
Minimizing Maximum Flow-time on Related
Machines∗

Nikhil Bansal and Bouke Cloostermans

Eindhoven University of Technology
P.O. Box 513, 5600 Eindhoven, The Netherlands
{b.cloostermans,n.bansal}@tue.nl

Abstract
We consider the online problem of minimizing the maximum flow-time on related machines. This
is a natural generalization of the extensively studied makespan minimization problem to the
setting where jobs arrive over time. Interestingly, natural algorithms such as Greedy or Slow-
fit that work for the simpler identical machines case or for makespan minimization on related
machines, are not O(1)-competitive. Our main result is a new O(1)-competitive algorithm for the
problem. Previously, O(1)-competitive algorithms were known only with resource augmentation,
and in fact no O(1) approximation was known even in the offline case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Related machines scheduling, Maximum flow-time minimization, On-line
algorithm, Approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.85

1 Introduction

Scheduling a set of jobs on machines to optimize some quality of service measure is one
of the most well studied problems in computer science. A very natural measure of service
received by a job is the flow-time, defined as the amount of time the job spends in the system.
In particular, if a job j arriving at time rj completes its processing at time Cj , then its
flow-time Fj is defined as Cj − rj ; i.e., its completion time minus its arrival time. Over the
last few years, several variants of flow-time related problems have received a lot of attention:
on single and multiple machines, in online or offline setting, for different objectives such as
total flow-time, `p norms of flow-time, stretch etc., with or without resource augmentation,
in weighted or unweighted setting and so on. We refer the reader to [15, 13, 12, 4] for a
survey of some of these results.

In this paper we focus on the objective of minimizing the maximum flow-time. This is
desirable when we want to guarantee that each job has a small delay. Maximum flow-time is
also a very natural generalization of the minimum makespan or the load-balancing problem,
that has been studied extensively (see e.g. [5, 9, 1] for a survey). In particular, if all jobs have
identical release times, then the maximum flow-time value is precisely equal to the makespan.
Minimizing the maximum flow-time is also related to deadline scheduling problems. In
particular, the maximum flow-time is at most D if and only if each job j completes by rj +D.
Moreover, note that arbitrary deadlines dj can be modeled by considering the weighted
version of maximum flow-time1.

∗ Supported by NWO grant 639.022.211 and ERC consolidator grant 617951.
1 In deadline scheduling however, the deadlines are typically considered fixed and the focus is on maximizing

the throughput.

© Nikhil Bansal and Bouke Cloostermans;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 85–95

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.85
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

86 Minimizing Maximum Flow-time on Related Machines

Known results for maximum flow-time

For a single machine, it is easy to see that First In First Out (FIFO) is an optimal (online)
algorithm for minimizing the maximum flow-time. For identical multiple machines, Bender
et al. [8] showed that the Greedy algorithm, that schedules the incoming job on the least
loaded machine is 3 − 2/m competitive, where m is the number of machines. They also
showed that this bound is tight for the Greedy algorithm. If jobs can be preempted and
migrated (moved from one machine to another), [2] gave a 2-competitive algorithm.

A systematic investigation of the problem for various machine models was initiated
recently by Anand et al. [3]. Recall that in the related machines model each machine i has
speed si, and processing job j on machine i takes pij = pj/si units of time. In the more
general unrelated machines model, pij can be completely arbitrary.

Among other results, Anand et al. [3] gave a (1 + ε)-speed O(1/ε)-competitive algorithm
for the unrelated machine case, for any given ε > 0. Here the online algorithm can process
1 + ε units of work per time step, but is compared to an offline optimum that does not have
this extra resource augmentation [14, 15]. They also showed that in the unrelated setting
any algorithm without resource augmentation must be Ω(m) competitive. For the weighted
maximum flow-time objective, they gave a (1 + ε)-speed, O(1/ε3)-competitive algorithm for
the related machines setting, and showed that no O(1)-speed, O(1)-competitive algorithm
exists in the unrelated setting.

A natural question that remains is the complexity of the problem for related machines: Is
there an O(1)-competitive algorithm for the related machines setting, without using resource
augmentation?

This question is particularly intriguing as it is not at all clear what the right algorithm
should be [2]. In fact, no O(1)-approximation is known even in the offline case. One issue is
that the natural Slow-fit algorithm, that is O(1)-competitive for makespan minimization
(even when the jobs are temporary and have unknown durations [6]), is not O(1)-competitive
for maximum flow-time (Lemma 2 below). The algorithm of [3] for weighted maximum
flow-time with resource augmentation is also a variant of Slow-fit. Recently, [7] obtained
an O(logn) approximation for minimizing maximum flow-time on unrelated machines, where
n is the number of machines. However their techniques do not seem to give anything better
for the related machines setting either.

Our main result is the following.

I Theorem 1. There is a 13.5 competitive algorithm, Double-fit, for minimizing maximum
flow-time on related machines.

This also gives the first O(1) approximation for the offline problem. We also show that
no such result is possible in the weighted case (without resource augmentation), and give an
Ω(W) lower bound on the competitive ratio where W is the maximum to minimum weight
ratio.

High-level approach

There are two competing trade-offs while scheduling on related machines. On one hand the
algorithm should keep as many machines busy as possible, otherwise load might accumulate
and delay future jobs. This accumulated load could be impossible to get rid of if there is no
resource augmentation. On the other hand, the algorithm should keep fast machines empty
for processing large jobs that might arrive later. In particular, fast machines are a scarce
resource that should not be wasted on processing small jobs unnecessarily. It is instructive

N. Bansal and B. Cloostermans 87

to consider the lower bounds in Section 2, where both Slow-fit and Greedy are shown to
perform badly due to these opposite reasons.

To get around this, we design an algorithm that combines the good properties of both
Slow-fit and Greedy. In particular, the algorithm uses a two phase strategy while assigning
jobs to machines at each step. First, the jobs are spread out to ensure that machines are
busy as much as possible. Once machines are saturated, the algorithm shifts into a Slow-fit
mode, which ensures that small jobs do not unnecessarily go on fast machines.

The key difficulty in the analysis is to control how the two phases interact with each
other. To do this, we maintain two invariants that capture the dynamics of the algorithm,
and control how much the online algorithm’s load on a subset of machines deviates from
the offline algorithm’s load on those machines. The main part of the argument is to show
inductively that these invariants are maintained over time.

Notation and formal problem description

There are m machines indexed by non-decreasing order of speeds s1 ≤ s2 ≤ . . . ≤ sm. The
processing requirement of job j is pj , and it requires time pj/si on machine i. We will call
pj the work of j, and pj/si its load on machine i. Jobs arrive online over time and pj is
known immediately upon its release time rj . The goal is to find a schedule that minimizes
the maximum flow-time, and we assume that a job cannot be migrated from one machine to
another. We use Opt to denote some fixed optimum offline schedule, and also to denote the
value of this solution.

2 Lower bounds on Slow-fit and Greedy

Slow-fit

Algorithm Slow-fit takes as input a threshold Fopt (the current guess on optimum), and
schedules every incoming job on the slowest possible machine while keeping the load below
Fopt. If the jobs cannot be feasibly scheduled on any machine, the algorithm fails and the
threshold is doubled.

I Lemma 2. Slow-fit has a competitive ratio of Ω(m).

Proof. We describe an instance where the threshold Fopt keeps doubling until it reaches m
even though Opt = 2.

There are m identical machines (but we arbitrarily order them from slow to fast). Next,
we assume that Fopt ≥ 2, which can be achieved by giving 2m unit-size jobs initially at t = 0.

At each time step t ≥ 2, m unit-length jobs arrive. As Slow-fit will not use all m
machines initially, there will be some time t0 at which all the machines 1, . . . ,m− 1 have
load Fopt. At time t0 + 1, when these initial m− 1 machines have Fopt − 1 pending jobs, we
release 2m unit-size jobs. As there is at most m− 1 + Fopt total capacity available, these
jobs cannot be scheduled feasibly if Fopt ≤ m. On the other hand, at each time step Opt
distributes the incoming jobs over all machines and achieves value 2. J

Intuitively, Slow-fit unnecessarily builds up load on slow machines while keeping the
fast machines empty, and cannot recover if there is small burst of jobs.

APPROX/RANDOM’15

88 Minimizing Maximum Flow-time on Related Machines

Greedy

When a job j arrives, Greedy schedules j on the machine that minimizes the flow-time of j
(assuming FIFO order). Ties are broken arbitrarily. The following bound is well-known [11],
but we sketch it here for completeness. The idea is that Greedy puts too many slow jobs
on fast machines, which causes problems when large jobs arrive.

I Lemma 3. Greedy has a competitive ratio of Ω(logm).

Proof. Consider an instance where we have k groups of machines where group Gi contains
22k−2i machines of speed 2i. Note that the total processing power in group Gi is equal
to Si = 22k−i. The processing power of groups i, . . . , k combined is thus equal to Pi =∑k

i′=i 22k−i′ ≤ 2Si.
We receive k sets of jobs, all at time 0, but in order. For all i = 1, . . . , k, set Ji contains

22k−2i jobs of size 2i. Again, note that the total size of jobs in set Ji is equal to 22k−i.
Greedy will spread jobs from set i over groups i, . . . , k. Group k (containing only a single
machine of speed 2k) will receive a Sk/Pi ≥ 1

2Sk/Si = 2−k+i−1 fraction of these jobs. This
means group k receives

∑k
i=1 22k−i2−k+i−1 = k2k−1 work. Since group k has a single machine

of speed 2k, finishing these jobs takes Ω(k) time.
However, optimum can schedule the i-th batch of jobs on group i machines, incurring a

maximum load of 1 (i.e., it does Slow-fit with threshold 1). J

3 The Algorithm Double-fit

We describe our algorithm, denoted by Double-fit hereafter. Double-fit takes an input
a parameter Fopt, which is supposed to be our estimate of Opt. By a slight variation on
the doubling trick that loses an additional factor of 1.5 (see Section 3.4), we will assume
henceforth that Fopt ∈ [Opt, 1.5Opt).

We divide time into intervals Ik of size 3Fopt as Ik = [3(k − 1)Fopt, 3kFopt). We refer to
time 3kFopt as the k-th epoch. For each k = 1, 2, . . . , Double-fit batches the jobs that
arrive during Ik and schedules them at epoch k using the algorithm in Figure 1. We use
[i : m] to denote the machines i, . . . ,m. If the total remaining work on jobs on machine i is
w(i) at time t, we say that it has load w(i)/si.

1. Let J denote the set of jobs arriving during Ik.
2. Partition jobs in J into classes J1, . . . , Jm, where each job j is in class Ji with the

smallest index i such that pj ≤ si · Fopt.
3. For i = m,m− 1, . . . , 1
4. Consider the jobs j in Ji in arbitrary order and assign them as follows:
5. (Saturation Phase:) If some machine in [i : m] is loaded below 3Fopt
6. schedule j on the slowest such machine.
7. (Slow-fit Phase:) Else schedule j on the slowest machine in [i : m]
8. such that its load stays below 6Fopt.
9. If no such machine exists return FAIL.

Figure 1 Algorithm Double-fit for the epoch k.

N. Bansal and B. Cloostermans 89

Description

First, Double-fit classifies the jobs arriving during Ik depending on the smallest machine
on which they have size no larger than Fopt. Note that as Fopt ≥ Opt, if job j is put in class
Ji, then Opt cannot schedule job j onto a machine smaller than i either.

Double-fit considers jobs from classes Jm down to J1 (this ordering will be used
crucially). Each class is scheduled in two phases. In the saturation phase, when scheduling
a job j, it checks if there is some machine in [i : m] with load less than 3Fopt. If so, j is
scheduled on the slowest such machine. If no such machine exists, the algorithm enters the
Slow-fit phase (for class Ji), and performs Slow-fit for class Ji on machines [i : m] with
threshold 6Fopt.

3.1 Analysis
Our goal in this section is to show the following result.

I Theorem 4. If Fopt ≥ Opt, then the algorithm never fails.

This directly implies Theorem 1 as follows. Each job spends at most 3Fopt time waiting
to be assigned, and at most 6Fopt on its designated machine, thus the flow-time of any job is
at most 9Fopt. As Fopt ≤ 1.5Opt by the doubling trick, this implies a competitive ratio of
13.5

For the purpose of analysis, it will be convenient to consider a restricted Opt that also
batches jobs and schedules the jobs arriving in Ik at epoch k. Note that such a restricted
algorithm has objective at most 3Fopt + Opt ≤ 4Fopt (as we can take the original schedule
and delay every job by 3Fopt). To prove theorem 4, we will in fact prove the following
stronger result: Double-fit never fails for any instance where the restricted Opt has value
at most 4Fopt.

The Invariants

Fix an epoch k. Let Ai(k) and Bi(k) denote the total work on machines [i : m] in Double-
fit’s schedule just before and just after all the jobs from interval Ik are scheduled respectively.
Similarly, let Aopt

i (k) and Bopt
i (k) be the total work remaining on machines [i : m] in Opt’s

schedule.
We will show that the following two invariants hold at each epoch k.

Ai(k) ≤ Aopt
i (k) + Fopt

m∑
i′=i

si′ . (1)

Bi(k) ≤ max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ . (2)

Roughly speaking, invariants (1) and (2) show that the load on any suffix of Double-fit’s
machines stays close to Opt’s load on those machines, both before and after the jobs are
scheduled in epoch k. We will prove that (1) and (2) hold by a careful induction over i and k.

Before we prove these invariants, let us first see why they imply Theorem 4.

Proof of Theorem 4. Consider a fixed epoch k. As the (restricted) Opt has maximum
flow-time at most 4Fopt, for each i it must hold that Bopt

i (k) ≤ 4Fopt
∑m

i′=i si′ . Thus by
(2) it follows that Bopt

i (k) ≤ 5Fopt
∑m

i′=i si′ for each i. Choosing i = m, this implies that

APPROX/RANDOM’15

90 Minimizing Maximum Flow-time on Related Machines

Double-fit never loads machine m above 5Fopt and thus never fails (as machine m always
has room for an additional job). J

Proving the Invariants

The strategy for proving that (1) and (2) hold at all epochs k will be to show the following
two lemmas.

I Lemma 5. If at epoch k, (1) holds for all machines, then (2) also holds for all machines.

The next step will be to relate the conditions at epochs k and k + 1.

I Lemma 6. If at any epoch k, (2) holds for all machines, then (1) also holds for all
machines at epoch k + 1.

As (1) trivially holds for k = 0 (as Ai(0) = Aopt
i (0) = 0 for all i), applying Lemma 5 and

Lemma 6 alternately implies that (1) and (2) hold for all k.

3.2 Proof of Lemma 5
We first show that Double-fit is conservative in scheduling small jobs on fast machines.

I Lemma 7. Let i1 < i2. If some job j of class i1 is scheduled by Double-fit onto
machine i2 during the saturation phase (i.e. using threshold 3Fopt), then all jobs of class i
for i1 < i ≤ i2 are also scheduled during the saturation phase.

Proof. Consider the state of Double-fit’s machines just before j was scheduled. As j is
scheduled on machine i2 during the saturation phase, the load on i2 must be below 3Fopt at
that point. As jobs of class i for i1 < i ≤ i2 were considered before class i1-jobs, the load on
i2 was also below 3Fopt after scheduling class i jobs, and thus Double-fit must have never
switched to the Slow-fit phase while considering class i. J

Next we define the notion of separated machines, which will play a crucial role in the
analysis.

I Definition 8. Machines i1 and i2 (i1 < i2) are separated at epoch k if Double-fit
scheduled no jobs from classes [1 : i1] onto machines [i2 : m] at epoch k.

The following lemma shows that if two consecutive machines are separated, it is easy to
relate epochs k and k + 1.

I Lemma 9. If machines i − 1 and i are separated at epoch k, then (1) implies (2) for
machine i. Moreover this trivially holds for machine i = 1.

Proof. As machines i− 1 and i are separated at epoch k, no jobs from class [1 : i− 1] were
scheduled onto machines [i : m] at epoch k. Thus

Bi(k) = Ai(k) +
m∑

i′=i

|Ji′ |, (3)

where |Ji| represents the total work of all jobs in Ji.
As jobs from Ji cannot be scheduled onto machines [1 : i− 1] in an optimal schedule, we

also obtain

Bopt
i (k) ≥ Aopt

i (k) +
m∑

i′=i

|Ji|. (4)

N. Bansal and B. Cloostermans 91

This implies that

Bi(k) = Ai(k) +
m∑

i′=i

|Ji′ | ≤ Ai(k) +Bopt
i (k)−Aopt

i (k) ≤ Bopt
i (k) + Fopt

m∑
i′=i

si′ , (5)

where the last step follows by our assumption that (1) holds for (i, k).
Finally for i = 1, we observe that both (3) and (4) hold with equality, and hence the

result holds trivially. J

We now have all the tools we need to prove Lemma 5.

Proof of Lemma 5. We use induction over i in the order of larger to smaller i. In particular,
to prove that (2) holds for some pair (i, k), we assume that (1) holds for all (i′, k) and that (2)
holds for all (i′, k) with i′ > i. As the base case note that this is vacuously true for i = m+ 1
(as all relevant quantities are 0).

We consider three cases depending on how Double-fit assigns jobs from classes [1 : i−1]
to machines [i : m].
1. No jobs from class [1 : i− 1] were scheduled onto machines [i : m]: In this case, machines

i− 1 and i are separated and (2) follows from Lemma 9.

2. Jobs from classes [1 : i− 1] are only scheduled onto machines [i : m] during the saturation
phase: Let imax ≥ i denote the smallest index such that machines i− 1 and imax + 1 are
separated (if no such machine exists, set imax = m). By the inductive hypothesis, we can
assume that (2) holds for imax + 1. In the case where imax = m, this holds vacuously.
As jobs from classes [1 : i − 1] are assigned to [i : m] (and hence to imax) during the
saturation phase, Lemma 7 implies that all jobs in classes [i : imax] were also scheduled
during the saturation phase, which implies that all machines [i : imax] are loaded below
4Fopt. This gives us the following:

Bi(k) ≤ 4Fopt
imax∑
i′=i

si′ +Bimax+1(k)

≤ 4Fopt
imax∑
i′=i

si′ + max
{

3Fopt
m∑

i′=imax+1
si′ , Bopt

imax+1(k)
}

+ Fopt

m∑
i′=imax+1

si′

= 3Fopt
imax∑
i′=i

si′ + max
{

3Fopt
m∑

i′=imax+1
si′ , Bopt

imax+1(k)
}

+ Fopt

m∑
i′=i

si′

≤ max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ ,

where the second inequality follows from the inductive hypothesis for machine imax + 1.

3. Some job j from class [1 : i− 1] was scheduled onto machines [i : m] during Slow-fit phase
(using threshold 6Fopt): We assume that i > 1, otherwise the result follows from case 1.
Let imin < i denote the largest index such that machines [imin : i− 1] have load more
than 5Fopt and machine imin − 1 has load at most 5Fopt. If no such machine exists, set
imin = 1. imin is well-defined as i > 1 and machine i− 1 must have load more than 5Fopt
as job j from class [1 : i − 1] was assigned to a machine in [i : m] during the Slow-fit
phase.

I Claim 1. Machines imin − 1 and imin are separated or imin = 1.

APPROX/RANDOM’15

92 Minimizing Maximum Flow-time on Related Machines

Proof. This is trivially true if imin = 1.
If imin > 1, suppose that some job j′ from class [1 : imin− 1] was scheduled onto machines
[imin : m]. Now j′ cannot be scheduled during the Slow-fit phase as this would imply that
the load on imin − 1 was more than 5Fopt, which contradicts the choice of imin.
So all jobs in [1 : imin − 1] that were assigned to [imin : m] must have been assigned
during the saturation phase. Let i′ ≥ imin denote the largest index where such a job is
assigned. By Lemma 7, it must be that all machines [imin : i′] were assigned load during
the saturation phase and must have load at most 4Fopt. This contradicts that imin has
load more than 5Fopt. J

By Lemma 9 applied to imin, we get that (2) holds for machine imin and thus

Bimin(k) ≤ max
{

3Fopt
m∑

i′=imin

si′ , Bopt
imin

(k)
}

+ Fopt

m∑
i′=imin

si′ . (6)

Furthermore, by choice of imin all the machines in [imin : i− 1] are loaded above 5Fopt.
This implies that

Bi(k) ≤ Bimin(k)− 5Fopt
i−1∑

i′=imin

si′ . (7)

As every machine is loaded below 4Fopt in an optimal schedule, we also have

Bopt
imin

(k) ≤ Bopt
i (k) + 4Fopt

i−1∑
i′=imin

si′ . (8)

Adding (6) and (7) we obtain that

Bi(k) ≤ max
{

3Fopt
m∑

i′=imin

si′ , Bopt
imin

(k)
}

+ Fopt

m∑
i′=imin

si′ − 5Fopt
i−1∑

i′=imin

si′

≤ max
{

4Fopt
m∑

i′=i

si′ , Bopt
imin

(k) + Fopt

m∑
i′=i

si′ − 4Fopt
i−1∑

i′=imin

si′

}

≤ max
{

4Fopt
m∑

i′=i

si′ , Bopt
i (k) + Fopt

m∑
i′=i

si′

}
By (8)

= max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ ,

which implies that (2) holds for i.
J

3.3 Proof of Lemma 6
We now prove Lemma 6, which is relatively easier.

Proof of Lemma 6. We will apply induction over i (in decreasing order of machines). Con-
sider epoch k. We assume that (2) holds for all i′ at epoch k, and that (1) holds for all
i′ > i at epoch k + 1. For the base case of i = m+ 1 the lemma follows trivially since all the
relevant quantities are 0.

Consider some machine i. We consider two cases depending on the load of machine i
after the jobs were scheduled at epoch k.

N. Bansal and B. Cloostermans 93

1. Machine i has load at most 4Fopt after epoch k, i.e., Bi(k) − Bi+1(k) ≤ 4Fopt · si: At
epoch k+1 before the jobs arriving during interval Ik+1 are scheduled, the load of machine
i will be at most Fopt. Thus we have that

Ai(k + 1) ≤ Ai+1(k + 1) + Fopt · si

≤ Aopt
i+1(k + 1) + Fopt

m∑
i′=i+1

si′ + Fopt · si

≤ Aopt
i (k + 1) + Fopt

m∑
i′=i

si′ .

Here the second inequality follows by the inductive hypothesis for machine i+ 1, and the
third inequality follows as Aopt

i (k + 1) is non-decreasing as i decreases.
2. Machine i is loaded above 4Fopt after epoch k, i.e., Bi(k)−Bi+1(k) > 4Fopt · si: In this

case, some job j must have been scheduled onto machine i during the Slow-fit phase.
This only happens if j could not be scheduled during the saturation phase. In particular,
this implies that all the machines [i : m] (which is surely a subset of machines where j
could have been scheduled) were loaded above 3Fopt. So the total work on all machines
[i : m] decreases by exactly 3Fopt

∑m
i′=i si′ during interval Ik+1.

Thus we have that

Ai(k + 1) = Bi(k)− 3Fopt
m∑

i′=i

si′ . (9)

Similarly, as Opt can complete at most 3Fopt
∑m

i′=i si′ on machines [i : m] during this
interval, we have

Aopt
i (k + 1) ≥ Bopt

i (k)− 3Fopt
m∑

i′=i

si′ . (10)

As (2) holds for each i at epoch k, we obtain that

Ai(k + 1) ≤ Bi(k)− 3Fopt
m∑

i′=i

si′

≤ Bopt
i (k) + Fopt

m∑
i′=i

si′ − 3Fopt
m∑

i′=i

si′ By (2)

≤ Aopt
i (k + 1) + Fopt

m∑
i′=i

si′ ,

and hence (1) holds for i at epoch k + 1, which completes the proof. J

3.4 Removing the assumption of knowledge of Opt
We describe a variant of the standard doubling trick where we increase the online estimate
of Opt by only 1.5 times at each step.

Consider some epoch k where the algorithm first fails with the current guess of Fopt. It
must be that (2) does not hold. In particular, (1) holds at epoch k as (2) holds at k−1. Now,
Lemma 5 implies that Fopt < Opt. We then abort epoch k, and do not schedule any jobs.
Instead, we set F ′opt = 1.5Fopt and redefine the new epoch to be the time (k− 1)Fopt + 3F ′opt.
Note that between these epochs 4.5Fopt time passes, so at the next epoch the load on all
machines in the schedule of Double-fit will be at most 6Fopt − 3F ′opt = 1.5Fopt = F ′opt.

APPROX/RANDOM’15

94 Minimizing Maximum Flow-time on Related Machines

This implies that for all i

Ai(k) ≤ Fopt
m∑

i′=i

si′ ≤ Aopt
i (k) + Fopt

m∑
i′=i

si′ .

The crucial point is that (1) holds for all machines i at this new epoch irrespective of the
workload of the new restricted Opt (with parameter F ′opt). Thus, (2) holds if Fopt ≥ Opt
and Double-fit proceeds as normal.

4 Other Lower bounds

We also show simple (but strong) lower bounds for weighted maximum flow-time and
maximum stretch.

I Lemma 10. Any algorithm for minimizing maximum weighted flow-time on identical
machines must have a competitive ratio of Ω(W), where W is the ratio between the largest
and smallest weight.

Proof. Consider the following instance on 2 machines. At time t = 0 we receive 2 jobs of
size w with weight 1. Now, any algorithm has three options: (i) it schedules both jobs on
the same machine, (ii) it schedules both jobs on different machines, or (iii) it waits before
assigning jobs. In all three cases, we show that it will end up trailing by at least w work
behind an optimal schedule.

In option (i), w work remains at time t = w, while optimum is empty. In option (ii) we
instantly receive another 2w-sized job with weight 1, so that one of our machines has load
3w. At time t = 2w we have w load remaining while an optimal schedule is empty. In option
(iii) we receive no jobs until algorithm decide to choose (i) or (ii). If we have not chosen by
time t = w we are trailing 2w work behind an optimal schedule.

Once we trail w work behind optimum, at every unit time step we receive 2 unit-size jobs
of weight w. If the trailing jobs are ever to be finished, at least w/2 delay is incurred on the
weight w jobs, implying an objective value of Ω(w2). Opt on other hand has value O(w). J

A lower bound of Ω(W 0.4) for maximum weighted flow-time follows from [10], using the
analogy between delay factor and weighted maximum flow-time described in [3]. By replacing
the unit size jobs by unit weight jobs in the above lower bound instance, this also directly
implies an Ω(S) lower bound on the competitive ratio for maximum stretch [3] where S is
the ratio between the size of the largest and the smallest job.

5 Concluding Remarks

Note that our algorithm Double-fit is not immediate dispatch, i.e., it does not dispatch
a job to a machine immediately upon arrival. We are unable to extend the ideas here
to obtain an O(1)-competitive immediate dispatch algorithm, and it is not clear to us
whether such an algorithm exists. Given that in the unrelated setting, there can be no
O(1)-speed, O(1)-competitive immediate dispatch algorithm [3] (while there is a (1+ε)-speed,
O(1/ε)-competitive algorithm), it would be quite interesting to resolve this question.

N. Bansal and B. Cloostermans 95

References
1 Susanne Albers. Introduction to scheduling, chapter Online scheduling, pages 51–73. Chap-

man and Hall/CRC, 2010.
2 Christoph Ambühl and Monaldo Mastrolilli. On-line scheduling to minimize max flow time:

an optimal preemptive algorithm. Oper. Res. Lett., 33(6):597–602, 2005.
3 S. Anand, Karl Bringmann, Tobias Friedrich, Naveen Garg, and Amit Kumar. Minimizing

maximum (weighted) flow-time on related and unrelated machines. In ICALP (1), pages
13–24, 2013.

4 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-
time explained by dual fitting. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1228–1241, 2012.

5 Yossi Azar. On-line load balancing. In Amos Fiat and Gerhard J. Woeginger, editors,
Online Algorithms, volume 1442 of Lecture Notes in Computer Science, pages 178–195.
Springer, 1998.

6 Yossi Azar, Bala Kalyanasundaram, Serge A. Plotkin, Kirk Pruhs, and Orli Waarts. On-line
load balancing of temporary tasks. J. Algorithms, 22(1):93–110, 1997.

7 Nikhil Bansal and Janardhan Kulkarni. Minimizing flow-time on unrelated machines. In
Symposium on Theory of Computing, STOC, 2015, to appear.

8 Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics
for scheduling continuous job streams. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 270–279, 1998.

9 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263,
2009.

10 Chandra Chekuri and Benjamin Moseley. Online scheduling to minimize the maximum
delay factor. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1116–1125. Society for Industrial and Applied Mathematics, 2009.

11 Yookun Cho and Sartaj Sahni. Bounds for list schedules on uniform processors. SIAM
Journal on Computing, 9(1):91–103, 1980.

12 Naveen Garg. Minimizing average flow-time. In Efficient Algorithms, Essays Dedicated to
Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 187–198, 2009.

13 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competit-
iveness in online scheduling. SIGACT News, 42(2):83–97, 2011.

14 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

15 Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, chapter Online Scheduling. CRC Press, 2004.

APPROX/RANDOM’15

	Introduction
	Lower bounds on Slow-fit and Greedy
	The Algorithm Double-fit
	Analysis
	Proof of Lemma 5
	Proof of Lemma 6
	Removing the assumption of knowledge of Opt

	Other Lower bounds
	Concluding Remarks

