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Abstract
We prove that for any constant k and any ε < 1, there exist bimatrix win-lose games for which
every ε-WSNE requires supports of cardinality greater than k. To do this, we provide a graph-
theoretic characterization of win-lose games that possess ε-WSNE with constant cardinality sup-
ports. We then apply a result in additive number theory of Haight [8] to construct win-lose
games that do not satisfy the requirements of the characterization. These constructions disprove
graph theoretic conjectures of Daskalakis, Mehta and Papadimitriou [7] and Myers [10].
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1 Introduction

A Nash equilibrium of a bimatrix game (A,B) is a pair of strategies that are mutual best-
responses. Nash equilibria always exist in a finite game [11], but finding one is hard, unless
PPAD ⊆ P [5]. This has lead to the study of relaxations of the equilbrium concept. A
notable example is an ε-approximate Nash equilibrium (ε-NE). Here, every player must receive
an expected payoff within ε of their best response payoff. Thus ε-NE are numerical relaxations
of Nash Equilibria. Counterintuitively, however, given that Nash’s existence result is via a
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fixed point theorem, Nash equilibria are intrinsically combinatorial objects. In particular, the
crux of the equilibrium problem is to find the supports of the equilibrium. In particular, at
an equilibrium, the supports of both strategies consist only of best responses. This induces a
combinatorial relaxation called an ε-well supported approximate Nash equilibrium (ε-WSNE).
Now the content of the supports are restricted, but less stringently than in an exact Nash
equilibrium. Specifically, both players can only place positive probability on strategies that
have payoff within ε of a pure best response.

Observe that in an ε-NE, no restriction is placed on the supports of the strategies.
Consequently, a player might place probability on a strategy that is arbitrarily far from
being a best response! This practical deficiency is forbidden under ε-WSNE. Moreover, the
inherent combinatorial structure of ε-WSNE has been extremely useful in examining the
hardness of finding Nash equilibria. Indeed, Daskalakis, Goldberg and Papadimitriou [6]
introduced ε-WSNE in proving the PPAD-completeness of finding a Nash equilibrium in
multiplayer games. They were subsequently used as the notion of approximate equilibrium
by Chen, Deng and Teng [5] when examining the hardness of bimatrix games.

This paper studies the (non)-existence of ε-WSNE with small supports. Without loss
of generality, we may assume that all payoffs in (A,B) are in [0, 1]. Interestingly, for ε-NE,
there is then a simple 1

2 -NE with supports of cardinality at most two [7]. Take a row r. Let
column c be a best response to r, and let r′ be a best response to c. Suppose the row player
places probability 1

2 on r and r′, and the column player plays column c as a pure strategy. It
is easy to verify that this is a 1

2 -NE. On the other hand, Althöfer [1] showed the existence of
zero-sum games for which every ε-NE, with ε < 1

4 , requires supports of cardinality at least
logn. This result is almost tight; a probabilistic argument shows the existence of ε-NE with
supports of cardinality O( log nε2 ), for any ε > 0; see Lipton et al. [9].

For the case of well-supported equilibria, Anbalagan et al. [2] recently showed the existence
of win-lose games for which every ε-WSNE, with ε < 2

3 , require supports of cardinality at
least 3

√
logn. They also proved, in contrast to ε-NE, that with supports of cardinality at

most two, it is not possible to guarantee the existence of an ε-WSNE, for any ε < 1.
The outstanding open problem in the area is whether there is a constant k and an

ε < 1 such that, for any bimatrix game, there is a ε-WSNE with supports of cardinality at
most k. In the paper we prove this is not the case. This result illustrates a fundamental
structural distinction between ε-WSNE and ε-NE. This structural distinction also has practical
implications with regards to behavioural models and popular equilibria search algorithms
that focus upon small supports. The key to our result is the disproof of graph theoretic
conjectures of Daskalakis, Mehta and Papadimitriou [7] and Myers [10] via an old result in
additive number theory of Haight [8].

2 WSNE and a Graph Theoretic Conjecture

A bimatrix game is a 2-player game with m × n payoff matrices A and B. We consider
normal form games with entries in the payoff matrices in [0, 1]. A pair of mixed strategies
{p, q} forms an ε-well supported Nash equilibrium (ε-WSNE) if every pure strategy in the
support of p (resp. q) is an ε-approximate best response to q (resp p). Thus {p, q} forms an
ε-WSNE if and only if:

∀i : pi > 0 ⇒ ei
TAq ≥ ejTAq − ε ∀j = 1, ..,m

and
∀i : qi > 0 ⇒ pTBei ≥ pTBej − ε ∀j = 1, .., n

APPROX/RANDOM’15
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To analyse well-supported equilibria in a win-lose game (A,B), Daskalakis et al. [7]
applied a decorrelation transformation to obtain a pair of decorrelated matrices (A∗, B∗).
The exact details of this decorrelation transformation are not important here. What is
pertinent, however, is that the n × n square 0 − 1 matrix A∗ induces a directed, possibly
non-bipartite, graph H = (V,E). There are n vertices in V , and there is an arc ij ∈ E if an
only if A∗ij = 1. Moreover, Daskalakis et al. proved that the original win-lose game has a
(1− 1

k )-WSNE with supports of cardinality at most k if H contains either a directed cycle
of length k or a set of k undominated1 vertices. Furthermore, they conjectured that every
directed graph contains either a small cycle or a small undominated set.

I Conjecture 1 ([7]). There are integers k and l such that every digraph either has a cycle
of length at most k or an undominated set of l vertices.

Indeed, they believed the conjecture was true for k = l = 3 and, consequently, that
every bimatrix win-lose game has a 2

3 -WSNE with supports of cardinality at most three.
Interestingly, motivated by the classical Caccetta-Haggkvist conjecture [3] in extremal graph
theory, a similar conjecture was made previously by Myers [10].

I Conjecture 2 ([10]). There is an integer k such that every digraph either has a cycle of
length at most k or an undominated set of two vertices.

Myers conjectured that this was true even for k = 3, but Charbit [4] proved this special
case to be false.

We say that D is a (k, l)-digraph if every directed cycle in D has length at least k, and
every S ⊆ V (D) of cardinality at most l is dominated. In Section 4, we will prove that there
exists a finite (k, l)-digraph for every pair of positive integers k and l. This will imply that
Conjectures 1 and 2 are false.

3 A Characterization for Games with Small Support ε-WSNE.

In this section, we show Daskalakis et al.’s sufficiency condition extends to a characterization
of when a win-lose game has ε-WSNE with constant supports. To do this, rather than
non-bipartite graphs, it is more natural for bimatrix games to work with bipartite graphs.
In particular, any win-lose game (A,B) has a simple representation as a bipartite directed
graph G = (R ∪C,E). To see this, let G contain a vertex for each row and a vertex for each
column. There exists an arc (ri, cj) ∈ E if and only if Aij = 1. So ri is the best response for
the row player against the strategy cj of the column player. Similarly, there exists an arc
(cj , ri) ∈ E if and only if Bij = 1. So, cj is a best response for the column player against the
strategy ri of the row player.

We will now show that a win-lose game has a (1− 1
k )-WSNE with supports of cardinality

at most k if and only if the corresponding directed bipartite graph has either a small cycle
or a small set of undominated vertices. Thus we obtain a characterization of win-lose games
that have ε-WSNE with small cardinality supports.

It what follows, we will only consider undominated sets that are contained either in R or
in C

I Lemma 3. Let G be a win-lose game with minimum out-degree at least one. If G contains
an undominated set of cardinality k then there is a (1− 1

k )-WSNE with supports of cardinality
at most k.

1 A set S is undominated if there is no vertex v that has an arc to every vertex in S.
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Proof. Without loss of generality, let U = {r1, ..., rk} be the undominated set. Let the row
player play a uniform strategy p on these k rows. Since U is undominated, any column has
expected payoff at most 1− 1

k against p. Therefore every column cj is a (1− 1
k )-approximate

best response against p.
By assumption, each row vertex ri has out-degree at least one. Let cf(i) be an out-

neighbour of ri (possibly f(i) = f(j) for j 6= i). Now let the column player play a uniform
strategy q on {cf(i)}ki=1. Because q has support cardinality at most k, each pure strategy
ri ∈ U has an expected payoff at least 1

k against q. Thus, these ri’s are all (1− 1
k )-approximate

best responses for the row player against q. So {p, q} is a (1− 1
k )-WSNE with supports of

cardinality at most k. J

I Lemma 4. If G contains a cycle of length 2k then there is a (1− 1
k )-WSNE with supports

of cardinality k.

Proof. Let W be a cycle of length 2k in G. Since G is bipartite, k of the vertices in the
cycle are row vertices and k are column vertices. Let p be the uniform strategy on the rows
in W and let q be the uniform strategy on the columns in W . We claim that p and q form
a (1 − 1

k )-WSNE. To prove this, consider the subgraph F induced by the vertices of W .
Every vertex in F has out-degree (and in-degree) at least one since W ⊆ F . So, every pure
strategy in p, gives the row player an expected payoff of at least 1

k against q. Thus, every
pure strategy in p is a (1− 1

k )-best response for the row player against q. Similarly, every
pure strategy in q is a (1− 1

k )-best response for the column player against p. J

Lemma 3 and Lemma 4 immediately give the following corollary.

I Corollary 5. Let G be a win-lose game with minimum out-degree at least one. If G contains
a cycle of length 2k or an undominated set of cardinality k then then the win-lose game has
(1− 1

k )-WSNE with supports of cardinality at most k.

Importantly, the converse also holds.

I Lemma 6. Let G be a win-lose game with minimum out-degree at least one. If there is an
ε-WSNE (for any ε < 1) with supports of cardinality at most k then G either contains an
undominated set of cardinality k or contains a cycle of length at most 2k.

Proof. Take a win-lose game G = (R ∪ C,E) and let p and q be an ε-WSNE. Suppose the
supports of p and q, namely P ⊆ R and Q ⊆ C, have cardinality at most k.

We may assume that every set of cardinality every set of k (on the same side of the
bipartition) is dominated; otherwise we are already done. In particular, both P and Q are
dominated. Consequently, the row player has a best response with expected payoff 1 against
q. Similarly, the column player has a best response with expected payoff 1 against p. Thus,
for the ε-WSNE {p, q}, we have:

∀i : pi > 0 ⇒ ei
TRq ≥ 1− ε > 0

∀j : qj > 0 ⇒ pTCej ≥ 1− ε > 0

Here the strict inequalities follow because ε < 1. Therefore, in the subgraph F induced by
P ∪Q, every vertex has an out-degree at least one. But then F contains a cycle W . Since H
contains at most 2k vertices, the cycle W has length at most 2k. J

Corollary 5 and Lemma 6 then give the following characterization for win-lose games
with ε-WSNE with small cardinality supports

APPROX/RANDOM’15
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I Theorem 7. Let G be a win-lose game with minimum out-degree at least one. Take any
constant k and any ε such that 1− 1

k ≤ ε < 1. The game contains an ε-WSNE with supports
of cardinality at most k if and only if G contains an undominated set of cardinality k or a
cycle of length at most 2k.

4 Digraphs of Large Girth with every Small Subset Dominated

In this section, we will first prove that there exists a finite (k, l)-digraph for every pair of
positive integers k and l and, hence, disprove Conjecture 1. We then adapt the resulting
counterexamples in order to apply Theorem 7 and deduce that, for any constant k and any
ε < 1, there exist bimatrix win-lose games for which every ε-WSNE require supports of
cardinality greater than k.

The main tool we require is a result of Haight [8] from additive number theory. We will
require the following notation. Let Γ be an additive group. Then, for X ⊆ Γ, denote

X −X = {x1 − x2 | x1, x2 ∈ X}, and
(k)X = {x1 + x2 + . . .+ xk | xi ∈ X for 1 ≤ i ≤ k}.

Finally, let Zq = {0, 1, . . . , q − 1} denote the additive group of Z/qZ, the integers modulo q.
Haight [8] proved:

I Theorem 8 ([8]). For all positive integers k and l, there exists a positive integer q̂ = q̂(k, l)
and a set X ⊆ Zq̂, such that X −X = Zq̂, but (k)X omits l consecutive residues.

To construct the finite (k, l)-digraph we will use the following corollary.

I Corollary 9. For every positive integer k, there exists a positive integer q = q(k) and a set
Y ⊆ Zq, such that Y − Y = Zq, but 0 6∈ (k)Y .

Proof. Let l = k and apply Theorem 8 with q = q(k) = q̂(k, k). Thus, we obtain a set
X ⊆ Zq with the properties that: (i) X−X = Zq, and (ii) (k)X omits k consecutive residues.
But these k consecutive residues must contain ky for some y ∈ Zq. Thus, there exists y ∈ Zq
such that ky 6∈ (k)X.

Now, define Y := X − y. Then Y − Y = X −X = Zq. Furthermore, ky 6∈ (k)(Y + y).
This implies that 0 6∈ (k)Y , as desired. J

We now construct a counter-example to Conjecture 2 of Myers. We will then show how
the construction can be extend to disprove Conjecture 1.

I Theorem 10. For any positive integer κ, there exists a (κ, 2)-digraph D.

Proof. Set k = (κ− 1)! and apply Corollary 9. Thus we find Y ⊆ Zq, with q = q(k) where
Y − Y = Zq, and 0 6∈ (k)Y . From Y , we create a directed graph D as follows. Let the vertex
set be V (D) = Zq. Let the arc set be E(D) = {z1z2 | z1 − z2 ∈ Y }.

Now take any pair z1, z2 ∈ Zq. Because Y − Y = Zq, there exist y1, y2 ∈ Y such that
z1 − z2 = y1 − y2. We now claim that the vertex pair z1, z2 ∈ V (D) is dominated. To
see this consider the vertex x ∈ V (D) where x = z1 + y2 = z2 + y1. Then xz1 is an arc
in E(D) because x − z1 = (z1 + y2) − z1 = y2 ∈ Y . On the other hand x = z2 + y1 and
so x − z2 = y1 ∈ Y . Consequently, xz2 is also in E(D). Hence, every subset of V (D) of
cardinality at most 2 is dominated.

It remains to prove that D contains no directed cycle of length less than κ. So, assume
there is a cycle C with ordered vertices z1, z2, . . . , zs, where s < κ. As zizi+1 is an arc we
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have that zi − zi+1 = yi where yi ∈ Y , for 1 ≤ i ≤ s (here we assume zs+1 = z1). Summing
around the cycle we have that y1 + y2 + · · ·+ ys = 0 modulo q. This implies that 0 ∈ (s)Y
as y1, y2, . . . , ys ∈ Y . Consequently, 0 ∈ (ts)Y for any positive integer t. In particular,
0 ∈ (k)Y = ((κ − 1)!)Y , as s ≤ κ − 1. This contradicts the choice of Y and, so, D is a
(κ, 2)-digraph, as desired. J

I Theorem 11. For every pair of positive integers k and l, there exists a finite (k, l)-digraph.

Proof. Without loss of generality, assume l ≥ 2. By Theorem 10, there exists a ((k − 1)(l −
1) + 1, 2)-digraph D′. We claim that the (l − 1)-st power of D′ is a (k, l)-digraph. More
precisely, let the digraph D be defined by V (D) = V (D′) and vw ∈ E(D) if and only if there
exists a directed walk from v to w in D′ using at most (l − 1) edges.

Suppose D has a cycle of length at most k − 1. This corresponds to a closed directed
walk of length a most (k − 1)(l − 1) in D′. This is a contradiction as D′ has no cycles of
length shorter than (k − 1)(l− 1) + 1. Therefore, the shortest directed cycle in D has length
at least k.

It remains to prove that every S ⊆ V (D) with |S| = l is dominated. So take S =
{v1, v2, . . . , vl}. Recall that every pair of vertices in V (D′) = V (D) is dominated in D′. So
there is a vertex z1 dominating v1 and v2 in D′. Now let zi+1 be a vertex dominating zi and
vi+2 for 1 ≤ i ≤ l − 2. By construction, there is a directed walk in D′ from zl−1 to vi of
length at most l − 1, for every 1 ≤ i ≤ l. Thus zl−1vi ∈ E(D), and S is dominated in D, as
desired. J

Observe that these constructions are non-bipartite. To exploit the characterization
of Theorem 7 (and therefore conclude that there are games with no ε-WSNE with small
supports), we desire bipartite constructions. These we can create using a simple mapping
from non-bipartite to bipartite graphs. Given a non-bipartite graph G = (V,E), we build
a win-lose game, that is, a bipartite directed graph G′ = (R ∪ C,E′) as follows. We set
R = C = V . Thus, for each vi ∈ V we have a row vertex ri ∈ R and a column vertex ci ∈ C.
Next, for each arc a = (vi, vj) in G, we create two arcs (ri, cj) and (ci, rj) in G′. Finally, for
each vi ∈ V we add an arc (ri, ci).

Now let’s understand what this mapping does to cycles and undominated sets. First,
suppose G contains a cycle of length k. Then observe that G′ contains a cycle of length k if
k is even and of length k + 1 if k is odd. On the other hand, suppose the minimum length
cycle in G′ is k + 1. This cycle will contain at most one pair of vertices type {ri, ci}, and if
it contains such a pair then these vertices are consecutive on the cycle. (Otherwise we can
find a shorter cycle in G′.) Thus, G contains a cycle of length k or k + 1.

Second, consider an undominated set S ⊆ V of size ` in G. Then S ⊆ R is undominated
in G′. (Note S ⊆ C may be dominated because we added arcs of the form (ri, ci) to G′). On
the other hand if S is undominated in G′ (either in R or C) then S is also undominated in G.

Applying this mapping to a non-bipartite (2k+ 1, k)-digraph produces a bipartite digraph
for which every set of k vertices (on the same side of the bipartition) is dominated but that
has no cycle of length at most 2k. Thus, by Theorem 7, the corresponding game has no
ε-WSNE, for any ε < 1, with supports of cardinality at most k.

I Theorem 12. For any constant k and any ε < 1, there exist bimatrix win-lose games for
which every ε-WSNE requires supports of cardinality greater than k.

APPROX/RANDOM’15
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