
Deletion Codes in the High-noise and High-rate
Regimes∗

Venkatesan Guruswami and Carol Wang

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA
guruswami@cmu.edu, wangc@cs.cmu.edu

Abstract
The noise model of deletions poses significant challenges in coding theory, with basic questions
like the capacity of the binary deletion channel still being open. In this paper, we study the
harder model of worst-case deletions, with a focus on constructing efficiently encodable and de-
codable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct
polynomial-time decodable codes with the following trade-offs (for any ε > 0):
(i) Codes that can correct a fraction 1 − ε of deletions with rate poly(ε) over an alphabet of

size poly(1/ε);
(ii) Binary codes of rate 1− Õ(

√
ε) that can correct a fraction ε of deletions; and

(iii) Binary codes that can be list decoded from a fraction (1/2−ε) of deletions with rate poly(ε).
Our work is the first to achieve the qualitative goals of correcting a deletion fraction ap-

proaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate
approaching 1 over a fixed alphabet. The above results bring our understanding of deletion code
constructions in these regimes to a similar level as worst-case errors.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases algorithmic coding theory, deletion codes, list decoding, probabilistic
method, explicit constructions

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.867

1 Introduction

This work addresses the problem of constructing codes which can be efficiently corrected
from a constant fraction of worst-case deletions. In contrast to erasures, the locations of
deleted symbols are not known to the decoder, who receives only a subsequence of the original
codeword. The deletions can be thought of as corresponding to errors in synchronization
during communication. The loss of position information makes deletions a very challenging
model to cope with, and our understanding of the power and limitations of codes in this
model significantly lags behind what is known for worst-case errors.

The problem of communicating over the binary deletion channel, in which each transmitted
bit is deleted independently with a fixed probability p, has been a subject of much study (see
the excellent survey by Mitzenmacher [17] for more background and references). However,
even this easier case is not well-understood. In particular, the capacity of the binary deletion
channel remains open, although it is known to approach 1− h(p) as p goes to 0, where h(p)

∗ Research supported in part by NSF grants CCF-0963975 and CCF-1422045. The second author is
supported by an NSF Graduate Research Fellowship.

© Venkatesan Guruswami and Carol Wang;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 867–880

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.867
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

868 Deletion Codes in the High-noise and High-rate Regimes

is the binary entropy function (see [5, 6, 25] for lower bounds and [12, 13] for upper bounds),
and it is known to be positive (at least (1− p)/9) [18]) even as p→ 1.

The more difficult problem of correcting from adversarial rather than random deletions
has also been studied, but with a focus on correcting a constant number (rather than fraction)
of deletions [16]. Codes that can correct a single deletion have received a fair bit of attention
(see the survey [23]), but it turns out that even correcting two deletions poses significant
challenges and is not well understood, with efficient codes with low redundancy discovered
only very recently [2].

Coding for a constant fraction of adversarial deletions, which is the focus of this work, has
been considered previously by Schulman and Zuckerman [21]. They construct constant-rate
binary codes which are efficiently decodable from a small constant fraction of worst-case
deletions and insertions, and can also handle a small fraction of transpositions. The rate of
these codes are bounded away from 1, whereas existentially one can hope to achieve a rate
approaching 1 for a small deletion fraction.

The central theoretical goal in error-correction against any specific noise model is to
understand the combinatorial trade-off between the rate of the code and noise rate that
can be corrected, and to construct codes with efficient error-correction algorithms that
ideally approach this optimal trade-off. While this challenge is open in general even for the
well-studied and simpler model of errors and erasures, in the case of worst-case deletions, our
knowledge has even larger gaps. (For instance, we do not know the largest deletion fraction
which can be corrected with positive rate for any fixed alphabet size.) Over large alphabets
that can grow with the length of the code, we can include the position of each codeword
symbol as a header that is part of the symbol. This reduces the model of deletions to that of
erasures, where simple optimal constructions (eg. Reed-Solomon codes) are known.

Given that we are far from an understanding of the best rate achievable for any specified
deletion fraction, in this work we focus on the two extreme regimes — when the deletion
fraction is small (and the code rate can be high), and when the deletion fraction approaches
the maximum tolerable value (and the code rate is small). Our emphasis is on constructing
codes that can be efficiently encoded and decoded, with trade-offs not much worse than
random/inefficient codes (whose parameters we compute in Section 2). Our results, described
next, bring the level of knowledge on efficient deletion codes in these regimes to a roughly
similar level as worst-case errors. There are numerous open questions, both combinatorial
and algorithmic, that remain open, and it is our hope that the systematic study of codes for
worst-case deletions undertaken in this work will spur further research on good constructions
beyond the extremes of low-noise and high-noise.

1.1 Our results
The best achievable rate against a fraction p of deletions cannot exceed 1− p, as we need
to be able to recover the message from the first (1− p) fraction of codeword symbols. As
mentioned above, over large (growing) alphabets this trade-off can in fact be achieved by a
simple reduction to the model of erasures. Existentially, as we show in Section 2, for any
γ > 0, it is easy to show that there are codes of rate 1 − p − γ to correct a fraction p of
deletions over an alphabet size that depends only on γ. For the weaker model of erasures,
where the receiver knows the locations of erased symbols, we know explicit codes, namely
certain algebraic-geometric codes [22] or expander based constructions [1, 8], achieving the
optimal trade-off (rate 1− p− γ to correct a fraction p of erasures) over alphabets growing
only as a function of 1/γ. For deletions, we do not know how to construct codes with such a
trade-off efficiently. However, in the high-noise regime when the deletion fraction is p = 1− ε

V. Guruswami and C. Wang 869

for some small ε > 0, we are able to construct codes of rate poly(ε) over an alphabet of size
poly(1/ε). Note that an alphabet of size at least 1/ε is needed, and the rate can be at most
ε, even for the simpler model of erasures, so we are off only by polynomial factors.

I Theorem (Theorem 7). Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε2) and
alphabet size poly(1/ε) which can be corrected from a 1− ε fraction of worst-case deletions.

Moreover, this code can be constructed, encoded, and decoded in time Npoly(1/ε), where
N is the block length of the code.

The above handles the case of very large fraction of deletions. At the other extreme,
when the deletion fraction is small, the following result shows that we achieve high rate
(approaching one) even over the binary alphabet.

I Theorem (Theorem 11). Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is
decodable from an ε fraction of deletions with rate 1− Õ(

√
ε) in time Npoly(1/ε).

Moreover, C can be constructed and encoded in time Npoly(1/ε).

I Remark. For both of the above results, the construction and encoding/decoding complexity
can be improved to poly(N) · (logN)poly(1/ε) at the expense of slightly worse parameters.
See Theorems 16 and 10.

The next question is motivated by constructing binary codes for the “high noise” regime.
In this case, we do not know (even non-constructively) the minimum fraction of deletions
that forces the rate of the code to approach zero. (Contrast this with the situation for
erasures (resp. errors), where we know the zero-rate threshold to be an erasure fraction 1/2
(resp. error fraction 1/4).) Clearly, if the adversary can delete half of the bits, he can always
ensure that the decoder receives 0n/2 or 1n/2, so at most two strings can be communicated.
Surprisingly, in the model of list decoding, where the decoder is allowed to output a small
list consisting of all codewords which contain the received string as a subsequence, one can
in fact decode from an deletion fraction arbitrarily close to 1/2, as our third construction
shows:

I Theorem (Theorem 19). Let 0 < ε < 1/2. There is an explicit binary code C ⊆ {0, 1}N
of rate Ω̃(ε3) which is list-decodable from a 1/2 − ε fraction of deletions with list size
(1/ε)O(log log(1/ε)).

This code can be constructed, encoded, and list-decoded in time Npoly(1/ε).

We should note that it is not known if list decoding is required to correct deletion fractions
close to 1/2, or if one can get by with unique decoding. Our guess would be that the largest
deletion fraction unique decodable with binary codes is bounded away from 1/2. The cubic
dependence on ε in the rate in the above theorem is similar to what has been achieved
for correcting 1/2− ε fraction of errors [9]. We anticipate (but have not formally checked)
that a similar result holds over any fixed alphabet size k for list decoding from a fraction
(1− 1/k − ε) of symbol deletions.

Construction approach
Our codes, like many considered in the past, including those of [3, 4, 20] in the random
setting and particularly [21] in the adversarial setting, are based on concatenating a good
error-correcting code (in our case, Reed-Solomon or Parvaresh-Vardy codes) with an inner
deletion code over a much smaller block length. This smaller block length allows us to find
and decode the inner code using brute force. The core of the analysis lies in showing that

APPROX/RANDOM’15

870 Deletion Codes in the High-noise and High-rate Regimes

the adversary can only affect the decoding of a bounded fraction of blocks of the inner code,
allowing the outer code to decode using the remaining blocks.

While our proofs only rely on elementary combinatorial arguments, some care is needed
to execute them without losing in rate (in the case of Theorem 11) or in the deletion fraction
we can handle (in the case of Theorems 7 and 19). In particular, for handling close to fraction
1 of deletions, we have to carefully account for errors and erasures of outer Reed-Solomon
symbols caused by the inner decoder. To get binary codes of rate approaching 1, we separate
inner codeword blocks with (not too long) buffers of 0’s and we exploit some additional
structural properties of inner codewords that necessitate many deletions to make them
resemble buffers. The difficulty in both these results is unique identification of enough inner
codeword boundaries so that the Reed-Solomon decoder will find the correct message. The
list decoding result is easier to establish, as we can try many different boundaries and use
a “list recovery” algorithm for the outer algebraic code. To optimize the rate, we use the
Parvaresh-Vardy codes [19] as the outer algebraic code.

1.2 Organization

In Section 2, we consider the performance of certain random and greedily constructed codes.
These serve both as benchmarks and as starting points for our efficient constructions. In
Section 3, we construct codes in the high deletion regime. In Section 4, we give high-rate
binary codes which can correct a small constant fraction of deletions. In Section 5, we give
list-decodable binary codes up to the optimal error fraction. Some open problems appear in
Section 6.

2 Existential bounds for deletion codes

A quick recap of standard coding terminology: a code C of block length m over an alphabet
Σ is a subset C ⊆ Σm. The rate of C is defined as log |C|

m log |Σ| . The encoding function of
a code is a map E : [|C|] → Σm whose image equals C (with messages identified with
[|C|] in some canonical way). Our constructions all exploit the simple but powerful idea
of code concatenation: If Cout ⊆ Σnout is an “outer” code with encoding function Eout, and
Cin ⊆ Σmin is an “inner” code encoding function Ein : Σout → Σmin , the the concatenated code
Cout ◦ Cin ⊆ Σnmin is a code whose encoding function first applies Eout to the message, and
then applies Ein to each symbol of the resulting outer codeword.

In this section, we show the existence of deletion codes in certain ranges of parameters,
without the requirement of efficient encoding or decoding. The proofs (found in the full
version of this paper [11]) follow from standard probabilistic arguments, but to the best of
our knowledge, these bounds were not known previously. The codes of Theorem 4 will be
used as inner codes in our final concatenated constructions.

Throughout, we will write [k] for the set {1, . . . , k}. We will also use the binary entropy
function, defined for δ ∈ [0, 1] as h(δ) = δ log 1

δ + (1− δ) log 1
1−δ . All logarithms in the paper

are to base 2.
We note that constructing a large code in [k]m which can correct from a δ fraction of

deletions is equivalent to constructing a large set of strings such that for each pair, their
longest common subsequence (LCS) has length less than (1− δ)m.

We first consider how well a random code performs, using the following theorem from
[15], which upper bounds the probability that a pair of randomly chosen strings has a long
LCS.

V. Guruswami and C. Wang 871

I Theorem 1 ([15], Theorem 1). For every γ > 0, there exists c > 0 such that if k and
m/
√
k are sufficiently large, and u, v are chosen independently and uniformly from [k]m, then

Pr
[∣∣LCS(u, v)− 2m/

√
k
∣∣ ≥ γm√

k

]
≤ e−cm/

√
k.

Fixing γ to be 1, we obtain the following.

I Proposition 2. Let ε > 0 be sufficiently small and let k = (4/ε)2. There exists a code
C ⊆ [k]m of rate R = Ω

(
ε/ log(1/ε)

)
which can correct a 1 − ε = 1 − 4/

√
k fraction of

deletions.

The following results, and in particular Corollary 6, show that we can nearly match the
performance of random codes using a simple greedy algorithm.

We first bound the number of strings which can have a fixed string s as a subsequence.

I Lemma 3. Let δ ∈ (0, 1/k), set ` = (1 − δ)m, and let s ∈ [k]`. The number of strings
s′ ∈ [k]m containing s as a subsequence is at most

m∑
t=`

(
t− 1
`− 1

)
km−t(k − 1)t−` ≤ km−`

(
m

`

)
.

When k = 2, we have the estimate
m∑
t=`

(
t− 1
`− 1

)
2m−t ≤ δm

(
m

`

)
.

I Theorem 4. Let δ, γ > 0. Then for every m, there exists a code C ⊆ [k]m of rate
R = 1− δ − γ such that:

C can be corrected from a δ fraction of worst-case deletions, provided k ≥ 22h(δ)/γ .
C can be found, encoded, and decoded in time kO(m).

Moreover, when k = 2, we may take R = 1− 2h(δ)− log(δm)/m.

I Remark. The authors of [14] show a similar result for the binary case, but use the weaker
bound in Lemma 3 to get a rate of 1− δ − 2h(δ).

With a slight modification to the proof of Theorem 4, we obtain the following construction,
which will be used in Section 4. The so-called “β-dense” property will help us to distinguish
codewords, which have high Hamming weight, from long strings of zeroes.

I Proposition 5. Let δ, β ∈ (0, 1). Then for every m, there exists a code C ⊆ {0, 1}m of
rate R = 1− 2h(δ)−O(log(δm)/m)− 2−Ω(βm)/m such that:

For every string s ∈ C, s is “β-dense”: every interval of length βm in s contains at least
βm/10 ones,
C can be corrected from a δ fraction of worst-case deletions, and
C can be found, encoded, and decoded in time 2O(m).

In the high-deletion regime, we have the following corollary to Theorem 4, obtained by
setting δ = 1− ε and γ = (1− θ)ε, and noting that h(ε) ≤ ε log(1/ε) + 2ε when ε < 1/2.

I Corollary 6. Let 1/2 > ε > 0 and θ ∈ (0, 1/3]. There for every m, there exists a code
C ⊆ [k]m of rate R = ε · θ which can correct a 1 − ε fraction of deletions in time kO(m),
provided k ≥ 64/ε

2
1−θ .

APPROX/RANDOM’15

872 Deletion Codes in the High-noise and High-rate Regimes

3 Coding against 1 − ε deletions

In this section, we construct codes for the high-deletion regime. We will use a concatenated
coding approach, with an enlarged alphabet to help us determine the location of inner
codewords. By choosing the parameters carefully, we are able to correct a large fraction of
deletions. More precisely, we have the following theorem.

I Theorem 7. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε2) and alphabet size
poly(1/ε) which can be corrected from a 1− ε fraction of worst-case deletions.

Moreover, this code can be constructed, encoded, and decoded in time Npoly(1/ε), where
N is the block length of the code.

We first define the code. Theorem 7 is then a direct corollary of Lemmas 8 and 9.

The code: Our code will be over the alphabet {0, 1, . . . , D − 1} × [k], where D = 8/ε and
k = O(1/ε3).

We first define a code C ′ over the alphabet [k] by concatenating a Reed-Solomon code
with an inner code over [k] which can correct a slightly higher fraction of deletions.

More specifically, let Fq be a finite field. For any n′ ≤ n ≤ q, the Reed-Solomon code
of length n ≤ q and dimension n′ is a subset of Fnq which admits an efficient algorithm to
uniquely decode from t errors and r erasures, provided r+ 2t < n−n′ (see, for example, [24]).

In our construction, we will take n = q = 2n′/ε. We first encode our message to a
codeword c = (c1, . . . , cn) of the Reed-Solomon code. For each i, we then encode the pair
(i, ci) using an inner code over some alphabet [k] which can correct a 1 − ε/2 fraction of
deletions.

To obtain our final code C, we replace every symbol s in C ′ which encodes the ith
RS coordinate by the pair

(
i (mod D), s

)
∈ {0, 1, . . . , D − 1} × [k]. The first coordinate, i

(mod D), contains the location of the codeword symbol modulo D, and we will refer to it as
a header.

In order to obtain the parameters stated in Theorem 7, we will instantiate the inner code
using Corollary 6, setting θ = 1/3. This gives an inner code C1 : [n] × Fq → [k]m, where
m = 12 log q/ε and k = O(1/ε3), which can correct a 1− ε/2 fraction of deletions.

I Lemma 8. For an inner code of rate Rin, the rate of C is Ω(εRin). In particular, the rate
of C can be taken to be Ω(ε2).

Proof. The rate of the outer Reed-Solomon code, labeled with indices, is at least ε/4. Finally,
the alphabet increase in transforming C ′ to C decreases the rate by a factor of log(k)

log(Dk) = Ω(1).
By Corollary 6, the rate of the inner code can be taken to be Ω(ε).This gives us a final

rate of Ω(ε2). J

I Lemma 9. Let the inner code have block length m and be decodable from a 1− ε/2 fraction
of worst-case deletions in time T (m). Then the concatenated code C can be decoded from a
1− ε fraction of worst-case deletions in time poly(N) · T (m), where N is the block length
of C.

In particular, the concatenated code using Corollary 6 can be decoded in time NO(poly 1/ε).

Proof. We apply the following algorithm to decode C.

We partition the received word into blocks as follows: The first block begins at the first
coordinate, and each subsequent block begins at the next coordinate whose header differs
from its predecessor. This takes time poly(N).

V. Guruswami and C. Wang 873

We begin with an empty set L.
For each block which is of length between εm/2 and m, we remove the headers by
replacing each symbol (a, b) with the second coordinate b. We then apply the decoder
from Corollary 6 to the block. If this succeeds, outputting a pair (i, ri), then we add
(i, ri) to L. This takes time poly(N) · T (m).
If for any i, L contains multiple pairs with first coordinate i, we remove all such pairs from
L. L thus contains at most one pair (i, ri) for each index i. We apply the Reed-Solomon
decoding algorithm to the string r whose ith coordinate is ri if (i, ri) ∈ L and erased
otherwise. This takes time poly(N).

Analysis: For any i, we will decode a correct coordinate
(
i, ci
)
if there is a block of length at

least εm/2 which is a subsequence of C1(i, ci). (Here and in what follows we abuse notation
by disregarding headers on codeword symbols.)

Thus, the Reed-Solomon decoder will receive the correct value of the ith coordinate unless
one of the following occurs:
1. (Erasure) The adversary deletes a ≥ 1− ε/2 fraction of C1(i, ci).
2. (Merge) The block containing (part of) C1(i, ci) also contains symbols from other code-

words of C1, because the adversary has erased the codewords separating C1(i, ci) from
its neighbors with the same header.

3. (Conflict) Another block decodes to (i, r) for some r. Note that an erasure cannot cause
a coordinate to decode incorrectly, so a conflict can only occur from a merge.

We would now like to bound the number of errors and erasures the adversary can cause.

If the adversary causes an erasure without causing a merge, this requires at least (1−ε/2)m
deletions within the block which is erased, and no other block is affected.
If the adversary merges t inner codewords with the same label, this requires at least
(t− 1)(D − 1)m deletions, of the intervening codewords with different labels. The merge
causes the fully deleted inner codewords to be erased, and causes the t merged codewords
to resolve into at most one (possibly incorrect) value. This value, if incorrect, could also
cause one conflict.
In summary, in order to cause one error and r ≤ (t − 1)D + 2 erasures, the adversary
must introduce at least (t− 1)(D − 1)m ≥ (2 + r)(1− ε/2)m deletions.

In particular, if the adversary causes s errors and r1 erasures by merging, and r2 erasures
without merging, this requires at least

≥ (2s+ r1)(1− ε/2)m+ r2(1− ε/2)m = (2s+ r)(1− ε/2)m

deletions. Thus, when the adversary deletes at most a (1− ε) fraction of codeword symbols,
we have that 2s + r is at most (1 − ε)mn/(1 − ε/2)m < n(1 − ε/2). Recalling that the
Reed-Solomon decoder in the final step will succeed as long as 2s + r < n(1 − ε/2), we
conclude that the decoding algorithm will output the correct message. J

I Remark (Improving the encoding and decoding complexity). Our decoding algorithm requires
only that the inner code C1 be correctable from a 1 − ε/2 fraction of deletions. By using
the concatenated code of Theorem 7 as the inner code in our construction (that is, with two
levels of concatenation), we can reduce the time complexity significantly, at the cost of a
polynomial reduction in other parameters of the code. This is summarized in the following
theorem.

APPROX/RANDOM’15

874 Deletion Codes in the High-noise and High-rate Regimes

I Theorem 10. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε3) and alphabet size
poly(1/ε) which can be corrected from a 1 − ε fraction of worst-case deletions. Moreover,
this code can be constructed, encoded, and decoded in time poly(N) · (logN)poly(1/ε), where
N is the block length of the code.

4 Binary codes against ε deletions

4.1 Construction overview
The goal in our constructions is to allow the decoder to approximately locate the boundaries
between codewords of the inner code, in order to recover the symbols of the outer code. In
the previous section, we were able to achieve this by augmenting the alphabet and letting
each symbol encode some information about the block to which it belongs. In the binary
case, we no longer have this luxury.

The basic idea of our code is to insert long runs of zeros, or “buffers,” between adjacent
inner codewords. The buffers are long enough that the adversary cannot destroy many of
them. If we then choose the inner code to be dense (in the sense of Proposition 5), it is
also difficult for a long interval in any codeword to be confused for a buffer. This approach
optimizes that of [21], which uses an inner code of rate 1/2 and thus has final rate bounded
away from 1.

The balance of buffer length and inner codeword density seems to make buffered codes
unsuited for high deletion fractions, and indeed our results only hold as the deletion fraction
goes to zero.

4.2 Our construction
We now give the details of our construction. For simplicity, we will not optimize constants in
the analysis.

I Theorem 11. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decodable
from an ε fraction of deletions with rate 1− Õ(

√
ε) in time Npoly(1/ε).

Moreover, C can be constructed and encoded in time Npoly(1/ε).

The code: We again use a concatenated construction with a Reed-Solomon code as the
outer code, choosing one which can correct a 12

√
ε fraction of errors and erasures. For each

i, we replace the ith coordinate ci with the pair (i, ci). In order to ensure that the rate stays
high, we use a RS code over Fqh , with block length n = q, where we will take h = 1/ε.

The inner code will be a good binary deletion code C1 of block length m correcting a
δ = 40

√
ε fraction of deletions. We will also require the codewords of C1 to be β-dense, for

β = δ/4. Recall that a string of length m is β-dense if any interval of length βm contains at
least βm/10 1’s. We will assume each codeword begins and ends with a 1.

Now, between each pair of adjacent inner codewords of C1, we insert a buffer of δm zeros.
This gives us our final code C.

In order to obtain the final parameters stated in Theorem 11, we will construct the
inner code C1 using Proposition 5. This gives a code of rate 1− 2h(δ)− o(1) satisfying the
requirements of our construction.

I Lemma 12. For an inner code of rate Rin, the rate of the concatenated code C is
Rin · (1−O(

√
ε).

In particular, the rate of the concatenated code using Proposition 5 is 1− Õ(
√
ε)).

V. Guruswami and C. Wang 875

Proof. The rate of the outer (labeled) Reed-Solomon code is (1 − 24
√
ε) · h

h+1 . Finally,
adding buffers reduces the rate by a factor of 1

1+δ .
Combining these with our choice of δ, we get that the rate of C is Ri(1− Õ(

√
ε)).

The rate of the inner code C1 can be taken to be 1 − 2h(δ) − o(1), by Proposition 5,
giving a final rate of 1− Õ(

√
ε). J

I Lemma 13. Let the inner code have block length m and be decodable from a δ fraction of
worst-case deletions in time T (m). Then the concatenated code C can be decoded from a ε
fraction of worst-case deletions in time poly(N) · T (m), where N is the block length of C.

In particular, the concatenated code with inner code constructed using Proposition 5 can
be decoded in time NO(poly 1/ε).

The algorithm:
The decoder first locates all runs of at least δm/2 contiguous zeroes in the received word.
These runs (“buffers”) are removed, dividing the codeword into blocks of contiguous
symbols which we will call decoding windows. Any leading zeroes of the first decoding
window and trailing zeroes of the last decoding window are also removed. This takes
time poly(N).
We begin with an empty set L.
For each decoding window, we apply the decoder from Proposition 5 to attempt to recover
a pair (i, ri). If we succeed, this pair is added to L. This takes time poly(N) · T (m).
If for any i, L contains multiple pairs with first coordinate i, we remove all such pairs from
L. L thus contains at most one pair (i, ri) for each index i. We apply the Reed-Solomon
decoding algorithm to the string r whose ith coordinate is ri if (i, ri) ∈ L and erased
otherwise, attempting to recover from a 12

√
ε fraction of errors and erasures. This takes

time poly(N).

Analysis: Notice that if no deletions occur, the decoding windows will all be codewords
of the inner code C1, which will be correctly decoded. At a high level, we will show that
the adversary cannot corrupt many of these decoding windows, even with an ε fraction of
deletions.

We first show that the number of decoding windows considered by our algorithm is close
to n, the number of windows if there are no deletions.

I Lemma 14. If an ε fraction of deletions have occurred, then the number of decoding
windows considered by our algorithm is between (1− 2

√
ε)n and (1 + 2

√
ε)n.

Proof. Recall that the adversary can cause at most εnm(1 + δ) ≤ 2εnm deletions.
Upper bound: The adversary can increase the number of decoding windows only by

creating new runs of δm/2 zeroes (that are not contained within a buffer). Such a new run
must be contained entirely within an inner codeword w ∈ C1. However, as w is δ/4-dense, in
order to create a run of zeroes of length δm/2, at least δm/20 = 2

√
ε 1’s must be deleted for

each such run. In particular, at most
√
εn blocks can be added.

Lower bound: The adversary can decrease the number of decoding windows only by
decreasing the number of buffers. He can achieve this either by removing a buffer, or by
merging two buffers. Removing a buffer requires deleting δm/2 = 20

√
εm zeroes from the

original buffer. Merging two buffers requires deleting all 1’s in the inner codewords between
them. As inner codewords are δ/4-dense, this requires at least

√
εm deletions for each merged

buffer. In particular, at most 2
√
εn buffers can be removed. J

APPROX/RANDOM’15

876 Deletion Codes in the High-noise and High-rate Regimes

We now show that almost all of the decoding windows being considered are decoded
correctly by the inner decoder.

I Lemma 15. The number of decoding windows which are incorrectly decoded is at most
4
√
εn.

Proof. The inner decoder will succeed on each decoding window which is a subsequence of a
valid inner codeword w ∈ C1 of length at least (1− δ)m. This will happen unless:
1. The window is too short:

(a) a subsequence of w has been marked as a (new) buffer, or
(b) a ρ fraction of w has been marked as part of the adjacent buffers, combined with a

δ − ρ fraction of deletions within w.
2. The window is not a subsequence of a valid inner codeword: the window contains buffer

symbols and/or a subsequence of multiple inner codewords.

We first show that (1) holds for at most 3
√
εn windows.

From the proof of Lemma 14, there can be at most
√
εn new buffers introduced, thus

handling Case 1(a). In Case 1(b), if ρ < δ/2, then there must be δ/2 deletions within w. On
the other hand, if ρ ≥ δ/2, one of two buffers adjacent to w must have absorbed at least
δm/4 symbols of w, so as w is δ/4-dense, this requires δm/40 =

√
εm deletions, so can occur

in at most 2
√
εn windows.

We also have that (2) holds for at most
√
εn windows, as at least δm/2 symbols must be

deleted from a buffer in order to prevent the algorithm from marking it as a buffer. As in
Lemma 14, this requires 20

√
ε deletions for each merged window, and so there are at most√

εn windows satisfying case (2). J

We now have that the inner decoder outputs (1− 6
√
ε)n correct values. After removing

possible conflicts in the last step of the algorithm, we have at least (1 − 12
√
ε)n correct

values, so that the Reed-Solomon decoder will succeed and output the correct message.
I Remark (Improving the encoding and decoding efficiency). Our decoding algorithm succeeds
as long as the inner code can correct a δ fraction of deletions, and consists of codewords
which are δ/4-dense. As in the high deletion case, the time complexity of Theorem 11 can
be improved using a more efficient inner code, at the cost of a reduction in rate.

Because of the addition of buffers, the code of Theorem 11 may not be dense enough to
use as an inner code. However, we can modify the construction to obtain a dense inner code
(details can be found in the full version [11]). In particular, these modifications give us the
following.

I Theorem 16. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decodable
from an ε fraction of deletions with rate 1− Õ(4

√
ε) in time poly(N) · (logN)poly(1/ε).

Moreover, C can be constructed and encoded in time poly(N) · (logN)poly(1/ε).

5 List-decoding binary deletion codes

The results of Section 4 show that we can have good explicit binary codes when the deletion
fraction is low. In this section, we address the opposite regime, of high deletion fraction. As
a first step, notice that in any reasonable model, including list-decoding, we cannot hope to
efficiently decode from a 1/2 deletion fraction with a polynomial list size and constant rate.
With block length n and n/2 deletions, the adversary can ensure that what is received is
either n/2 1’s or n/2 0’s.

V. Guruswami and C. Wang 877

Thus, for binary codes and ε > 0, we will consider the question of whether it is possible
to list decode from a fraction 1/2− ε of deletions.

I Definition 17. We say that a code C ⊆ {0, 1}m is list-decodable from a δ deletion fraction
with list size L if every sequence of length (1− δ)m is a subsequence of at most L codewords.
If this is the case, we will call C (δ, L) list-decodable from deletions.

I Remark. Although the results of this section are proven in the setting of list-decoding, it
is not known that we cannot have unique decoding of binary codes up to deletion fraction
1/2− ε. See the first open problem in Section 6.

5.1 List-decodable binary deletion codes (existential)
In this section, we show that good list-decodable codes exist. This construction will be the
basis of our explicit construction of list-decodable binary codes. The proof appears in the
appendix.

I Theorem 18. Let δ, L > 0. Let C ⊆ {0, 1}m consist of 2Rm independently, uniformly
chosen strings, where R ≤ 1 − h(δ) − 3/L. Then C is

(
δ, L
)
list-decodable from deletions

with probability at least 1− 2−m.
Moreover, such a code can be constructed and decoded in time 2poly(mL).
In particular, when δ = 1/2− ε, we can construct and decode in time 2poly(m/ε) a code

C ⊆ {0, 1}m of rate Ω(ε2) which is
(
δ,O(1/ε2)

)
list-decodable from deletions.

5.2 List-decodable binary deletion codes (explicit)
We now use the existential construction of Theorem 18 to give an explicit construction of
constant-rate list-decodable binary codes. Our code construction uses Parvaresh-Vardy codes
([19]) as outer codes, and an inner code constructed using Section 5.1.

The idea is to list-decode “enough” windows and then apply the list recovery algorithm
of Theorem 20.

I Theorem 19. Let 0 < ε < 1/2. There is an explicit binary code C ⊆ {0, 1}N of rate Ω̃(ε3)
which is list-decodable from a 1/2− ε fraction of deletions with list size (1/ε)O(log log ε).

This code can be constructed, encoded, and list-decoded in time Npoly(1/ε).

We will appeal in our analysis to the following theorem, which can be found in [10].

I Theorem 20 ([10], Corollary 5). For all integers s ≥ 1, for all prime powers r, every pair
of integers 1 < K ≤ N ≤ q, there is an explicit Fr-linear map E : FKq → FNqs whose image C ′
is a code satisfying:

There is an algorithm which, given a collection of subsets Si ⊆ Fqs for i ∈ [N] with∑
i|Si| ≤ N`, runs in poly

(
(rs)s, q, `

)
time, and outputs a list of size O

(
(rs)sN`/K

)
that includes precisely the set of codewords (c1, . . . , cN) ∈ C ′ that satisfy ci ∈ Si for at
least αN values of i, provided

α > (s+ 1)(K/N)s/(s+1)`1/(s+1).

The code: We set s = O(log 1/ε), r = O(1), and N = K poly
(
log(1/ε)

)
/ε in Theorem 20

in order to obtain a code C ′ ⊆ FNqs . We modify the code, replacing the ith coordinate ci with
the pair (i, ci) for each i, in order to obtain a code C ′′. This latter step only reduces the rate
by a constant factor.

APPROX/RANDOM’15

878 Deletion Codes in the High-noise and High-rate Regimes

Recall that we are trying to recover from a 1/2−ε fraction of deletions. We use Theorem 18
to construct an inner code C1 : [N] × Fsq → {0, 1}m of rate Ω(ε2) which recovers from a
1/2− δ deletion fraction (where we will set δ = ε/4). Our final code C is a concatenation of
C ′′ with C1, which has rate Ω̃(ε3).

I Theorem 21. C is list-decodable from a 1/2− ε fraction of deletions in time Npoly(1/ε).

Proof. Our algorithm first defines a set of “decoding windows”. These are intervals of
length (1/2 + δ)m in the received codeword which start at positions 1 + tδm for t =
0, 1, . . . , N/δ − (1/2 + δ)/δ, in addition to one interval consisting of the last (1/2 + δ)m
symbols in the received codeword.

We use the algorithm of Theorem 18 to list-decode each decoding window, and let L be
the union of the lists for each window. Finally, we apply the algorithm of Theorem 20 to L
to obtain a list containing the original message.

Correctness: Let c = (c1, . . . , cN) be the originally transmitted codeword of C ′. If an inner
codeword C1(i, ci) has suffered fewer than a 1/2− 2δ fraction of deletions, then one of the
decoding windows is a substring of C1(i, ci), and L will contain the correct pair (i, ci).

When δ = ε/4, by a simple averaging argument, we have that an ε fraction of inner
codewords have at most 1/2− 2δ fraction of positions deleted. For these inner codewords, L
contains a correct decoding of the corresponding symbol of c.

In summary, we have list-decoded at most N/δ windows, with a list size of O(1/δ2)
each. We also have that an ε fraction of symbols in the outer codeword of C ′ is correct.
Setting ` = O(1/δ3) in the algorithm of Theorem 20, we can take α = ε. Theorem 20 then
guarantees that the decoder will output a list of poly(1/ε) codewords, including the correct
codeword c. J

6 Conclusion and open problems

In this work, we initiated a systematic study of codes for the adversarial deletion model,
with an eye towards constructing codes achieving more-or-less the correct trade-offs at the
high-noise and high-rate regimes. There are still several major gaps in our understanding
of deletion codes, and below we highlight some of them (focusing only on the worst-case
model):
1. For binary codes, what is the supremum p∗ of all fractions p of adversarial deletions for

which one can have positive rate? Clearly p∗ ≤ 1/2; could it be that p∗ = 1/2 and this
trivial limit can be matched? Or is it the case that p∗ is strictly less than 1/2?

2. Can one construct codes of rate 1− p− γ to efficiently correct a fraction p of deletions
over an alphabet size that only depends on γ?
Note that this requires a relative distance of p, and currently we only know algebraic-
geometric and expander-based codes which achieve such a tradeoff between rate and
relative distance.

3. Can one improve the rate of the binary code construction to correct a fraction ε of deletions
to 1− ε poly(log(1/ε)), approaching more closely the existential 1−O(ε log(1/ε)) bound?
In the case of errors, an approach using expanders gives the analogous tradeoff (see [7]
and references therein). Could such an approach be adapted to the setting of deletions?

V. Guruswami and C. Wang 879

References
1 N. Alon, J. Edmonds, and M. Luby. Linear time erasure codes with nearly optimal recovery

(extended abstract). In FOCS, pages 512–519. IEEE Computer Society, 1995.
2 J. Brakensiek, V. Guruswami, and S. Zbarsky. Efficient low-redundancy codes for correcting

multiple deletions. In preparation, 2015.
3 J. Chen, M. Mitzenmacher, C. Ng, and N. Varnica. Concatenated codes for deletion chan-

nels. In IEEE International Symposium on Information Theory, 2003, pages 218–218, June
2003.

4 M. Davey and D. J. C. MacKay. Reliable communication over channels with insertions,
deletions, and substitutions. IEEE Transactions on Information Theory, 47(2):687–698,
Feb 2001.

5 S. Diggavi and M. Grossglauser. On information transmission over a finite buffer channel.
IEEE Transactions on Information Theory, 52(3):1226–1237, March 2006.

6 R. Gallager. Sequential decoding for binary channels with noise and synchronization errors,
October 1961. Lincoln Lab. Group Report.

7 V. Guruswami. Guest column: error-correcting codes and expander graphs. SIGACT News,
35(3):25–41, 2004.

8 V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal
rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

9 V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–
150, 2008.

10 V. Guruswami and A. Rudra. Soft decoding, dual BCH codes, and better list-decodable
e-biased codes. In Proceedings of the 2008 IEEE 23rd Annual Conference on Computa-
tional Complexity, CCC ’08, pages 163–174, Washington, DC, USA, 2008. IEEE Computer
Society.

11 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. CoRR, abs/1411.6667, 2014.

12 A. Kalai, M. Mitzenmacher, and M. Sudan. Tight asymptotic bounds for the deletion
channel with small deletion probabilities. In ISIT, pages 997–1001, 2010.

13 Y. Kanoria and A. Montanari. Optimal coding for the binary deletion channel with small
deletion probability. IEEE Transactions on Information Theory, 59(10):6192–6219, Oct
2013.

14 I. Kash, M. Mitzenmacher, J. Thaler, and J. Ullman. On the zero-error capacity threshold
for deletion channels. In Information Theory and Applications Workshop (ITA), 2011,
pages 1–5, Feb 2011.

15 M. Kiwi, M. Loebl, and J. Matous̆ek. Expected length of the longest common subsequence
for large alphabets. Advances in Mathematics, 197:480–498, November 2004.

16 V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics - Doklady, 10(8):707–710, 1966.

17 M. Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

18 M. Mitzenmacher and E. Drinea. A simple lower bound for the capacity of the deletion
channel. IEEE Transactions on Information Theory, 52(10):4657–4660, 2006.

19 F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in
polynomial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pages 285–294, 2005.

20 E. Ratzer. Marker codes for channels with insertions and deletions. Annals of Telecommu-
nications, 60(1–2):29–44, Jan–Feb 2005.

APPROX/RANDOM’15

880 Deletion Codes in the High-noise and High-rate Regimes

21 L. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, November
1999.

22 K.W. Shum, I. Aleshnikov, P.V. Kumar, H. Stichtenoth, and V. Deolalikar. A low-
complexity algorithm for the construction of algebraic-geometric codes better than the
Gilbert-Varshamov bound. IEEE Transactions on Information Theory, 47(6):2225–2241,
2001.

23 N. J.A. Sloane. On single-deletion-correcting codes. CoRR, arxiv.org/abs/math/0207197,
2002.

24 L.R. Welch and E.R. Berlekamp. Error correction of algebraic block codes. US Patent
Number 4,633,470, December 1986.

25 K. Zigangirov. Sequential decoding for a binary channel with drop-outs and insertions.
Problemy Peredachi Informatsii, 5(2):23–30, 1969.

	Introduction
	Our results
	Organization

	Existential bounds for deletion codes
	Coding against 1- deletions
	Binary codes against deletions
	Construction overview
	Our construction

	List-decoding binary deletion codes
	List-decodable binary deletion codes (existential)
	List-decodable binary deletion codes (explicit)

	Conclusion and open problems

