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Abstract
Tensor rank and low-rank tensor decompositions have many applications in learning and com-
plexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up
to nbp/2c for a p-th order tensor in Rnp . Previously no efficient algorithm can decompose 3rd
order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares
hierarchy, we give the first quasi-polynomial time algorithm that can decompose a random 3rd
order tensor decomposition when the rank is as large as n3/2/ poly logn.

We also give a polynomial time algorithm for certifying the injective norm of random low
rank tensors. Our tensor decomposition algorithm exploits the relationship between injective
norm and the tensor components. The proof relies on interesting tools for decoupling random
variables to prove better matrix concentration bounds.
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1 Introduction

Tensors, as natural generalization of matrices, are often used to represent multi-linear
relationships or data that involves higher order correlation. A p-th order tensor T ∈ Rnp

is a p-dimensional array indexed by [n]p. A tensor T is rank-1 if it can be written as the
outer-product of p vectors T = a1 ⊗ · · · ⊗ ap, where ai ∈ Rn (for i = 1, . . . , p). Equivalently,
Ti1,...,ip =

∏p
j=1 aj(ij) where aj(ij) denotes the ij-th entry of vector aj .

Low rank tensors – similar to low rank matrices – are widely used in many applications.
The rank of tensor T is defined as the minimum number m such that T can be written as
the sum of m rank-1 tensors. This agrees with the definition of matrix rank. However, most
of the corresponding tensor problems are much harder: for p ≥ 3 computing the rank of the
tensor (as well as many related problems) is NP-hard [22, 23]. Tensor rank is also not as
well-behaved as matrix rank (see for example the survey [15]).

Unlike matrices, low rank tensor decompositions are often unique [24], which is important
in many applications. In special cases (especially when rankm is less than dimension n) tensor
decomposition can be efficiently computed. Such specialized tensor decompositions have
been the key algorithmic ideas in many recent algorithms for learning latent variable models,
including mixture of Gaussians, Independent Component Analysis, Hidden Markov Model
and Latent Dirichlet Allocation (see [4]). In many cases tensor decomposition can be viewed
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as reinterpreting previous spectral learning results [14, 26, 2, 5]. This new interpretation has
also inspired many new works (e.g. [3, 13, 19]).

A common limitation in early tensor decomposition algorithms is that they only work for
the undercomplete case when rank m is at most the dimension n. Although there are some
attempts to decompose tensors in the overcomplete case (m > n) [16, 13, 7, 18, 17], these
works either require at least 4-th order tensors, or is polynomial time only when in mildly
overcomplete case (when m is a constant factor larger than n). In many machine learning
applications, the number of samples required to accurately estimate a 4-th order tensor is too
large. In practice algorithms based on 3rd order tensor are much more preferable. Therefore
we are interested in the key question: are there any efficient algorithms for overcomplete 3rd
order tensor decomposition?

In the worst case setting, overcomplete 3rd order tensors are not well-understood.
Kruskal [24] showed the tensor decomposition is unique when the rank m ≤ 1.5n − 1
and the components are in general position, but there is no efficient algorithm known for
finding this decomposition. Constructing an explicit 3rd order tensor with rank Ω(n1+ε) will
give nontrivial circuit complexity lowerbounds [29], while the best known rank bound for an
explicit 3rd order matrix is only 3n−O(logn) [1].

For many of the learning applications, it is natural to consider the average case problem
where the components of the tensor are chosen according to a random distribution. In this
case [6] give a polynomial time algorithm that can find the true components when m = Cn

for any constant C > 0 (however the runtime depends exponentially on C).
This paper also considers this average case setting and gives a quasi-polynomial algorithm

for decomposing the tensor when m can be as large as n3/2. The main idea of the algorithm
is based on sum-of-squares (SoS) SDP hierarchy ([27, 25], see Section 2 and the recent survey
[12]). The main difficulty in handling overcomplete 3rd order tensors is that there is no
natural unfolding (i.e. mapping to a matrix) that can certify the rank of the tensor. We can
unfold a 4-th order tensor T into a matrix M of size n2×n2 where M(i1,i2),(i3,i4) = Ti1,i2,i3,i4 .
However, unfolding 3rd order tensor will result in a very unbalanced matrix of dimension
n× n2 that cannot have rank more than n. Intuitively, the power of SoS-based algorithm
is that it can provide higher-order “pseudo-moments” that will allow us to use nontrivial
unfoldings.

In particular, the key component of the proof is a way of certifying injective norm (see
Section 2) of random tensors, which is closely related to the problem of certifying the 2-to-4
norm of random matrices[8]. Recently, there has been an increasing number of applications
of SoS hierarchy to learning problems. [9] give algorithms for finding the sparsest vectors in
a subspace, which is closely related to many learning problems. [10] give a new algorithm for
dictionary learning that can handle nearly linear sparsity, and also an algorithm for robust
tensor decomposition.However their result requires a tensor of high order. [11] studies a
related problem of tensor prediction, also using ideas of SoS hierarchies.

1.1 Our Results
In this paper we give a quasi-polynomial time algorithm for decomposing third-order tensors
when the rank m is almost as large as n3/2 and the components of the tensor is chosen
randomly. More concretely, we define Dm,n to be a distribution of third order tensors of the
following form:

T =
m∑
i=1

a⊗3
i ,
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where the vectors ai ∈ Rn are uniformly random vectors in {± 1√
n
}n and a⊗3

i is short for
ai ⊗ ai ⊗ ai. Our goal is to recover these components ai’s. Since any permutation of ai’s is
still a valid solution, we say two decompositions are ε-close if they are close after an arbitrary
permutation:

I Definition 1 (ε-close). Two sets of vectors {ai}i∈[m] and {âi}i∈[m] in Rn are ε-close if there
exists a permutation π : [m]→ [m] such that ‖âπ(i) − ai‖ ≤ ε. Two decompositions of the
tensor T are ε-close if their components are ε-close.

For tensors in distribution Dm,n our algorithm can recover the decomposition as long as
m� n3/2.

I Theorem 2. Given a tensor T =
∑m
i=1 a

⊗3
i sampled from distribution Dm,n, when m�

n3/2 there is an algorithm that runs in time nO(logn) and with high probability returns a
decomposition T ≈

∑m
i=1 â

⊗3
i that is 0.1-close to the true decomposition.

Our result easily generalizes to many other distributions for ai (including a uniform
random vector in unit sphere or a spherical Gaussian).

The algorithm does not output a very accurate solution (the accuracy can be improved to
ε with an exponential dependency on 1/ε). However it is known that alternating minimization
algorithms can refine the decomposition once we have a nice initial point[6]:

I Theorem 3 ([6]). Given a tensor T from distribution Dm,n (m � n3/2), and an initial
solution that is 0.1-close to the true decomposition, then for any ε > 0 (that may depend on
n) there is an algorithm that runs in time poly(n, log 1/ε) that with high probability finds a
refined decomposition that is ε-close to the true decomposition.

Combining the two results we have an algorithm that runs in time nO(logn) poly log(1/ε)
that recovers a decomposition that is component-wise ε-close to the true decomposition.

I Corollary 4. Given a tensor T =
∑m
i=1 a

⊗3
i sampled from distribution Dm,n, when m�

n3/2 for any ε > 0 there is an algorithm that runs in time nO((logn)) poly log(1/ε) and
with high probability returns a decomposition T ≈

∑m
i=1 â

⊗3
i that is ε-close to the true

decomposition.

The main idea in proving Theorem 2 is the observation that when the tensor is generated
randomly from Dm,n, the true components are close to the maximizers of the multilinear
form T (x, x, x) =

∑
i,j,k∈[n] Ti,j,kxixjxk =

∑m
i=1〈ai, x〉3. The maximum value of T (x, x, x)

on unit vectors ‖x‖ = 1 is known as the injective norm of the tensor. Computing or even
approximating the injective norm is known to be hard [20, 21]. A key component of our
approach is a sum-of-square algorithm (see Section 2 for preliminaries about sum-of-square
algorithms) that certifies that the injective norm of a random tensor from Dm,n is small.

I Theorem 5. For a tensor T in distribution Dm,n, when m� n3/2 with high probability
the injective norm of T is bounded by 1 + o(1). Further, this can be certified in polynomial
time.

Our results (Theorem 2 and 5) still hold when we are given a tensor T̃ that is 1/poly(n)-
close to T in the sense that the spectral norm of an unfolding of T̃ − T is O(1/poly log(n)).
Theorem 3 (and hence Corollary 4) requires a tensor T̃ such that the unfolding of T̃ − T has
spectral norm bounded by ε/ poly(n).

APPROX/RANDOM’15
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Organization

The rest of this paper is organized as follows: In Section 2 we introduce tensor notations
and SoS hierarchies. Then we describe the main idea of the proof which relates tensor
decomposition to the injective norm of tensor (Section 3). In Section 4 we give a polynomial
time algorithm for certifying the injective norm of a random 3rd order tensor. Using this as
a key tool in Section 5 we present the quasi-polynomial time algorithm that can decompose
randomly generated tensors when m� n3/2.

2 Preliminaries

2.1 Notations
In this paper we use ‖ · ‖ to denote the `2 norm of vectors and the spectral norm of matrices.
That is, ‖v‖ =

√∑
i v

2
i and ‖A‖ = sup‖u‖=1 ‖Au‖. Note that we will be using the sum-norm

instead of expectation norm ‖v‖exp =
√
Ei[v2

i ] because the scaling of sum-norm is more
natural for the tensor decomposition setting. We use 〈u, v〉 to denote the inner product of u
and v. When A and B are two matrices, we use standard notation A � B to denote the fact
that B −A is a positive semidefinite. For a m× n matrix U and a p× q matrix V , we define
the Kronecker product U ⊗ V as the mp× nq block matrix

U ⊗ V =

U1,1V · · · U1,nV
...

. . .
...

Um,1V · · · Um,nV


We use Õ notations to hide dependencies on polylog factors in n and m. When we write

f � g we mean f ≤ g/O(poly logn). Throughout the paper high probability means the
probability is at least 1− n−ω(1).

2.2 Tensors
Tensors are multi-dimensional arrays. In this paper for simplicity we only consider 3rd order
symmetric tensors and their symmetric decompositions. For a third order symmetric tensor
T , the value of Ti,j,k only depends on the multi-set {i, j, k}, so Ti,j,k = Tj,i,k = Tk,i,j (and
more generally all the 6 permutations are equal). For a vector v ∈ Rn, we use v⊗3 ∈ Rn3 to
denote the symmetric third order tensor such that v⊗3

i,j,k = vivjvk. Our goal is to decompose
a tensor T as T =

∑m
i=1 a

⊗3
i .

There is a bijection between 3rd order symmetric tensors and homogeneous degree 3
polynomials. In particular, for a tensor T we define its corresponding polynomial T (x, x, x) =∑n
i,j,k=1 Ti,j,kxixjxk. It is easy to verify that if T =

∑m
i=1 a

⊗3
i then T (x, x, x) =

∑m
i=1〈ai, x〉3.

The injective norm ‖T‖inj is defined to be the maximum value of the corresponding
polynomial on the unit sphere, that is:

‖T‖inj := sup
‖x‖=1

T (x, x, x).

It is not hard to prove when m� n3/2, and the tensor T is chosen from the distribution
Dm,n, with high probability 1− o(1) ≤ ‖T‖inj ≤ 1 + o(1), and in fact the value T (x, x, x) is
only close to 1 if x is close to one of the components ai. We will give a (SoS) proof of this
fact in Section 5
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2.3 Sum-of-Square Algorithms and Proofs
Here we will only briefly introduce the notations and key concepts that are used in this
paper, for more detailed discussions and references about SoS proofs we refer readers to [12]
(especially Section 2).

Sum-of-squares proof system is a proof system for polynomial equalities and inequalities.
Given a set of constraints {ri(x) = 0}, and a degree bound d, we say there is a degree d
SoS proof for p(x) ≥ q(x) if p(x)− q(x) can be written as a sum of squares of polynomials
modulo ri(x) = 0, as defined formally below.

IDefinition 6 (SoS proof of degree d). For a set of constraints R = {r1(x) = 0, . . . , rt(x) = 0},
and an integer d, we write

p(x) �R,d q(x)

if there exists polynomials hi(x) for i = 0, 1, . . . , ` and gj(x) for j = 1, . . . , t such that
deg(h2

0(p(x)− q(x))) ≤ d, deg(hi) ≤ d/2 (for i > 0) and deg(gjrj) ≤ d that satisfy

h0(x)2(p(x)− q(x)) =
∑̀
i=1

hi(x)2 +
t∑

j=1
rj(x)gj(x),

We will drop the subscript d when it is clear form the context.

Note that the constraints set can be easily generalized to a set of inequalities by adding
auxiliary variables. For example, constraint r(x) ≥ 0 can be implemented as r(x) = z2 where
z is an auxiliary variable.

Many well-known inequalities can be proved using a low degree SoS proof, among them
the most useful and important one is Cauchy-Schwarz inequality, which can be proved via
degree-2 sum of squares. Another one is that xTAx � ‖A‖‖x‖2. This is pretty useful when
A is a random matrix where we can use random matrix theory to bound the spectral norm
of A.

In order to turn an SoS arguments into an algorithm, we often consider the pseudo-
expectation. Just as we have expectations for real distributions, we think of pseudo-expectation
as expectations for pseudo-distributions that cannot be distinguished from true expectations
using low degree polynomials. Pseudo-expectation can be viewed as a dual of SoS refutations.

I Definition 7 (pseudo-expectation). A degree d pseudo-expectation Ẽ is a linear operator
that maps degree d polynomials to reals. The operator satisfies Ẽ[1] = 1 and Ẽ[p2(x)] ≥ 0 for
all polynomials p(x) of degree at most d/2. We say a degree-d pseudo-expectation Ẽ satisfies
a set of equations {ri(x) : i = 1 . . . , `} if for any i and any q(x) such that deg(riq) ≤ d,

Ẽ [ri(x)q(x)] = 0

By definition, if p(x) �R,d q(x), and degree-d pseudo-expectation satisfies R, then we
can take pseudo-expectation on both sides and obtain Ẽ [p(x)] ≤ Ẽ [q(x)]. We will use this
property of pseudo-expectation many times in the proofs.

The relationship between pseudo-expectations and SoS refutations can be summarized in
the following informal lemma:

I Lemma 8 ( [27, 25], c.f. [12], informal stated). For a set of constraints R, either there is
an SoS refutation of degree d that refutes R, or there is a degree d pseudo-expectation that
satisfies R. Such a refutation/pseudo-expectation can be found in poly(tnd) time.

APPROX/RANDOM’15
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3 Relating Tensor Decompositions and Injective Norm

In this section we introduce the main idea of our proof. Given a tensor T =
∑m
i=1 a

⊗3
i

from distribution Dm,n, we first make some observations about its corresponding polynomial
T (x, x, x) =

∑m
i=1〈ai, x〉3.

When x = a1, we know T (a1, a1, a1) = 1 +
∑m
i=2〈ai, a1〉3. Here conditioned on a1, the

second term is a sum of independent random variables (〈ai, a1〉3). By the distribution
Dm,n we know these variables have mean 0 and absolute value around 1/n3/2. Standard
concentration bounds show when m� n3/2 with high probability T (a1, a1, a1) = 1± o(1).

On the other hand, suppose x is a random vector in the unit sphere, then T (x, x, x) =∑m
i=1〈ai, x〉3 is again a sum of random variables. By concentration bounds we know for any

particular x, when m� n3/2 with high probability T (x, x, x) = o(1). This can actually be
generalized to all vectors x that do not have large correlation with ai’s using ε-net arguments.

I Observation. For a random tensor T ∼ Dm,n, when m = n3/2 with high probability
T (x, x, x) ≤ 1 + o(1) for ‖x‖ = 1. Further when T (x, x, x) is close to 1 the vector x is close
to one of the components ai’s.

Later we will give a SoS proof for this observation. Based on this observation, if we want
to find a component, then it suffices to find a vector x such that T (x, x, x) is close to 1.
Using the idea of pseudo-expectations, we can do this in two steps:

1. Find a pseudo-expectation Ẽ[x] that satisfies the constraint ‖x‖2 − 1 = 0 and maximizes
Ẽ[T (x, x, x)].

2. “Sample” from this pseudo-distribution with psuedo-expectations Ẽ to get a vector x
such that T (x, x, x) ≈ 1, in particular x will be close to one of the components ai’s.

In Section 4 we will prove the first part of the observation. In particular we show even
though we are maximizing over pseudo-expectation Ẽ[x] (instead of real distributions over
x), we can still guarantee the maximum value Ẽ[T (x, x, x)] is at most 1 + 1/ logn with high
probability.

In Section 5 we give algorithms for finding a component given a pseudo-expectation
Ẽ with Ẽ[T (x, x, x)] ≈ 1. The main idea of our algorithm is similar to the robust tensor
decomposition algorithm in [10]: first we show there must be a component ai such that
Ẽ[〈ai, x〉d] is large for a large d, then we use ideas in [10] to find the component ai.

4 Certifying Injective Norm

Algorithm 1 Certifying Injective Norm
Input: A random 3-tensor T
Output: If ‖T‖inj > 1 + 1/ logn, return NO. If T ∼ Dm,n(m� n3/2), then w.h.p. return

YES.
Solve the following optimization and obtain optimal value OPT

Maximize Ẽ [T (x, x, x)]
Subject to Ẽ is a degree-12 pseudo-expectation (1)

that satisfies {r(x) = ‖x‖2 − 1 = 0} (2)
return YES if OPT ≤ 1 + 1/ logn and NO otherwise.
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In this section, we give Algorithm 1 based on SoS hierarchy that certifies the injective
norm of random tensor. In particular, we will prove Theorem 5 which we restate in more
details here.

I Theorem 9. Algorithm 1 always returns NO when ‖T‖inj > 1 + 1/ logn. When T ∼ Dm,n
and m � n3/2, Algorithm 1 returns YES with high probability over the randomness of T .
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/2 logn.

When ‖T‖inj > 1 + 1/ logn, then by definition there must be a vector x∗ that satisfies
‖x∗‖ = 1 and T (x∗, x∗, x∗) > 1/ logn. We can take Ẽ to be the expectation of a distribution
that is only supported on x∗ (i.e. with probability 1 x = x∗). Clearly this pseudo-expectation
is valid, and OPT will be at least larger than 1/ logn. Hence the algorithm returns NO.

For random tensor T , we hope to show that with high probability, the tensor norm is less
than 1 + 1/ logn can be proved via SoS.

I Theorem 10. With high probability over the randomness of the tensor T , for r(x) =
‖x‖2 − 1,

T (x, x, x) �r,12 1 + Õ(m/n3/2) (3)

Note that taking pseudo-expectation Ẽ on both hand sides of (3), for any degree-12
pseudo-expectation Ẽ that is consistent with r(x),

Ẽ [T (x, x, x)] ≤ 1 + Õ(m/n3/2)

That is, when m � n3/2, the objective value of the convex program in Algorithm 1 is
less than 1 + 1/ logn with high probability for random tensor.

Now we need to prove Theorem 10. We first use Cauchy-Schwarz inequality to transform
LHS of (3) to a degree-4 polynomial, which would then correspond to 4th order tensors and
enable non-trivial unfoldings.

I Claim 11.

[T (x, x, x)]2 �r,12

m∑
i=1
〈ai, x〉4︸ ︷︷ ︸

2-4 norm

+
∑
i 6=j
〈ai, aj〉〈ai, x〉2〈aj , x〉2︸ ︷︷ ︸

:=p(x)

. (4)

Proof. This is a direct application of Cauchy-Schwarz inequality:

(
T · x⊗3)2 =

〈
m∑
i=1
〈ai, x〉2ai, x

〉2

�

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

‖x‖2 �r

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

Expanding this quantity, and using the fact that ‖ai‖ = 1, we get

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

=
m∑
i=1
〈ai, x〉4 +

∑
i 6=j
〈ai, aj〉〈ai, x〉2〈aj , x〉2. (5)

J

APPROX/RANDOM’15
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The first term is closely related to 2-to-4 norm of random matrices: let A ∈ Rm×n be
a matrix whose rows are equal to ai’s, then ‖A‖2→4 = sup‖x‖=1 ‖Ax‖4. Clearly, ‖A‖4

2→4 =
sup‖x‖=1

∑m
i=1〈ai, x〉4 is the maximum value of the first term. This is considered in [8] where

they gave a SoS proof that when m� n2 the first term is bounded by O(1). Here we are
in the regime m� n3/2 so we can improve the bound to 1 + o(1) (The proof is deferred to
Appendix A.1):

I Lemma 12. With high probability over the randomness of ai’s,
m∑
i=1
〈ai, x〉4 �r,12 1 + Õ(m/n3/2) (6)

The harder part of the proof is to deal with the second term p(x) on the RHS of (4). The
naive idea would be to let y = x⊗2 and view p(x) as a degree-2 polynomial of y,

q(y) =
∑
i 6=j
〈ai, aj〉〈ai ⊗ ai, y〉〈aj ⊗ aj , y〉 = yTNy. (7)

Here N is an n2 by n2 random matrix that depends on ai’s. Suppose N has spectral norm
less than o(1), then we have yTNy � ‖N‖‖y‖2, and by replacing y = x ⊗ x we obtain
p(x) = q(x⊗ x) � o(1). However, in our case the matrix N have spectral norm much larger
than o(1).

Our key insight is that we could have different ways to unfold p(x) into a degree-2
polynomial. In particular, we use the following way of unfolding:

q′(y) =
∑
i 6=j
〈ai, aj〉〈ai ⊗ aj , y〉〈ai ⊗ aj , y〉 = yTMy (8)

where M is the n2 by n2 matrix that encodes the coefficients of q′(y),

M =
∑
i 6=j
〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T

It turns out that q′(y) still have the property that q′(x⊗ x) = p(x). The matrix M has
much better spectral norm bound, which leads us to the bound for p(x).

I Lemma 13. When m� n3/2, the matrix M =
∑
i6=j〈ai, aj〉(ai⊗aj)(ai⊗aj)T has spectral

norm at most Õ(m/n3/2) and as a direct consequence,

p(x) �r,4 Õ(m/n3/2)

First we give an informal and suboptimal bound for intuition. Let B be the n2×m2 matrix
whose (i, j)-column (i, j ∈ [m]) is ai ⊗ aj (viewed as an n2 dimensional vector). Then M can
be written as M = B diag(〈ai, aj〉)i6=jBT . Note that B can also be written as A⊗A where ⊗
is the Kronecker product of two matrices, so we have ‖B‖ = ‖A‖2 . m/n. Then we can bound
the norm of M by ‖M‖ ≤ ‖B‖‖ diag(b)‖‖B‖ ≤ (m/n) ·maxi,j |〈ai, aj〉| · (m/n) . m2/n5/2,
where we used the incoherence of ai’s, that is, |〈ai, aj〉| . 1/

√
n. This will only be o(1) when

m . n1.25.
Intuitively, this proof is not tight because we ignored potential cancellation caused by

the randomness of 〈ai, aj〉. Note that 〈ai, aj〉 have expectation 0, but we treated them
all as positive 1/

√
n. If we assume that 〈ai, aj〉’s are independent ±1/

√
n, then M =
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∑
i 6=j〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T would be a sum of PSD matrices with random weights and

we can apply more standard matrix concentration bounds to make sure cancellations happen.
However, 〈ai, aj〉 are of course not independent and our key idea is to decouple the

randomness of 〈ai, aj〉.

Proof. (Sketch) We first replace the vectors ai’s with σiai where σi is a random ±1 variable.
This is OK because the distribution of ai and σiai are the same. Now we first sample the
ai’s, conditioned on the samples M =

∑
i 6=j σiσj〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T (where only σi’s

are still random). Now since the vectors ai’s are all fixed, the correlation between different
terms only depends on scalar variables σiσj , and we never use the term σ2

i (because i 6= j).
By a result of [28], in this case we can decouple the product σiσj . In particular, in order

to prove concentration properties for M , it suffices to prove concentration for a different
matrix

∑
i 6=j σiτj〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T . Here τ ∈ {±1}m is an independent copy of σi’s.

In this way we have decoupled the randomness in σi and τi, and the rest of the Lemma can
follow from careful matrix concentration analysis. J

We give the full proof of Lemma 13 in Appendix A.2.

Proof Sketch of Main Theorem

Theorem 10 follows directly from Lemma 12 and Lemma 13. Using Lemma 8, we get the
main Theorem 9 in the noiseless case. When there is noise, since we have bounds on spectral
norm of an unfolding of T̃ − T , it implies (by Lemma 33) [T̃ − T ](x, x, x) �r,12 1/2 logn.it is
easy to verify that T̃ (x, x, x) = T (x, x, x) + [T̃ − T ](x, x, x) �r,12 1 + 1/ logn, so Theorem 9
still holds. We give more details in Appendix A.3.

5 Quasi-polynomial Time Algorithm for Tensor Decomposition

In this section we give a quasi-polynomial time algorithm for decomposing random 3rd order
tensors in distribution Dm,n. In particular, we prove Theorem 2 which we restate with more
details below:

I Theorem 14. Let T be a tensor chosen from Dm,n, when m� n3/2 with high probability
over the randomness of T Algorithm 2 returns {âi} that is 0.1-close to {ai} in time nO(logn).
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/10 logn.

A key component of our algorithm is a way of sampling pseudo-distributions given in [10]:

I Theorem 15 (Theorem 5.1 in [10]). For every k ≥ 0, there exists a randomized algorithm
with running time nO(k) and success probability 2−k/ poly(ε) for the following problem: Given
a degree-k pseudo distribution {u} over Rn that satisfies the polynomial constraint ‖u‖2 = 1
and the condition Ẽ[〈c, u〉k] ≥ e−εk for some unit vector c ∈ Rn, output a unit vector c′ ∈ Rn
with 〈c, c′〉 ≥ 1−O(ε).

The basic idea of Algorithm 2 is as follows. At each iteration, the algorithm tries to find
a new vector âi. As we discussed in Section 3, in order to find a vector close to ai it finds a
vector x with large T (x, x, x) value. Moreover, It enforces that the new vector is different
from all previous found vectors by the set of polynomial equations {〈s, x〉2 ≤ 1/8 : s ∈ S}.
Intuitively, if we haven’t found all of the vectors ai’s any of the remaining ai’s will satisfy
the set of constraints {〈s, x〉2 ≤ 1/8 : s ∈ S} and T (x, x, x) ≥ 1− 1/ logn. Therefore each
time we can find a valid pseudo-expectation Ẽ.

APPROX/RANDOM’15
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What we need to prove is for any pseudo-expectation Ẽ we found, it always satisfies
Ẽ[〈ai, x〉k] ≥ e−εk for some k = O((logn)/ε) for some small enough constant ε. Then by
Theorem 15we can obtain a new vector that is O(ε)-close to one of the ai’s. We formalize
this in the following lemma:

Algorithm 2 Overcomplete Random 3-Tensor Decomposition
Input: Random 3-tensor T =

∑m
i=1 a

⊗3
i ∼ Dm,n.

Output: â1, . . . , âm ∈ Rn s.t. {âi} is 0.1-close to {ai}
1: S ← ∅
2: repeat
3: Using semidefinite programming to find a degree k = O(logn) pseudo-expectation Ẽ

that satisfies the constraints {T (x, x, x) ≥ 1− 1/ logn, ‖x‖2 = 1} and {〈s, x〉2 ≤ 1/8 :
s ∈ S}.

4: Run the algorithm in Theorem 5.1 of [10] (for nO(k) times) with input Ẽ and obtain
vector c such that T (c, c, c) ≥ 0.99.

5: add vector c to S.
6: until |S| = m

7: return {âi} = S.

I Lemma 16. When T is chosen from Dm,n where m� n3/2, with high probability over the
randomness of T , the pseudo-expectation found in Step 3 of Algorithm 2 satisfies the following:
there exists an ai such that Ẽ[〈ai, x〉k] ≥ e−εk for sufficiently small constant ε (where the
pseudo-expectation has degree 4k and k = O((logn)/ε)). In particular, applying Theorem 15,
repeat the algorithm for nO(k) time will give a vector c such that 〈c, ai〉 ≥ 1−O(ε).

The main intuition is to use Cauchy-Schwarz and Hölder inequalities (like what we used
in Claim 11) to raise the power in the sum

∑m
i=1〈ai, x〉d (we start with d = 3 and hope to

get to d = k). When the degree is high enough we can afford to do an averaging argument
and lose a factor of m to go from the sum to a individual vector, because e−εk = poly(m).
The detailed proof is given in Appendix B.1.

Now we are ready to prove Theorem 14.

Proof. (sketch) We prove Theorem 14 by induction. Suppose s already contains a set of
vectors âi’s, where for each âi there is a corresponding aj that satisfies ‖âi − aj‖ ≤ 0.1. We
would like to show with high probability in the next iteration, the algorithm finds a new
component that is different from all the previously found ai’s.

In order to do that, we need to show the following:
1. The SDP in Step 3 of Algorithm 2 is feasible and gives a valid pseudo-expectation.
2. For any valid pseudo-expectation, with high probability we get an unit vector c that

satisfies T (c, c, c) ≥ 0.99, and c is far from all the previously found ai’s.
3. For any unit vector c such that T (c, c, c) ≥ 0.99, there must be a component ai such that
‖ai − c‖ ≤ 0.1.

In these three steps, Step 1 follows because we can take Ẽ to be the expectation of a true
distribution: x = ai with probability 1 for some unfound ai. Step 2 is basically Lemma 16,
when we choose ε to be a small enough constant, it is easy to prove that all the vectors
that satisfy 〈c, ai〉 ≥ 1−O(ε) must satisfy T (c, c, c) ≥ 0.99. Step 3 is the second part of our
observation in Section 3, which we prove in the appendix. J

The details in this proof can be found in Appendix B.2.
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6 Conclusion

In this paper we give the first algorithm that can decompose an overcomplete 3rd order
tensor when the rank m is almost n3/2 that matches the np/2 bounds for even order tensors.
Our argument is based on a special unfolding of the tensor and a decoupling argument for
matrix concentration. We feel such techniques can be useful in other settings.

Tensor decompositions are widely applied in machine learning for learning latent variable
models. Although the SoS based algorithm have poor dependency on the accuracy ε, in the
case of tensor decomposition we can actually use SoS as an initialization algorithm. We hope
such ideas can help solving more problems in machine learning.

Acknowledgements. We would like to thank Anima Anandkumar, Boaz Barak, Johnathan
Kelner, David Steurer, Venkatesan Guruswami for helpful discussions at various stages of
this work
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A Omitted Proofs in Section 4

A.1 Proof of Lemma 12
We first restate the lemma here.

I Lemma 17. With high probability over the randomness of ai’s,
m∑
i=1
〈ai, x〉4 �r,12 1 + Õ(m/n3/2) (9)

Recall [8] showed that when m� n2,

m∑
i=1
〈ai, x〉4 ≤ O(1) (10)

Here in order to improve this bound, we consider the square of the LHS of (6) and apply
Cauchy-Schwarz (similar to Claim 11),(

m∑
i=1
〈ai, x〉4

)2

=
〈

m∑
i=1
〈ai, x〉3ai, x

〉2

�

∥∥∥∥∥
m∑
i=1
〈ai, x〉3ai

∥∥∥∥∥
2

‖x‖2 by Cauchy-Schwarz

�r

∥∥∥∥∥
m∑
i=1
〈ai, x〉3ai

∥∥∥∥∥
2

=
m∑
i=1
〈ai, x〉6 +

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 (11)

We will bound the first term of (11) by 1 + o(1). We simply let y = x⊗3 and let B
be the matrix whose ith row is a⊗3

i . Then f(y) = ‖By‖2 has the property that f(x⊗3) =∑m
i=1〈ai, x〉6. Therefore it suffices to prove that f(y) � (1 + o(1)‖y‖2 or equivalently

‖B‖ ≤ 1 + o(1).
Consider the matrix BBT . It is a n by n matrix with diagonal entries 1 and off diagonal

entries of the form 〈a⊗3
i , a⊗3

j 〉 = 〈ai, aj〉3. By the incoherence of ai’s, we have 〈ai, aj〉3 .

1/n3/2. Then by Gershgorin disk theorem, we have ‖BBT ‖ ≤ 1 + Õ(m/n3/2) = 1 + δ. It
follows that ‖B‖ ≤ 1 + Õ(m/n3/2). Therefore,

m∑
i=1
〈ai, x〉6 = ‖Bx⊗3‖2 � (1 + Õ(m/n3/2))‖x⊗3‖ ≤r 1 + Õ(m/n3/2) (12)

For the second term of (11), we apply Cauchy-Schwarz again:

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3

2

�

∑
i 6=j
〈ai, aj〉2〈ai, x〉2〈aj , x〉2

∑
i6=j
〈ai, x〉4〈aj , x〉4


�

 1
n
·
∑
i

〈ai, x〉2
∑
j

〈aj , x〉2
∑

i

〈ai, x〉4
∑
j

〈aj , x〉4


(13)
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Note that the matrix A = [a1| . . . |am] has spectral norm bound ‖A‖ .
√
m/n, and

therefore ∑
i

〈ai, x〉2 = ‖ATx‖2 � ‖A‖2‖x‖2 �r ‖A‖2

Then using Equation 10, and the equation above, we have

RHS of (13) �r
1
n
· m
n
· m
n
·O(1) ·O(1) ≤ Õ(m2/n3) (14)

Then by 13 and 14 and Lemma 34, we have that∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 �r Õ(m2/n3) (15)

Hence, combining equation (15), (12) and (11) we have that

(
m∑
i=1
〈ai, x〉4

)2

�r
m∑
i=1
〈ai, x〉6 +

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 (16)

�r 1 + Õ(m/n3/2) + Õ(m/n3/2) = 1 + Õ(m/n3/2)

Using Lemma 34 again, we complete the proof of Lemma 6.

A.2 Proof of Lemma 13
We first restate the lemma:

I Lemma 18. When m� n3/2, the matrix M =
∑
i6=j〈ai, aj〉(ai⊗aj)(ai⊗aj)T has spectral

norm at most Õ(m/n3/2) and as a direct consequence,

p(x) �r,4 Õ(m/n3/2)

Proof. As suggested in the proof sketch, we first use a simple symmetrization which allows
us to focus on the randomness of signs of 〈ai, aj〉. For simplicity of notation, let Qij :=
〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T . Let σ ∈ {±1}m be uniform random ±1 vector and define M ′ as

M ′ =
∑
i 6=j

σiσjQij .

We claim that M ′ has the same distribution as M , since ai has the same distribution as
σiai. Then from now on we condition on the event that ai’s have incoherence property and
low spectral norm, that is, 〈ai, aj〉 . 1/

√
n, ‖A‖ = ‖[a1|a2 . . . |am]‖ .

√
m/n, and we will

only focus on the randomness of σ. Ideally we want to write M ′ as a sum of independent
random matrices so that we can apply matrix Bernstein inequality. However, now the random
coefficients are σiσj , and they are not independent with each other.

A key observation here is that the sum is only over the indices (i, j) with i 6= j, therefore
we can use Theorem 1 of [28] (restated as Theorem 29 in the end) to decouple the correlation
first.

Theorem 29 basically says that to study the concentration of a sum of the form∑
i6=j fij(Xi, Xj), it is up to constant factor similar to the concentration of the sum∑
i6=j fij(Xi, Yj) where Yi is an independent copy of Xi. Applying the theorem to our

situation, we have that there exists absolute constant C such that

Pr[‖M ′‖ ≥ t] ≤ C Pr[M ′′ ≥ t/C] (17)
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where
M ′′ :=

∑
i 6=j

σiτjQij ,

and σ, τ are independently uniform over {−1,+1}m.
Now it suffices to bound the norm of M ′′. We proceed by rewriting M ′′ as

M ′′ =
∑
i

σi
∑
j 6=i

τjQij :=
∑
i

σiTi,

where

Ti :=
∑
j 6=i

τjQij (18)

We study the properties of Ti first.

I Claim 19. With high probability over the randomness of ai’s, for all i, Ti � Õ(
√
m/n)(aiaTi )⊗

I.

Proof. Recall that Qij = 〈ai, aj〉(ai ⊗ aj)(ai ⊗ aTj ). In the definition 18 of Ti, the index
i is fixed and we take sum over j. Therefore it will be convenient to write Qij as Qij =
〈ai, aj〉(aiaTi )⊗ (ajaj)T where ⊗ is the Kronecker product between matrices. Then Ti can
be written as

Ti = (aiaTi )⊗

∑
j

τj〈ai, aj〉ajaTj

 .

We apply the Matrix Bernstein inequality (Theorem 30) on the right factor. Matrix
Bernstein bound requires spectral norm bound for individual matrices, and a variance bound.

For the spectral norm of individual matrices, we check that ‖τj〈ai, aj〉ajaTj ‖ . 1/
√
n (by

incoherence). For variance we know

‖E[
∑
j

τ2
j (〈ai, aj〉ajaTj )2]‖ = ‖A diag(〈ai, aj〉2)j 6=iAT ‖ . m/n2,

where we used the spectral norm of A and the fact that 〈ai, aj〉2 . 1/n.
Therefore by Matrix Bernstein’s inequality (Theorem 30) we have that whp, over the

randomness of τ ,
‖
∑
j

τj〈ai, aj〉ajaTj ‖ ≤ Õ(
√
m/n).

Using the fact that for two matrices P and Q, if P � Q and R is PSD, then R⊗P � R⊗Q
(see Claim 20), it follows that

Ti � (aiaTi )⊗ (Õ(
√
m/n) · I).

Finally we use union bound and conclude with high probability this is true for any i. J

Now we can apply matrix Bernstein for the sumM ′′ =
∑m
i=1 σiTi. The individual spectral

norm is bounded by Õ(
√
m/n) by the Claim 19. The variance is

‖
m∑
i=1

T 2
i ‖ ≤ Õ(m/n2)‖

m∑
i=1

((aiaTi )⊗ I)2‖ = Õ(m/n2)‖(AAT )⊗ I‖ = Õ(m2/n3).

Using matrix Bernstein inequality, we know with high probability ‖M ′′‖ ≤ Õ(m/n3/2).
Using (17), we get that whp, ‖M ′‖ ≤ Õ(m/n3/2). Since M ′ and M has the same

distribution, we conclude that whp, ‖M‖ ≤ Õ(m/n3/2). J
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We complete the proof by providing the following claim about Kronecker products.

I Claim 20. If P � Q and R is psd, then R⊗ P � R⊗Q.

Proof. It suffices to prove this when R = uuT (as we can always decompose R as sum of
rank one components). In that case, for any y ∈ Rn2 , we can write y = u⊗ v + z where z is
orthogonal to u⊗ ei for all i ∈ [n]. Now (R⊗ P )z = 0, therefore

yT (R⊗ P )y = (u⊗ v)T (R⊗ P )(u⊗ v) = (uTRu)(vTPv) ≤ (uTRu)(vTQv) = yT (R⊗Q)y.

Therefore R⊗ P � R⊗Q. J

A.3 Main Theorem for Certifying Injective Norm
Now we are ready to prove Theorem 9.

I Theorem 21. Algorithm 1 always returns NO when ‖T‖inj > 1+1/ logn. When T ∼ Dm,n
and m � n3/2, Algorithm 1 returns YES with high probability over the randomness of T .
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/2 logn.

Proof. We first prove whenever ‖T‖inj > 1 + 1/ logn, the algorithm returns NO. This is
because a large injective norm implies there exists an unit vector x∗ with T (x∗, x∗, x∗) = 1.
We can construct a pseudo-expectation Ẽ as Ẽ[p(x)] = p(x∗). Clearly this is a valid pseudo-
expectation (it is even the expectation of a true distribution: x = x∗ with probability 1).
Also, we know Ẽ[T (x, x, x)] = T (x∗, x∗, x∗) > 1+1/ logn, so in particular OPT > 1+1/ logn
and the algorithm must return NO.

Next we show the algorithm returns YES with high probability when T is chosen from D.
This follows directly from Theorem 10, which in turn follows from Lemmas 12 and 13. In
particular, we know there is a degree-12 SoS proof that shows T (x, x, x) ≤ 1 + Õ(m/n3/2) ≤
1 + 1/2 logn, so by Lemma 8 this must also hold for any pseudo-expectation.

When we are only given tensor T̃ such that the unfolding of T̃ − T has spectral norm
1/2 logn. Let M be the unfolding of T̃ − T , and y = x ⊗ x, then by Lemma 33 we know
(xTMy)2 � ‖x‖2‖M‖2‖y‖2, which implies (by Lemma 33) [T̃ − T ](x, x, x) = xTMy �r,12
‖M‖ ≤ 1/2 logn. Combining the two terms we know

T̃ (x, x, x) = T (x, x, x) + [T̃ − T ](x, x, x) �r,12 1 + 1/ logn.

J

B Omitted Proof in Section 5

B.1 Proof of Lemma 16
We first restate the lemma here:

I Lemma 22. When T is chosen from Dm,n where m� n3/2, with high probability over the
randomness of T , the pseudo-expectation found in Step 3 of Algorithm 2 satisfies the following:
there exists an ai such that Ẽ[〈ai, x〉k] ≥ e−εk for sufficiently small constant ε (where the
pseudo-expectation has degree 4k and k = O((logn)/ε)). In particular, applying Theorem 15,
repeat the algorithm for nO(k) time will give a vector c such that 〈c, ai〉 ≥ 1−O(ε).

First we will show that for a valid pseudo-expectation, the sum of 〈ai, x〉4 and 〈ai, x〉6
are also bounded. This actually follows directly from the proof of Lemma 12 and 13.
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I Lemma 23. With high probability over the randomness of T , we have that for any degree-12
pseudo expectation Ẽ that satisfies the constraints {‖x‖2 = 1, T (x, x, x) ≥ 1 − τ}, it also
satisfies

1 + ε ≥ Ẽ

[
m∑
i=1
〈ai, x〉4

]
≥ 1− ε (19)

1 + ε ≥ Ẽ

[
m∑
i=1
〈ai, x〉6

]
≥ 1− ε (20)

for ε = Õ(m/n3/2) +O(τ).

Proof. We essentially just take pseudo-expectation on the SoS proofs for Lemma 12 and 13.
The upper bounds follows directly by taking pseudo-expectation on equation (9) and (12).
Fo the lower bounds, by taking pseudo-expectation over the SoS equation in Lemma 13,
we have that Ẽ [p(x)] ≤ Õ(m/n3/2). Taking pseudo-expectation over Claim 11, using the
assumption that Ẽ satisfies T (x, x, x) ≥ 1− τ , we have that

1− τ ≤ Ẽ
[
[T (x, x, x)]2

]
≤ Ẽ

[
〈ai, x〉4

]
+ Ẽ [p(x)] ≤ Ẽ

[
〈ai, x〉4

]
+ Õ(m/n3/2) (21)

which implies

Ẽ
[
〈ai, x〉4

]
≥ 1− τ − Õ(m/n3/2). (22)

For proving the lower bounds in (20), we first pseudo-expectation on equation 15, we
have that

Ẽ

∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3

 ≤ Õ(m2/n3)

Then taking pseudo-expectation over equation (16), we obtain that

Ẽ

( m∑
i=1
〈ai, x〉4

)2
 ≤ Ẽ

[
m∑
i=1
〈ai, x〉6

]
+ Ẽ

∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3


Note that by equation (22) and Cauchy-Schwarz, we have

Ẽ

( m∑
i=1
〈ai, x〉4

)2
 ≥ (Ẽ[ m∑

i=1
〈ai, x〉4

])2

≥ 1−O(τ)− Õ(m/n3/2)

Combining the two equations above, we obtain that

Ẽ

[
m∑
i=1
〈ai, x〉6

]
≥ 1−O(τ)− Õ(m/n3/2)

J

Next we are going to prove that Ẽ also satisfies the condition of Theorem 5.2 of [10].
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I Lemma 24. For k = O((logn)/ε) with constant ε < 1, If Ẽ is a degree-k pseudo-expectation
that satisfies equation (20) and (19), then there must exists i ∈ [m] such that Ẽ[〈ai, x〉k] ≥
e−(2ε+δ)k with δ = Õ(m/n3/2).

Proof. By equation (2.5) of [10], we the following SoS version of Holder inequality. For any
integer t, d and k = t(d− 2),

‖v‖dtd �k ‖v‖kk · ‖v‖2t

Let vi = 〈ai, x〉2, we have(
m∑
i=1
〈ai, x〉2d

)t
�k

m∑
i=1
〈ai, x〉2k ·

(
m∑
i=1
〈ai, x〉4

)t
(23)

By Lemma 12, we have that with high probability over randomness of ai’s,
∑m
i=1〈ai, x〉4 �

1 + Õ(m/n3/2), and it follows that(
m∑
i=1
〈ai, x〉4

)t
≤ (1 + Õ(m/n3/2))t (24)

By picking d = 3, we have t = k. Taking t = O(logm/ε) and combining equation (23)
and (24), we have that(

m∑
i=1
〈ai, x〉6

)k
�k

m∑
i=1
〈ai, x〉2k ·

(
m∑
i=1
〈ai, x〉4

)k
�k (1 + Õ(m/n3/2))k

m∑
i=1
〈ai, x〉2k

Applying pseudo-expectation on both hands, we obtain,

Ẽ

( m∑
i=1
〈ai, x〉6

)k ≤ (1 + Õ(m/n3/2))k · Ẽ

[
m∑
i=1
〈ai, x〉2k

]

Note that by Cauchy-Schwarz and equation (20), we have

(1− ε)k ≤ Ẽ

[
m∑
i=1
〈ai, x〉6

]k
≤ Ẽ

( m∑
i=1
〈ai, x〉6

)k
Combining the two equations above, we obtain that for δ = Õ(m/n3/2),

Ẽ

[
m∑
i=1
〈ai, x〉2k

]
≥ (1− δ)k(1− ε)k (25)

Therefore by averaging argument, there exists i such that

Ẽ[〈ai, x〉2k] ≥ (1− δ)k/m = e−δk−logm−εk

when k ≥ (logm)/ε, we have that Ẽ[〈ai, x〉2k] ≥ e−(2ε+δ)k J

Lemma 16 follows directly from the two lemmas above.
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B.2 Proof of Theorem 14
In this section we prove the main theorem in Section 5.

I Theorem 25. Let T be a tensor chosen from Dm,n, when m� n3/2 with high probability
over the randomness of T Algorithm 2 returns {âi} that is 0.1-close to {ai} in time nO(logn).
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/10 logn.

As suggested in the proof sketch, we prove this theorem by induction. The induction
hypothesis is that all vectors si ∈ S are 0.1-close (in `2 norm) to distinct components ai’s.
We break the proof into three claims:

I Claim 26. With high probability over the tensor T , suppose all the previously found si’s
are 0.1-close (in `2 norm) to some components aj’s, then there exists a pseudo-expectation
that satisfies Step 3 in Algorithm 2.

Proof. We first prove that with high probability T (ai, ai, ai) ≥ 1− 1/ logn for all i. This
is easy because T (ai, ai, ai) = 1 +

∑
j 6=i〈ai, aj〉3. Conditioned on ai, the values 〈ai, aj〉 are

sub-Gaussian random variables with mean 0 and variance 1/n, so by standard concentration
bounds we know with high probability

∑
j 6=i〈ai, aj〉3 ≥ −1/ logn. We can then take the

union bound and conclude T (ai, ai, ai) ≥ 1− 1/ logn for all i.
Now for simplicity of notation, assume that S = {s1, . . . , st} for some t < m, where si is

0.1-close to ai. We can construct a pseudo-expectation Ẽ[p(x)] = p(at+1). Clearly this is
a valid pseudo-expectation that satisfies ‖x‖2 = 1. For the inequality constraints we also
know 〈at+1, si〉2 ≤ 2(〈at+1, ai〉2 + 〈at+1, ai − si〉2) < 1/8 (where the whole proof only uses
Cauchy-Schwarz and (A+B)2 ≤ 2(A2 +B2), so the proof is SoS). Therefore the system in
Step 3 must have a feasible solution. J

I Claim 27. For any valid pseudo-expectation in Step 3, with high probability we get an unit
vector c that satisfies T (c, c, c) ≥ 0.99, and c is far from all the previously found ai’s.

Proof. By Lemma 16 we know there must be a vector ai such that Ẽ[〈ai, x〉k] ≥ e−εk for
sufficiently small constant ε. We show that this vector ai cannot be among the previously
found ones. By Lemma 32 we know that for even number k,

(〈si, x〉+ 〈si − ai, x〉)k ≤ 2k−1(〈si − ai, x〉k + 〈si, x〉k)

Taking pseudo-expectations over both sides, we have that

Ẽ[〈ai, x〉k] �2k 2k−1(Ẽ[〈si, x〉k] + kẼ[〈si − ai, x〉k]) �‖x|2=1,2k e
−εk

where we’ve used the constraint 〈si, x〉2 ≤ 1/8 and induction hypothesis ‖si − ai‖ ≤ 0.1.
Now applying Theorem 15 we get a vector c that is has inner-product 1 − O(ε) with

ai. Therefore T (c, c, c) = T (ai, ai, ai) + T (c − ai, ai, ai) + T (c, c − ai, ai) + T (c, c, ai) ≥
1 − 1/ logn − 3‖T‖inj‖c − ai‖ ≥ 0.99. Here T (x, y, z) =

∑
i1,i2,i3

Ti1,i2,i3xi1yi2zi3 is the
multilinear form for the tensor, and note that this step of the proof does not need to be SoS
because we already have the vector c from Theorem 15. J

I Claim 28. For any unit vector c such that T (c, c, c) ≥ 0.99, there must be a component ai
such that ‖ai − c‖ ≤ 0.1.
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Proof. We define the following trivial pseudo-expectation Ẽ
c defined by c: Ẽ

c [p(x)] = p(c).
Then we know that Ẽ

c does satisfy equation T (x, x, x) ≥ 0.99, and the degree of Ẽ
c can

be any finite number. Therefore, by Lemma 24, we have that Ẽ
c [〈ai, x〉k] ≥ e−(2ε+δ)k for

k = O(logn). Therefore using the definition of Ẽ
c, we have that Ẽ

c [〈ai, x〉k] = 〈ai, c〉k ≥
e−(2ε+δ)k. Taking ε = 0.001 and then we have that 〈ai, c〉 ≥ 0.999 − δ and it follows that
‖ai − c‖ ≤ 0.99. J

These three claims finishes the induction in the noiseless case. For the noisy case, we can
handle it the same ways as Theorem 9: note that [T̃ − T ](x, x, x) �‖x‖2=1,12 1/2 logn and
this additional term does not change any part of the proof.

Finally, the runtime of Line 3 in Algorithm 2 is nO(k), and the run-time of line 4 is also
nO(k). Therefore the total runtime is nO(k).

C Matrix Concentrations

In this section we introduce theorems used to prove matrix concentrations. First we need
the following lemma for decoupling the randomness in the sum.

I Theorem 29 (Special case of Theorem 1 of [28]). Let X1, . . . , Xn, Y1, . . . , Yn are independent
random variables on a measurable space over S, where Xi and Yi has the same distribution
for i = 1, . . . , n. Let fij(·, ·) be a family of functions taking S×S to a Banach space (B, ‖ · ‖).
Then there exists absolute constant C, such that for all n ≥ 2, t > 0,

Pr

∥∥∥∥∥∥
∑
i 6=j

fij(Xi, Xj)

∥∥∥∥∥∥ ≥ t
 ≤ C Pr

∥∥∥∥∥∥
∑
i 6=j

fij(Xi, Yj)

∥∥∥∥∥∥ ≥ t/C


We also need the Matrix Bernstein’s Inequality:

I Theorem 30 (Matrix Bernstein, [30]). Consider a finite sequence {Xk} of independent,
random symmetric matrices with dimension d. Assume that each random matrix satisfies

E[Xk] = 0 and ‖Xk‖ ≤ R almost surely.

Then, for all t ≥ 0,

Pr[‖
∑
k

Xk‖ ≥ t] ≤ d · exp
(
−t2/2

σ2 +Rt/3

)
where σ2 := ‖

∑
k

E[X2
k ]‖.

D Sum-of-Square Proofs

In this section we state some lemmas that can be proved by low-degree SoS proofs. Most of
these lemmas can be found in [12] and [9] but we still give the proofs here for completeness.

I Lemma 31. [SoS proof for Cauchy-Schwarz] Cauchy-Schwarz inequality can be proved by
degree-2 sum of squares proofs,(

n∑
i=1

a2
i

)(
n∑
i=1

b2
i

)
−

(∑
i

aibi

)2

=
∑
i,j

(aibj − ajbi)2

I Lemma 32. For any vector x, y, we have that for even number k,

‖x+ y‖k �k 2k−1(‖x‖k + ‖y‖k)



R. Ge and T. Ma 849

Proof. Note that it suffices to prove it for one dimensional vector x, y. We prove by induction.
For k = 2, it just follows Cauchy-Schwarz. Suppose it is true for k − 2 case, we have

(x+ y)k = (x+ y)k−2(x+ y)2 � 2k−3(xk−2 + yk−2) · 2(x2 + y2)

Note that

2(xk + yk)− (xk−2 + yk−2)(x2 + y2) = (x2 − y2)2(xk−4 + xk−6y2 + · · ·+ yk−4) � 0

Combing the two equations above we obtain the desired result. J

I Lemma 33. Suppose M is m× n matrix with spectral norm ‖M‖, then

(xTMy)2 �4 ‖x‖2‖y‖2‖M‖2

Proof. Assume m ≤ n without loss of generality, and suppose M has singular decomposition
M = UΣV T where Σ = diag(σ1, . . . , σm). Let z = xTU and w = V T y. Then

(xTMy)2 =
(

m∑
i=1

σiziwi

)2

�4

(
m∑
i=1

σ2
i z

2
i

)(
m∑
i=1

w2
i

)
≤ ‖M‖2‖z‖2‖w‖2 = ‖x‖2‖y‖2‖M‖2

J

I Lemma 34. For a nonnegative real number a and a set of polynomial R and positive integer
k, if a polynomial p(x) satisfy p(x) �R,k a2, then p(x) �R,k′ a for k′ = max{k, 2 deg(p)}.

Proof. By a simple manipulation of algebra, we have that

p(x)− a �R,k
1
2a (p(x)− a)2 �R,k′ 0.

J
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