern of up to the error rate be
corrected [1], and moreover, this is the maximal error fraction one can hope to correct with
constant rate. This bound also follows from the game of questions with liars [20].

On the other extreme, if there were no feedback at all (i.e. δ = 0), then this is equivalent
to error correcting codes, for which it is known that one can tolerate up to 1/4 error fraction
while still achieving positive communication rate [12, 21]. And an error fraction of ≥ 1/4

necessarily results in zero asymptotic rate, due to the Plotkin bound [15]. Thus, feedback
increases the set of achievable communication rates in the adversarial error model. This is in
contrast to the random-error setting in which random error patterns need to be corrected
only with high probability, as Shannon showed that feedback does not increase the capacity
of a discrete memoryless channel [19].

1.1 Coding for interactive communication
The problem of communication with noiseless feedback has garnered further interest recently
in the context of coding for interactive communication. In this setting, Alice and Bob are
given inputs x and y, respectively, and they are required to compute some function f(x,y)
by exchanging messages over a noisy channel. In particular, up to a γ fraction of the total
transmitted bits may get flipped by the channel, and one requires a coding scheme that
allows successful computation even in the presence of noise, preferably with a only constant
blow up in communication. Schulman was the first to investigate the problem, and in a series
of works, he gave the first constant rate scheme that could tolerate an error fraction of up to
γ = 1/240 [16, 17, 18]. Subsequently, in an influential work, Braverman and Rao [6] showed a
coding scheme that works for any error rate γ < 1/4, and moreover, they showed that any error
rate of ≥ 1/4 cannot be tolerated as long as the encoded protocol is non-adaptive (meaning
that whose turn it is to speak during each round of communication is predetermined). There
have been a lot of subsequent works since, which deal with computational efficiency [2, 4, 3, 9],
allowing adaptivity [11], list-decoding [11, 10, 5], interactive channel capacity under random
noise [14] and adversarial noise [13] etc.

Approaching an error fraction of 1/4 in the non-adaptive setting requires communicating
symbols from a growing alphabet size. If we restrict ourselves to communicating bits, then
the coding scheme of Braverman and Rao [6] tolerates any error fraction γ < 1/8. Determining
the maximum tolerable noise for interactive coding with symbols from a binary alphabet is
still an open question. However, the optimality of 1/3 as the maximal tolerable error fraction
in the noiseless feedback problem can be used to establish an upper bound of 1/6 for the
maximal tolerable error fraction for interactive coding over binary alphabets! Furthermore,
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Efremenko, Gelles and Haeupler [7] show a coding scheme over binary alphabets that tolerates
any error fraction γ < 1/6 if noiseless feedback is allowed in the interactive setting as well.
Also, Gelles and Haeupler [8] show that for an error fraction of ε, any alternating interactive
protocol can be encoded with rate 1−Θ(H(ε)) over channels with noiseless feedback as well
as erasure channels.

1.2 Our results
In this work, we show that for any δ ∈ (0, 1] and γ ∈ [0, 1/3), there exists a randomized com-
munication scheme with noiseless δ-feedback, such that the probability of miscommunication
is low, as long as no more than a γ fraction of the rounds are corrupted. Moreover, we show
that for any δ ∈ (0, 1] and γ < f(δ), there exists a deterministic communication scheme with
noiseless δ-feedback that always decodes correctly as long as no more than a γ fraction of
rounds are corrupted. Here f is a monotonically increasing, piecewise linear, continuous
function with f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is
constant (dependent on δ and γ but independent of the input length).

1.3 Organization of this paper
In Section 2, we give some of the basic definitions and notations as well as the statements
of the two main theorems in this work. In Section 3, we describe a simple deterministic
communication scheme with 1-feedback that tolerates up to 1/3 fraction errors. In Section 4,
we describe our randomized communication scheme with partial noiseless feedback. In
Section 5, we describe our deterministic communication schemes which comes about by a
de-randomization of the randomized communication scheme. Finally, we give a summary of
our results and suggest possible future directions in Section 6.

2 Preliminaries and results

In this section, we describe our problem set-up and state our results.

2.1 One-way communication schemes with partial noiseless feedback
We consider the problem of one-way communication with partial noiseless feedback, which we
define as follows:

IDefinition 1. For all δ ∈ [0, 1], a “one-way communication scheme with noiseless δ-feedback”
is defined as follows (summarized in Figure 1):

Alice wishes to send a message in x ∈ Σk to Bob.
Alice and Bob engage in a communication protocol of length N + δN , out of which N
symbols are sent by Alice (forward rounds) and δN symbols are sent by Bob (feedback
rounds). At most one of the parties can send a symbol in any round.
The adversary can corrupt at most γN of the forward rounds, but none of the feedback
rounds.
At the end of the protocol, Bob is required to decode the message x from the transcript
of the protocol.

We call N as the length of the communication scheme. The ‘rate’ of the scheme is k/N , and
γ is the error fraction tolerated. (We will often drop the words ‘one-way’ and ‘noiseless’. All
feedback in this paper will be assumed to be noiseless.)

APPROX/RANDOM’15
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The protocol can be deterministic or randomized (but with only private randomness).
In deterministic schemes, we require that Bob is always able to recover x correctly. In
randomized schemes, we require that Bob is able to recover x correctly with probability at
least 1− ok(1), where the probability is over the private randomness of Alice and Bob.

Note. All the results in this paper will only be for Σ = {0, 1}. Thus, for the rest of the
paper, we will work with communication schemes over a binary alphabet.

An important remark about randomized communication schemes is that the adversary is
not aware of the random bits being used by the parties in advance. The adversary can only
infer the random bits after they are used. We emphasize that it is this remark that makes
de-randomizing such communication schemes very challenging!

In this work, we wish to fix δ and find an infinite sequence of communication schemes
with noiseless δ-feedback, for increasing values of k, where the communication schemes have
length N(k). The asymptotic rate of the sequence of communication schemes is defined to be
limk→∞ k/N(k). For the remainder of the paper, we will often say “communication scheme”
with a particular “rate” as shorthand for an infinite sequence of communication schemes for
increasing message lengths with a particular asymptotic rate.

The main question we seek to answer in this work is: For a fixed δ ∈ [0, 1], what is the
largest error fraction that can be tolerated by an infinite sequence of communication schemes
with feedback fraction at most δ? We can ask this question for both deterministic as well as
randomized communication schemes.

I Definition 2. For any δ ∈ [0, 1], we define Γdet(δ) and Γrand(δ) as follows:
Γdet(δ) is the supremum over γ such that there exists a deterministic communication
scheme with δ-feedback that tolerates an error fraction of γ and has constant rate.1
Γrand(δ) is the supremum over γ such that there exists a randomized communication
scheme with δ-feedback that tolerates an error fraction of γ and has constant rate.

We know that error correcting codes with distance 1/2− ε exist for all ε > 0. Thus, we
get that an error fraction of γ = 1/4− ε can be tolerated even without having any feedback,
and thus, Γrand(δ) ≥ Γdet(δ) ≥ 1/4 for all δ ≥ 0.

2.2 Upper bounds on the tolerable error fraction
It is known that for δ = 1, if the communication scheme uses the mirror feedback structure,
then no communication scheme can tolerate a 1/3 error fraction for arbitrarily large message
length [1]. The mirror feedback structure means that the communication protocol consists of
alternating forward and feedback rounds, where each feedback bit sent by Bob is simply the
bit that he has received from Alice in the preceding round.

I Observation 3. If δ = 1, we can assume without loss of generality that any deterministic
one-way communication scheme with noiseless δ-feedback has only mirror feedback, namely,
after every bit sent by Alice, Bob simply sends back the (potentially corrupted) bit he received.

The observation follows because if Bob were to send back the precise bits that he receives
from Alice, then Alice can compute any deterministic function of the same and thus any
1-feedback protocol can be simulated by using only mirror feedback. Combined with the

1 rate that can depend on γ and δ, but not on the length of the input x.
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upper limit of 1/3 from [1], we get that for any δ > 0, no deterministic communication scheme
with δ-feedback can tolerate an error fraction of 1/3. For completeness, we give a proof of
this result in Appendix A.

I Theorem 4. For any δ ≥ 0, we have that Γdet(δ) ≤ 1/3.

2.3 Main results
We prove two results that provide lower bounds on Γrand(δ) and Γdet(δ), respectively. Our
first result presents a randomized communication scheme that tolerates any error fraction
γ < 1/3 for any δ > 0.

I Theorem 5. For any δ > 0, we have that Γrand(δ) ≥ 1/3. Namely, for any δ > 0 and
for all ε > 0, and γ = 1/3− ε, there is a randomized communication scheme with noiseless
δ-feedback that tolerates an error fraction of γ. Furthermore, one can achieve a rate of
communication of Ω(εδ) with failure probability exp(−Ω(k)), where k is the length of the
message being transmitted.

Our second result presents a ‘derandomization’ of the underlying randomized communic-
ation scheme of Theorem 5 that beats the 1/4 bound achieved by error correcting codes for
all δ > 0. The tolerable error fraction becomes 1/3 for δ ≥ 2/3, which is optimal.

I Theorem 6. Define f : (0, 1]→ R as follows:

f(δ) def=


1
3 , if 2

3 ≤ δ ≤ 1
max

{
δ(r+1)

2 , r+2
4r+7

}
, if 0 < δ < 2

3
where r = r(δ) def=

⌊
1
2δ −

3
4

⌋
Then, for any δ ∈ (0, 1], Γdet(δ) ≥ f(δ). Namely, for any δ > 0 and for all ε > 0, there is
a deterministic communication scheme with δ-feedback that tolerates an error fraction of
γ = f(δ)− ε such that the rate of communication is Ω(εδ).

I Remark. The function f defined in Theorem 6 is a monotonically increasing piecewise linear
function that is continuous on the interval in which it is defined (see Figure 2). Moreover
limδ→0+ f(δ) = 1/4, and one can easily tolerate any error fraction less than 1

4 with zero
feedback by simply using a binary error-correcting code with relative distance of twice the
desired error fraction. For the other extremal case, namely δ = 1, the protocol πdet

1 (γ)
(Figure 3 adapted from [7]) can be used to tolerate any error fraction less than f(1) = 1/3.
The main contribution of this work is to establish the achievability of error fractions up to
f(δ) for intermediate values of δ ∈ (0, 1). This shows that any non-zero feedback fraction
allows us to beat the 1/4 limit on the tolerable error fraction in the presence of no feedback.

Note that Γdet(δ) ≤ 1/3 for all δ ∈ [0, 1] (as implied by Theorem 4), and Theorem 5 shows
us that randomized communication schemes are able to get arbitrarily close to this limit for
all non-zero feedback fractions. We do not know whether the same is true for deterministic
communication schemes, as the positive result of Theorem 6 exhibits a gap to the 1/3 upper
bound for 0 < δ < 2/3. We leave the question of whether Γdet(δ) = 1/3 for all δ as an open
problem. The error fractions tolerated by our communication schemes are summarized in
Figure 2.

3 Deterministic communication scheme with full feedback

For completeness, we first present a communication scheme πdet
1 (γ) with 1-feedback that

tolerates an error fraction of γ = 1/3 − ε (where ε > 0). Such a protocol was obtained

APPROX/RANDOM’15
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δ

Γ(δ)

0 1

1/3

1/4

2
3

4
7

2
7

using error-correcting codes

lower bound on Γdet(δ) (Thm 6)

lower bound on Γrand(δ) (Thm 5)

Figure 2 Maximum error fraction tolerated as function of δ.

previously by Berlekamp [1]. We present a very simple scheme (in Figure 3) that was implicit
in [7]. It is easy to see that the communication scheme presented has rate Θ(ε).

Correctness of πdet
1 (γ)

We first introduce a couple of notations. Firstly, for all s ∈ {0, 1}∗, define len(s) to be the
length of s. Next, for strings s which do not contain consecutive 0’s, we define the weight of
s as follows.

I Definition 7 (Weight of a string). Given string s ∈ {0, 1}∗, such that s has no consecutive
0’s, we define the weight of s as follows: Suppose s breaks into a 0’s, b 1’s and c 10’s, with
the smallest number of pieces. We define wt(s) def= 2a+ 2b+ c.

For example,
wt(‘0110101’) = 2 · 1 + 2 · 2 + 1 · 2 = 8, since ‘0110101’ = ‘0’ + ‘1’ + ‘10’ + ‘10’ + ‘1’.
wt(‘111010’) = 2 · 0 + 2 · 2 + 1 · 2 = 6, since ‘111010’ = ‘1’ + ‘1’ + ‘10’ + ‘10’.

Note that since s does not contain consecutive 0’s, it follows that a = 1 if s starts with a
‘0’ and a = 0 otherwise.

To prove that the communication scheme πdet
1 (γ) in Figure 3 tolerates an error fraction

of γ, we define a potential function as Φ = Φ(T ) def= len(Tright)− wt(Twrong). Note that the
scheme in Figure 3 ensures that Twrong never has consecutive 0’s, and thus wt(Twrong) is
always well defined.

The following easy proposition shows how Φ changes after each round of communication.
The proof appears in Appendix B.

I Proposition 8. After each round of communication, if Alice’s bit is received correctly by
Bob, then Φ increases by at least 1. On the other hand, if Alice’s bit is received incorrectly
by Bob, then Φ decreases by at most 2.

As an easy corollary of Proposition 8, we get a lower bound on Φ at the end of the
protocol, as a function of the error fraction.

I Corollary 9. If γ fraction of Alice’s transmissions in communication scheme πdet
1 (γ) (given

in Figure 3) are corrupted, then at the end of the protocol, Φ ≥ (1− 3γ)N .

Proof. We have that there are (1 − γ)N forward rounds of the protocol which are not
corrupted in which Φ increases by 1, while γN rounds which are corrupted in which Φ
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Parameters:
ε = 1

3 − γ
Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N ← dn/3εe . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)

Initialization:
. N ← dn/3εe . . . (2)
. T ← ∅ . . . (3)

—————– Repeat N times —————–

if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if

T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T

end if

b

b̃

T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T

end if
Set Tright, Twrong appropriately

b̃

b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1) E(x) is a simple encoding of x such that E(x) does not contain any consecutive ‘0’s. One
way to do this: add a ‘1’ between two consecutive bits, making n = 2k. We will refer to the bits
of y as y(i). For i > n, we will assume y(i) = ‘1’.

(2) N is the number of rounds

(3) T is the transcript as maintained by Bob. However, Alice is able to decompose T as T =
Tright ◦ Twrong, where Tright is the largest prefix of T which exactly matches the prefix of y of the
same length, and Twrong is the remaining part in T . Basically, Twrong is the part of the transcript
which starts with an incorrectly received bit, and so all the following bits have to be erased
before proceeding further.

Figure 3 Communication scheme with complete feedback : πdet
1 (γ).

APPROX/RANDOM’15
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decreases by at most 2. Thus, by Proposition 8, we see that at the end of the protocol,

Φ(T ) ≥ 1 · (1− γ)N − 2 · γN = (1− 3γ)N

J

Thus, by the above Corollary, if γ = 1/3− ε fraction of the forward rounds of protocol
πdet

1 (γ) are corrupted, then at the end of the protocol we will have,

len(Tright) ≥ Φ(T ) ≥ 3εN

By our choice of N , we have that 3εN ≥ n. Therefore, at the end of the protocol, len(Tright) ≥
n, meaning that the first n bits of T are exactly y. Hence, Bob is able to decode x correctly
by just applying E−1 on the first n bits of T .

4 Randomized communication scheme with partial feedback

In this section, we prove Theorem 5 by giving a randomized protocol πrand
δ (γ) with δ-feedback

(for any δ ∈ (0, 1]), that tolerates an error fraction of γ = 1/3− ε (where ε > 0) and has a rate
of Θ(εδ). The full details of πrand

δ (γ) can be found in Figure 4. The main idea is as follows:
We wish to simulate πdet

1 (γ) with a smaller feedback fraction. We break the protocol
into N0 = d2n/3εe iterations, where each iteration roughly corresponds to one forward
and feedback round of πdet

1 (γ). In each iteration, Alice sends D = d2/δe bits, namely
c = (c1, · · · , cD) = bD (i.e. D copies of bit b she would have sent in πdet

1 ). Bob receives
a set of symbols c̃ = (c̃1, · · · , c̃D). He uses a ‘soft decoding’ scheme to obtain b̃ which is
his interpretation of what b must have been. Let m be the number of ‘1’s present in c̃. If
m ≤ D/2, then he interprets b̃ as ‘0’ with probability 1− 2m/D, and if m > D/2, then he
interprets b̃ to be ‘1’ with probability 2m/D − 1. In other cases, Bob interprets b̃ to be ‘?’.
If b̃ 6= ‘?’, then Bob then makes appropriate progress on the protocol πdet

1 (γ). As feedback,
Bob sends back the value of b̃ (which takes 2 bits of feedback). Thus, the entire protocol
uses N = d2/δeN0 number of forward bits of communication and 2N0 bits of feedback, and
thus it uses (2/ d2/δe)-feedback (which is at most δ-feedback), and has rate Θ(εδ). All that
remains to show now is that this protocol tolerates an error fraction of γ = 1/3− ε.

Correctness of πrand
δ (γ)

We show that for any δ ∈ (0, 1] and γ < 1/3, the communication scheme πrand
δ (γ) tolerates

an error fraction of γ with constant rate. This immediately implies Theorem 5.

I Theorem 10. For any δ ∈ (0, 1] and γ = 1/3− ε (where ε > 0), the communication scheme
πrand
δ (γ) (from Figure 4) tolerates an error fraction of γ with rate being Θ(εδ).

Proof. Suppose that an adversary corrupts at most γN = (1/3− ε)N of Alice’s transmissions
in πrand

δ (γ) (recall that N = d2/δeN0). We will show that for any fixed error pattern, Bob
can successfully recover Alice’s message with high probability.

Consider the potential function Φ that was used for proving the correctness of protocol
πdet

1 (γ). In any iteration 1 ≤ i ≤ N0 of the simulating protocol πrand
δ (γ) (in Figure 4) above,

with e fraction of errors (i.e. with eD errors), the potential function Φ changes by an amount
Xi given as follows (see Proposition 8):

if ei ≤ 1/2, then with probability 1 − 2ei, Φ increases by at least Xi = 1, and with
probability 2ei the potential function remains unchanged (Xi = 0). In expectation, Φ
increases by at least E[Xi] = (1− 2ei).
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Parameters:
ε = 1

3 − γ
Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N0 ← d2n/3εe . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)
. D ← d2/δe . . . (4)

Initialization:
. N0 ← d2n/3εe . . . (2)
. T ← ∅ . . . (3)
. D ← d2/δe . . . (4)

—————– Repeat N0 times —————–
if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if
c← bD

m←
∣∣{i : c̃i = 1}

∣∣
if m ≤ D/2 then

b̃←
{
‘0’ w.p. 1− 2m/D
‘?’ w.p. 2m/D

else
b̃←

{
‘1’ w.p. 2m/D − 1
‘?’ w.p. 2− 2m/D

end if
if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

c c̃

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

b̃
b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1), (2) and (3) as defined in the scheme πdet
1 (γ) (Figure 3)

(4) D is the number of bits sent in every iteration.

Figure 4 Randomized communication scheme with complete feedback : πrand
δ (γ).

APPROX/RANDOM’15
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if ei > 1/2, then with probability 2ei − 1, Φ decreases by at most 2, i.e. increases by at
least Xi = −2, and with probability 2− 2ei the potential function remains unchanged
(Xi = 0). In expectation, Φ increases by at least E[Xi] = −(4ei − 2).

Suppose we use N0 phases of the above protocol and suppose that the fraction of errors
that the adversary makes in each of these N0 phases is e1, e2, · · · , eN0 , respectively. Let
S1 = {i : ei ≤ 1/2} and S2 = {i : ei > 1/2}.

Thus, the expected value of the potential function at the end of N0 phases will be,

E[Φ] ≥
N∑
i=1

E[Xi]

=
∑
i∈S1

(1− 2ei)−
∑
j∈S2

(4ej − 2)

=
∑

i∈S1∪S2

(1− 2ei)−
∑
j∈S2

(2ej − 1)

= N0 −
N0∑
i=1

2ei −
∑
j∈S2

(2ej − 1)

We want to bound E[Φ] from below. Firstly,
∑N0
i=1 ei ≤ N0 (1/3− ε). Also, since each

ej ≤ 1, we have that |S2| ≥
∑
j∈S2

ej , and hence
∑
j∈S2

(2ej − 1) ≤
∑
j∈S2

ej ≤
∑N0
i=1 ei ≤

N0 (1/3− ε). Thus, from above equations we have that,

E[Φ] ≥ N0 − 2N0

(
1
3 − ε

)
−N0

(
1
3 − ε

)
= 3εN0.

Since we choose N0 = d2n/3εe, we have that E[Φ] ≥ 2n. Also, note that either Xi ∈ [0, 2]
or Xi ∈ [−2, 0] for all i. Thus, using Hoeffding’s concentration inequality, we have

Pr[Φ ≥ n] ≥ Pr[X1 +X2 + · · ·+XN0 ≥ n]

≥ 1− Pr
[∣∣∣X1 +X2 + · · ·+XN0 − E

[∑N0
i=1 Xi

]∣∣∣ ≥ n]
≥ 1− 2e−2n2/4N0

≥ 1− 2e−3εn/4 [putting N0 = d2n/3εe]

Recall that if Φ ≥ n at the end of the protocol, then Bob is able to decode Alice’s
message correctly. Thus, we conclude that πrand

δ (γ) works with a failure probability of at
most exp(−Ω(k)) (since n = Θ(k)). J

I Remark. In the application of the Hoeffding’s inequality we required the error pattern to be
fixed, that is, the adversary pre-commits to the error pattern (although unknown to Alice and
Bob). We feel that this is only a technical difficulty and it should be generalizable to adaptive
adversaries. Nevertheless, in the next section, we de-randomize this protocol, although with
a smaller error fraction. For deterministic protocols, it does not matter whether the errors
are adaptive or not, as we require a worst-case guarantee.

5 Deterministic communication schemes with partial feedback

In this section, we prove Theorem 6 by giving a deterministic protocol πdet
δ (γ) with δ-feedback

(for any δ ∈ (0, 1]). We first give a deterministic communication scheme with δ-feedback for
δ = 2/(4r + 3) for any r ∈ N (this scheme is described in Section 5.1), which we obtain by
a certain derandomization of πrand

δ . Next, for 2
4r+7 < δ < 2

4r+3 , we give a communication
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scheme that interpolates between πdet
2/(4r+3) and πdet

2/(4r+7) (the full details are described in
Section 5.2).

5.1 Deterministic communication scheme for δ = 2/(4r + 3)

In this section, we present a deterministic communication scheme πdet
δ (γ), where δ = 2/(4r+3)

for any r ∈ N. We show that this scheme tolerates an error fraction of γ = (r+1)/(4r+3)−ε
and has rate Θ(εδ). We obtain this by instantiating the communication scheme πdet

δ (γ) in
Figure 5, with Di = (4r + 3) and ri = r for all i. The main idea behind the protocol is as
follows:

We will consider a protocol identical to πrand
δ , except that in each of the N0 iterations,

Bob chooses a value (‘0,’ ‘1,’ or ‘?’) for b̃ in a deterministic fashion. In particular, in any
iteration, Alice sends D = (4r + 3) = 2/δ bits (say c given by bD), which Bob then receives
as c̃. Let m be the number of 1’s in c̃. Bob chooses b̃ as follows:

b̃ ←


‘0’ if m ≤ r
‘1’ if m ≥ D − r
‘?’ if r < m < D − r

Thus, r + 1 is the minimum number of bits of c that an adversary must corrupt in order
to force Bob to interpret the round as a ‘?’, and D − r is the minimum number of bits of c
that must be corrupted in order to force Bob to interpret the round as opposite of the bit
that Alice intended to send. The decoding strategy of Bob is summarized in the following
figure:

0 r D − r D

‘0’ ‘?’ ‘1’

Thus, the entire protocol uses N = DN0 = (2/δ)N0 number of forward bits of communic-
ation and 2N0 bits of feedback, and thus it uses δ-feedback. We will choose N0 = dn/3εe,
and hence the rate is Θ(εδ). So all that remains to show now is that this protocol tolerates
an error fraction of γ = (r+ 1)/(4r+ 3)− ε. The following proposition (which is an analogue
of Corollary 9) will be useful in proving the same.

I Proposition 11. For δ = 2/(4r + 3), if γ fraction of Alice’s transmissions in commu-
nication scheme πdet

δ (γ) (from Figure 5) are corrupted, then at the end of the protocol,
Φ ≥

(
1− (4r+3)γ

r+1

)
N0.

Proof. In the communication scheme πdet
δ (γ), any iteration is considered correctly decoded if

b̃ is set to be the bit that appears in c, while it is said to be incorrectly decoded if b̃ is set to
the opposite bit. An iteration is considered ambiguous if b̃ is set to be ‘?’.

Now, suppose an adversary corrupts the scheme such that AN0, BN0, and CN0 are
the number of iterations that are ambiguous, correctly decoded and incorrectly decoded
respectively. Note that the adversary has a total budget of γDN0 corruptions, where γ is
the overall error fraction of the protocol. Thus, we have the following constraints:

A+B + C = 1 (1)
(r + 1)A+ (D − r)C ≤ γD (2)

APPROX/RANDOM’15
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Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N0 ← Θδ,γ(n) . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)
. {Di}i∈[N0] , {ri}i∈[N0] . . . (4)

Initialization:
. N0 ← Θδ,γ(n) . . . (2)
. T ← ∅ . . . (3)
. {Di}i∈[n] , {ri}i∈[n] . . . (4)

—————– Repeat N0 times —————–
if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if
c← bDi

m←
∣∣{i : c̃i = 1}

∣∣
b̃←


‘0’ if m ≤ ri
‘1’ if m ≥ Di − ri
‘?’ if ri < m < Di − ri

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

c
c̃

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

b̃
b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1), (2) and (3) as defined in the scheme πdet
1 (Figure 3)

(4) Di is the number of forward bits sent in iteration i. ri is the deterministic threshold used by
Bob to interpret the received stream as either ‘0’, ‘?’ or ‘1’ in iteration i. The total number of
forward bits is

∑
iDi, and total number of feedback bits is 2N0. The exact choice of Di’s and

ri’s will depend on δ and γ.

Figure 5 Template for deterministic communication scheme with complete feedback : πdet
δ (γ).
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Equation 1 follows because the total number of iterations is N0. Inequality 2 follows because,
we may assume without loss of generality, that an adversary corrupts 0 bits for an iteration
that is correctly decoded, D − r bits for an iteration that is incorrectly decoded, and r + 1
bits for an iteration that is ambiguous. This is because these are the minimum number of
bits needed to be corrupted for each category, and an adversary cannot possibly gain by
corrupting more than the minimum.

From Proposition 8, we have that Φ ≥ (B − 2C)N0. And so, we wish to lower bound
B − 2C. For this, we subtract 3

D−r times Inequality (2) from Equation (1) to obtain

B − 2C −A
(

3(r + 1)
D − r

− 1
)
≥ 1− 3γD

D − r

Since D = 4r + 3, it follows that 3(r+1)
D−r = 1, and so,

B − 2C ≥ 1− 3γD
D − r

= 1− (4r + 3)γ
r + 1

Thus, we get that at the end of the protocol, Φ ≥
(

1− (4r+3)γ
r+1

)
N0. J

By the above Proposition, ifN0 = dn/3εe and γ = r+1
4r+3−ε fraction of Alice’s transmissions

in πdet
δ (γ) are corrupted, then at the end of the protocol we will have,

len(Tright) ≥ Φ ≥
(

1− 4r + 3
r + 1

(
r + 1
4r + 3 − ε

))
N0 = (4r + 3)ε

r + 1 N0 ≥ n

This guarantees that at the end of the protocol len(Tright) ≥ n meaning the first n bits of T
are exactly y and Bob can correctly decode Alice’s message by applying E−1 on the first n
bits of T .

5.2 Deterministic communication schemes for all δ ∈ (0, 1]
In the previous section we gave a deterministic communication scheme πdet

δ (γ) for δ =
2/(4r + 3), and showed that one can tolerate an error fraction of up to r+1

4r+3 . In the section,
we give a communication scheme πdet

δ (γ) for any feedback fraction δ ∈
(

2
4r+7 ,

2
4r+3

)
, that

can tolerate an error fraction of γ = δ(r+1)
2 − ε (where ε > 0).

The key is to “interpolate” the protocols πdet
δ that we obtain for δ = 2

D between D = 4r+3
and D = 4(r + 1) + 3. In particular, we will have that for the first qN0 iterations, we use
Di = 4r+ 7 and ri = r+ 1, and the later (1− q)N0 iterations, we use Di = 4r+ 3 and ri = r.
We let N0 ≥ (r + 1)δn/2ε. This also gives that the rate is Θ(εδ) (since δ ≥ 2/(4r + 7)).

Let A1N0, B1N0, and C1N0 be the number of iterations that are ambiguous, correctly
decoded and incorrectly decoded respectively in the first qN0 iterations. Similarly, let A2N0,
B2N0, and C2N0 be the number of iterations that are ambiguous, correctly decoded and
incorrectly decoded respectively in the later (1−q)N0 iterations. Also note that the adversary
has a total budget of γ(q(4r + 7) + (1− q)(4r + 3))N0 corruptions, where γ is the overall
error fraction of the protocol.

Note that δ = 2/(q(4r+7)+(1−q)(4r+3)) = 2/(4q+4r+3) and hence q = 1
2δ −

(4r+3)
4 . We have

the following constraints:

A1 +B1 + C1 = q (3)
A2 +B2 + C2 = 1− q (4)

(r + 2)A1 + (r + 1)A2 + (3r + 6)C1 + (3r + 3)C2 ≤ γ(4q + (4r + 3)) (5)

APPROX/RANDOM’15
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From Proposition 8, we have that the potential at the end of the protocol satisfies Φ ≥
(B1 +B2 − 2C1 − 2C2)N0. Thus, we wish to lower bound (B1 +B2 − 2C1 − 2C2). We add
equations 3 and 4 and subtract (1/(r+1)) times inequality 5, to get,

B1 +B2 − 2C1 − 2C2 −
A1

r + 1 −
3C1

r + 1 ≥ 1− γ(4q + 4r + 3)
r + 1 = 1− 2γ

(r + 1)δ

Since A1, C1 ≥ 0 and γ = (r + 1)δ/2− ε, we get that,

Φ ≥ (B1 +B2 − 2C1 − 2C2)N0 ≥
2εN0

(r + 1)δ ≥ n

where the last inequality follows because we chose N0 ≥ (r + 1)δn/2ε. This guarantees that
at the end of the protocol len(Tright) ≥ Φ ≥ n meaning the first n bits of T are exactly y
and Bob can correctly decode Alice’s message by applying E−1 on the first n bits of T .

5.3 Putting it all together
Proof of Theorem 6. In Section 5.2, we showed that when 2

4r+7 ≤ δ ≤
2

4r+3 , we have that
Γdet(δ) ≥ (r + 1)δ/2. But from Section 5.1, we obtained that Γdet

(
2

4r+7

)
≥ r+2

4r+7 , and thus
by monotonicity of Γdet(δ), we have that for all δ ≥ 2

4r+7 , Γdet(δ) ≥ r+2
4r+7 . Combining the

two results we get that,

∀r ∈ Z≥0 ∀δ ∈
[

2
4r + 7 ,

2
4r + 3

]
Γdet(δ) ≥ max

{
(r + 1)δ

2 ,
r + 2
4r + 7

}
J

6 Discussion

We have introduced the notion of communication schemes under partial noiseless feedback as
a natural interpolation between two familiar settings, namely, the problem of transmission
over a binary channel with adversarial errors (achievable by the use of error-correcting codes)
as well as the problem of transmission over a binary feedback channel (achievable by the
protocol in [1]). The results of this work show that the availability of a non-zero fraction
of feedback, however small, allows Alice to communicate a message to Bob in a way that
tolerates an adversarial error fraction of more than 1/4, the limit for error-correcting codes.
An upper bound of 1/3 on the tolerable error fraction for a deterministic communication
scheme holds for all feedback fractions 0 ≤ δ ≤ 1, and we show how to obtain a randomized
communication scheme that tolerates any error fraction up to 1/3. Furthermore, we have
shown deterministic communication schemes that tolerates error fractions of up to f(δ),
where f is a monotonically increasing, piecewise linear, continuous function with f(0) = 1/4

and f(1) = 1/3. In particular, we have shown that our deterministic scheme can tolerate any
error fraction less than 1/3 for all δ ≥ 2/3.

Our work points to several interesting directions for further investigation.

Is the bound Γdet(δ) ≥ f(δ) provided by Theorem 6 is tight? Currently we only know
that f(δ) ≤ Γdet(δ) ≤ 1/3 for δ < 2/3. In particular, is it possible for a deterministic
communication scheme to tolerate error fractions up to 1/3 for all δ in the way that the
randomized scheme πrand

δ can. One possible direction is to derandomize πrand
δ in a more

clever way that avoids loss in the error fraction tolerance. Otherwise, is it possible to
prove better upper bounds than 1/3 on Γdet(δ)?
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In this work, we have considered only protocols over binary alphabets. It will be interesting
to determine the limits on the tolerable error fraction for communication schemes with
partial feedback that use symbols from non-binary alphabets as well as to find explicit
communication schemes in this setting. Over an alphabet of size q, we know that error
correcting codes can tolerate an error fraction of (1 − 1/q)/2, whereas, with noiseless
feedback, one can tolerate an error fraction of up to 1/2 (see [7] for example).
In this work we only studied the model of noiseless feedback. It will be interesting
to understand what bounds could be proved for the noisy feedback model, where the
adversary is allowed to corrupt the feedback as well. An immediate question is whether
it is even possible to correct more than 1/4 fraction errors in this model (for any amount
of feedback - where we measure the error budget as a fraction of the length of the entire
protocol and not just Alice’s transmissions).
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A Upper bound on tolerable error fraction for mirror feedback

For completeness we give a proof of the following theorem, which was already proved by
Berlekamp [1] and also later by Spencer-Winkler in the context of questions with liars [20].

I Theorem 12. Any one-way communication scheme with noiseless feedback which uses the
mirror feedback structure (that is, each feedback bit sent by Bob is simply the bit that he
receives from Alice), cannot tolerate 1/3 fraction of errors, as long as the input space of Alice
has at least three elements.

Proof. Let A, B and C be three possible inputs that Alice receives. Consider three parallel
executions of any communication scheme with mirror feedback. We will show that there
exists an adversary who can ensure that the view of Bob in two out of these three executions
are the same by using only 1/3 fraction errors in each of the executions. We describe the
adversary below.

Let ai, bi and ci be the bits sent by Alice in the i-th round of these three executions.
Clearly at least two out of these three bits have to be the same. Thus, if one of these three
bits is different from the other two, then the adversary will corrupt that bit, otherwise he
will not corrupt any of the bits. This ensures that up to any round i, Bob’s view of the
protocol in all the three executions are the same.
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Eventually, it might happen that the adversary has committed 1/3 fraction errors on one
of three executions. In this case, the adversary ignore that execution and focusses only on
the other two. Suppose without loss of generality that the executions of A and B are still
surviving. In the future rounds, whenever ai 6= bi, the adversary chooses to corrupt the
execution where the number of error so far have been fewer.

Since the adversary makes at most one error in any round of the three executions, it is
clear that the adversary never makes more than 1/3 fraction of errors on any of the executions.
Moreover, at the end of the executions, Bob will have identical views of the transcript in the
executions corresponding to both A and B. J

B Changes in potential function

Proof of Proposition 8. We consider the following four exhaustive cases. Recall that T does
not contain consecutive ‘0’s.
Case 1 (Twrong = ∅): Suppose Alice sends a bit b. In the case, that it is correctly received

by Bob, len(Tright) increases by 1 and wt(Twrong) remains 0. Thus, Φ increases by 1.
Suppose it is incorrectly received by Bob. If b = 1 and the last bit of Tright is 0, then note
that Bob would have received two consecutive 0’s and hence will backtrack two symbols
and len(Tright) decreases by 2, while Twrong remains ∅. In all other cases, Tright remains
unchanged after the transmission, while Twrong is either ‘1’ or ‘0’, which means len(Tright)
remains unchanged and wt(Twrong) becomes 2. In either case, Φ decreases by 2.

Case 2 (Twrong ends in a ‘1’): In this case, the scheme ensures that Alice sends a ‘0’. If
Bob correctly receives the bit, then the unit ‘1’ is now converted to ‘10’. Thus, wt(Twrong)
decreases by 1, causing Φ to increase by 1. On the other hand, if Bob does not receive
the correct bit, another ‘1’ is added to Twrong which means wt(Twrong) increases by 2,
causing Φ to decrease by 2.

Case 3 (Twrong is ‘0’): In this case, the scheme ensures that Alice sends a ‘0’. If Bob
correctly receives the ‘0’, then len(Tright) goes down by at most 1, but wt(|Twrong|) goes
down by 2, implying that Φ increases by at least 1. On the other hand, if Bob incorrectly
receives a ‘1’, then wt(Twrong) increases by 2 and thus Φ goes down by 2.

Case 4 (Twrong ends in ‘10’): In this case, the scheme ensures that Alice sends a ‘0’. If Bob
correctly receives the ‘0’, then he will backtrack the ‘10’, and thus wt(Twrong) decreases
by 1, implying that Φ increases by 1. On the other hand, if Bob receives a ‘1’, then
wt(Twrong) increases by 2, and thus Φ decreases by 2. J
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