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Abstract
A quantile summary is a data structure that approximates to ε-relative error the order statistics
of a much larger underlying dataset.

In this paper we develop a randomized online quantile summary for the cash register data
input model and comparison data domain model that uses O( 1

ε log 1
ε ) words of memory. This

improves upon the previous best upper bound of O( 1
ε log3/2 1

ε ) by Agarwal et al. [1]. Further,
by a lower bound of Hung and Ting [4] no deterministic summary for the comparison model can
outperform our randomized summary in terms of space complexity. Lastly, our summary has the
nice property that O( 1

ε log 1
ε ) words suffice to ensure that the success probability is 1−e−poly(1/ε).
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1 Introduction

A quantile summary S is a fundamental data structure that summarizes an underlying
dataset X of size n, in space much less than n. Given a query φ, S returns a sample y of X
such that the rank of y in X is (probably) approximately φn. Quantile summaries are used
in sensor networks to aggregate data in an energy-efficient manner and in database query
optimizers to generate query execution plans.

Quantile summaries have been developed for a variety of different models and metrics.
The data input model we consider is the standard online cash register streaming model, in
which a new item is added to the dataset at each new timestep, and the total number of
items is not known until the end. The data domain model we consider is the comparison
model, in which stream items come from an arbitrary ordered domain (and specifically, not
necessarily from the integers).

Formally, our quantile summary problem is defined over a totally ordered domain D and
by an error parameter ε ≤ 1/2. There is a dataset X that is initially empty. Time occurs
in discrete steps. In timestep t, stream item xt arrives and is then processed, and then any
quantile queries φ in that step are received and processed. To be definite, we pick the first
timestep to be 1. We write Xt or X(t) for the t-item prefix stream x1 . . . xt of X. The goal
is to maintain at all times t a summary St of the dataset Xt that, given any query φ in
(0, 1], can return a sample y = y(φ) so that |R(y,Xt)− φt| ≤ εt, where R(a, Z) is the rank
of item a in set Z, defined as |{z ∈ Z : z ≤ a}|. For randomized summaries, we only require
that ∀t∀φ, P (|R(y,Xt)− φt| ≤ εt) ≥ 2/3; that is, y’s rank is only probably close to φt, not
definitely close. In fact, it will be easier to deal with the rank directly, so we define ρ = φt

and use that in what follows.
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1.1 Previous work
The two most directly relevant pieces of prior work ([1, 2] and [6]) are randomized online
quantile summaries for the cash register/comparison model. Aside from oblivious sampling
algorithms (which require storing Ω(1/ε2) samples) the only other such work of which we
are aware is an approach by Wang, Luo, Yi, and Cormode [11] that combines the methods
of [1, 2] and [6] into a hybrid with the same space bound as [1, 2].

The newer of the two is that of Agarwal, Cormode, Huang, Phillips, Wei, and Yi [1, 2].
Among other results, Agarwal et al. develop a randomized online quantile summary for the
cash register/comparison model that uses O( 1

ε log3/2 1
ε ) words of memory. This summary

has the nice property that any two such summaries can be combined to form a summary of
the combined underlying dataset without loss of accuracy or increase in size.

The earlier such summary is that of Manku, Rajagopalan, and Lindsay [6], which uses
O( 1

ε log2 1
ε ) space. At a high level, their algorithm downsamples the input stream in a

non-uniform way and feeds the downsampled stream into a deterministic summary, while
periodically adjusting the downsampling rate.

We note here for those familiar with the result of Manku et al. that, while our algorithm
at a high level may appear similar, there are important differences. We defer a discussion of
similarities and differences to Section 4 after the presentation of our algorithm in Section 3.

For the comparison model, the best deterministic online summary to date is the (GK)
summary of Greenwald and Khanna [3], which uses O( 1

ε log εn) space. This improved upon
a deterministic (MRL) summary of Manku, Rajagopalan, and Lindsay [5] and a summary
implied by Munro and Paterson [7], which use O( 1

ε log2 εn) space.
A more restrictive domain model than the comparison model is the bounded universe

model, in which elements are drawn from the integers {1, . . . , u}. For this model there is a
deterministic online summary by Shrivastava, Buragohain, Agrawal, and Suri [9] that uses
O( log u

ε ) space.
Not much exists in the way of lower bounds for this problem. There is a simple lower

bound of Ω(1/ε) which intuitively comes from the fact that no one sample can satisfy more
than 2εn different rank queries. For the comparison model, Hung and Ting [4] developed a
deterministic Ω( 1

ε log 1
ε ) lower bound. Whether this bound can be extended to hold for our

weaker probabilistic guarantee, and whether our algorithm can be modified to satisfy the
stronger deterministic guarantee, are both open questions.

1.2 Our contributions
In the next section we describe a simple O( 1

ε log 1
ε ) streaming summary that is online except

that it requires n to be given up front and that it is unable to process queries until it has seen
a constant fraction of the input stream. This simple summary is not new (it is mentioned
in Wang et al. [11], for example) but the discussion provides exposition for Section‘3, in
which we develop this summary into a fully online summary with the same asymptotic space
complexity that can answer queries at any point in time. We close in Section 4 by examining
the similarities and differences between our summary and previous work and discuss a design
approach for similar streaming problems.

2 A simple streaming summary

Before we describe the algorithm we must first describe its two main components in a bit
more detail than was used in the introduction. The two components are Bernoulli sampling
and the GK summary [3].
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2.1 Bernoulli sampling

Bernoulli sampling downsamples a stream X of size n to a sample stream S by choosing to
include each next item into S with independent probability m/n. (As stated this requires
knowing the size of X in advance.) At the end of processing X, the expected size of S is
m, and the expected rank of any sample y in S is E(R(y, S)) = m

n R(y,X). In fact, for any
times t ≤ n and partial streams Xt and St, where St is the sample stream of Xt, we have
E(|St|) = mt/n and E(R(y, St)) = m

n R(y,Xt). To generate an estimate for R(y,Xt) from
St we use R̂(y,Xt) = n

mR(y, St). The following theorem bounds the probability that S is
very large or that R̂(y,Xt) is very far from R(y,Xt). A generalization of this theorem is due
Vapnik and Chervonenkis [10]; the proof of this special case is a simple known application of
Chernoff bounds.

I Theorem 1. For all times t ≥ n/64,

P (|St| > 2tm/n) < exp(−m/192)

Further, for all times t ≥ n/64 and items y,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8) < 2 exp(−ε2m/12288)

Proof. For the first part,

P (|St| > 2tm/n) < exp(−tm/3n) < exp(−m/192)

since t ≥ n/64. For the second part,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8) = P (|R(y, St)− E(R(y, St))| > εtm/8n)

The Chernoff bound is

P (|R(y, St)− E(R(y, St))| > δE(R(y, St))) < 2 exp(−min{δ, δ2}E(R(y, St))/3)

Here, δ = εt/8R(y, St), so

P < 2 exp(−ε2t2m/192nE(R(y, St))) ≤ 2 exp(−ε2m/12288)

finishing the proof. J

This means that, given any 1 ≤ ρ ≤ t, if we choose to return the sample y ∈ St with
R(y, St) = ρm/n, then R(y,Xt) is likely to be close to ρ, as long as m is Ω( 1

ε2 log 1
ε ).

2.2 GK summary

The GK summary is a deterministic summary that can answer queries to relative error over
any portion of the received stream. Let Gt be the summary after inserting the first t items Xt

from stream X into G. Greenwald and Khanna guarantee in [3] that with only O( 1
ε log(εt))

words, given any 1 ≤ ρ ≤ t, Gt can return a sample y ∈ Xt so that |R(y,Xt) − ρ| ≤ εt/8.
We call this the GK guarantee.

APPROX/RANDOM’15
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X → S
sampling
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≈ m samples GK(ε/8)stream

input X
query

quantiles

Figure 1 The big picture.

2.3 A simple streaming summary
We combine Bernoulli sampling with the GK summary by downsampling the input data
stream X to a sample stream S and then feeding S into a GK summary G. It looks like in
Figure 1.

The key reason this gives us a small summary is that we never need to store S; each
time we sample an item into S we immediately feed it into G. Therefore, we only use as
much space as G(S(Xt)) uses. In particular, for m = O(poly(1/ε)), we use only O( 1

ε log 1
ε )

words. To answer a query ρ for Xt, we scale ρ by m/n, ask G(S(Xt)) for that, and return
the resulting sample y.

We formalize this intuition in the following lemma, which combines the ideas in the proof
of Theorem 1 with the GK guarantee to yield approximation and correctness guarantees.

I Lemma 2. Fix some time t ≥ n/64 and some rank ρ ≤ t, and consider querying G(S(Xt))
with q = min{ρm/n, |S|}, obtaining y as the result.

Say that S = S(Xt) is good if ||S| −mt/n| ≤ εmt/8n and if none of the first ≤ mt/n

samples z in S has |R(z, S)− m
n R(z,Xt)| > εmt/8n.

If S is good then |R(y,Xt)− ρ| ≤ εt/2.
Further, if m ≥ 400000 ln 1/ε

ε3 then P (S is not good) ≤ ε3e−1/ε/8.

Proof. First, by the GK guarantee, G(S) returns some item y with |R(y, S)− q| ≤ εt/8. If
S is good, then |q − ρm/n| ≤ εmt/8n, and also |R(y, S) − m

n R(y,Xt)| ≤ εmt/8n. By the
triangle inequality, |mn R(y,Xt)− ρm/n| ≤ 3εmt/8n. Equivalently, |R(y,Xt)− ρ| ≤ 3εt/8.

Now, following the proof of Theorem 1, we have that

P (||St| −mt/n| > εmt/8n) < 2 exp(−ε2m/12288)

and also for each of the first ≤ m samples z that

P (|R(z, S)− m
n R(z,Xt)| > εmt/8n) < 2 exp(−ε2m/12288)

By the union bound, P (S is not good) ≤ 4m exp(−ε2m/12288). Choosing m ≥ 400000 ln 1/ε
ε3

suffices to bound this quantity by ε3e−1/ε/8. J

2.4 Caveats
There are two serious issues with this summary. The first is that it requires us to know
the value of n in advance to perform the sampling. Also, as a byproduct of the sampling,
we can only obtain approximation guarantees after we have seen at least 1/64 (or at least
some constant fraction) of the items. This means that while the algorithm is sufficient for
approximating order statistics over streams stored on disk, more is needed to get it to work
for online streaming applications, in which (1) the stream size n is not known in advance, and
(2) queries can be answered approximately at all times t ≤ n and not just when t ≥ n/64.



D. Felber and R. Ostrovsky 779

Adapting this basic streaming summary idea to work online constitutes the next section
and the bulk of our contribution. We start with a high-level overview of our online summary
algorithm. In Section 3.1 we formally define an initial version of our algorithm whose
expected size at any given time is O( 1

ε log 1
ε ) words. In Section 3.2 we show that our

algorithm guarantees that ∀n∀ρ, P (|R(y,Xn)−ρ| ≤ εn) ≥ 1−exp(−1/ε). In Section 3.3 we
discuss the slight modifications necessary to get a deterministic O( 1

ε log 1
ε ) space complexity,

and also perform a time complexity analysis.

3 An online summary

Our algorithm works in rows, which are illustrated in figure 2. Row r is a summary of the
first 2r32m stream items. Since we don’t know how many items will actually be in the
stream, we can’t start all of these rows running at the outset. Therefore, we start each row
r ≥ 1 once we have seen 1/64 of its total items. However, since we can’t save these items for
every row we start, we need to construct an approximation of this fraction of the stream,
which we do by using the summary of the previous row, and join this approximating stream
with the new items that arrive while the row is live. We then wait until the row has seen a
full half of its items before we permit it to start answering queries; this dilutes the influence
of approximating the 1/64 of its input that we couldn’t store.

Operation within a row is very much like the operation of our fixed-n streaming summary.
We feed the joint approximate prefix + new item stream through a Bernoulli sampler to get
a sample stream, which is then fed into a GK summary (which is stored). After row r has
seen half of its items, its GK summary becomes the one used to answer quantile queries.
When row r + 1 has seen 1/64 of its total items, row r generates an approximation of those
items from its GK summary and feeds them as a stream into row r + 1.

Row 0 is slightly different in order to bootstrap the algorithm. There is no join step since
there is no previous row to join. Also, row 0 is active from the start. Lastly, we get rid of
the sampling step so that we can answer queries over timesteps 1 . . .m/2.

After the first 32m items, row 0 is no longer needed, so we can clean up the space used
by its GK summary. Similarly, after the first 2r32m items, row r is no longer needed. The
upshot of this is that we never need storage for more than six rows at a time. Since each GK
summary uses O( 1

ε log 1
ε ) words, the six live GK summaries also only use O( 1

ε log 1
ε ) words.

Our error analysis, on the other hand, will require us to look back as many as Θ(log 1/ε)
rows to ensure our approximation guarantee. We stress that we will not need to actually
store these Θ(log 1/ε) rows for our guarantee to hold; we will only need that they didn’t have
any bad events (as will be defined) when they were alive.

3.1 Algorithm description
Our algorithm works in rows. Each row r has its own copy Gr of the GK algorithm that
approximates its input to ε/8 relative error. For each row r we define several streams: Ar

is the prefix stream of row r, Br is its suffix stream, Rr is its prefix stream replacement
(generated by the previous row), Jr is the joint stream Rr followed by Br, Sr is its sample
stream, and Qr is a one-time stream generated from Gr by querying it with ranks ρ1 . . . ρ8/ε,
where ρq = q(ε/8)(m/32) for r ≥ 1 and ρq = qεm/8 for r = 0.

The prefix stream Ar = X(2r−1m) for row r ≥ 1, importantly, is not directly received
by row r. Instead, at the end of timestep 2r−1m, row r−1 generates Qr−1 and duplicates
each of those 8/ε items 2r−1εm/8 times to get the replacement prefix Rr, which is then
immediately fed into row r before timestep 2r−1m+1 begins.

APPROX/RANDOM’15
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Figure 2 Each row r has its own copy Gr of the GK algorithm that approximates its input to
ε/8 relative error. Ar is the prefix stream of row r, Br is its suffix stream, Rr is its prefix stream
replacement (generated by the previous row), Jr is the joint stream Rr followed by Br, Sr is its
sample stream, and Qr is a one-time stream generated from Gr at time 2rm to get the replacement
prefix Rr+1.
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Each row can be live or not and active or not. Row 0 is live in timesteps 1 . . . 32m and
row r ≥ 1 is live in timesteps 2r−1m+1 . . . 2r32m. Live rows require space; once a row is no
longer live we can free up the space it used. Row 0 is active in timesteps 1 . . . 32m and row
r ≥ 1 is active in timesteps 2r16m+1 . . . 2r32m. This definition means that exactly one row
r(t) is active in any given timestep t. Any queries that are asked in timestep t are answered
by Gr(t). Given query ρ, we ask Gr(t) for ρ/2r(t)32 (if r ≥ 1) or for ρ (if r = 0) and return
the result.

At each timestep t, when item xt arrives, it is fed as the next item in the suffix stream Br

for each live row r. Br joined with Rr defines the joined input stream Jr. For r ≥ 1, Jr is
downsampled to the sample stream Sr by sampling each item independently with probability
1/2r32. For row 0, no downsampling is performed, so S0 = J0. Lastly, Sr is fed into Gr.

Figure 2 shows the operation of and the communication between the first six rows.
Solid arrows indicate continuous streams and dashed arrows indicate one-time messages.
Algorithm 1 is a pseudocode listing of the algorithm.

Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr.
if t = 2r−1m for some r ≥ 1 then

Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get y1 . . . y8/ε.
for q = 1 . . . 8/ε do

for 1 . . . 2r−1εm/8 do
with probability 1/2r32 do

Insert yq into Gr.
if t = 2r16m for some r ≥ 1 then

Mark row r as active. Unmark row r−1 as active.
if t = 2r32m for some r ≥ 0 then

Unmark row r as live. Free space for Gr.
on query ρ do

Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 1. Procedural listing of the algorithm in Section 3.1.

3.2 Error analysis
Define Cr = x(2r32m+1), x(2r32m+2), . . . and Yr to be Rr followed by Br and then Cr.
That is, Yr is just the continuation of Jr for the entire length of the input stream.

Fix some time t. All of our claims will be relative to time t; that is, if we write Sr we
mean Sr(t). Our error analysis proceeds as follows. We start by proving that R(y, Yr) is a
good approximation of R(y, Yr−1) when certain conditions hold for Sr−1. By induction, this
means that R(y, Yr) is a good approximation of R(y,X=Y0) when the conditions hold for all
of S0 . . . Sr−1, and actually it’s enough for the conditions to hold for just Sr−log 1/ε . . . Sr−1 to
get a good approximation. Having proven this claim, we then prove that the result y = y(ρ)

APPROX/RANDOM’15
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of a query to our summary has R(y,X) close to ρ. Lastly, we show that m = O(poly(1/ε))
suffices to ensure that the conditions hold for Sr−log 1/ε . . . Sr−1 with very high probability
(1− e−1/ε).

I Lemma 3. Let αr be the event that |Sr| > 2m and let βr be the event that any of the first
≤ 2m samples z in Sr has |2r32R(z, Sr)−R(z, Yr)| > εt/8. Say that Sr is good if neither
αr nor βr occur (or if r = 0).

For all rows r ≥ 1 such that t ≥ tr = 2r−1m, and all for all items y, if Sr−1 is good then
we have that |R(y, Yr)−R(y, Yr−1)| ≤ 2rεm.

Proof. At the end of time tr we have Yr(tr) = Rr(tr), which is each item y(ρq) in Qr−1
duplicated εtr/8 times. If Sr−1(tr) is good then |R(y(ρq), Yr−1(tr)) − 2r−132ρq| ≤ εtr/2
following Lemma 2.

Fix q so that y(ρq) ≤ y < y(ρq+1), where y(ρ0) and y(ρ1+8/ε) are defined to be inf D and
supD for completeness. Fixing q this way implies that R(y, Yr(tr)) = 2r−132ρq. By the
above bound on R(y(ρq), Yr−1(tr)) we also have that

2r−132ρq − εtr/2 ≤ R(y, Yr−1(tr)) < 2r−132ρq+1 + εtr/2

Recalling that ρq = qεm/256, these bounds imply that

|R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

For each time t after tr, the new item xt changes the rank of y in both streams Yr and Yr−1
by the same additive offset, so

|R(y, Yr)−R(y, Yr−1)| = |R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

yielding the lemma. J

By applying this lemma inductively we can bound the difference between Yr and X = Y0:

I Corollary 4. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all of S0(t1), S1(t2), . . . , Sr−1(tr)
are good, then |R(y, Yr)−R(y,X)| ≤ 2 · 2rεm.

To ensure that all of these Si are good would require m to grow with n, which would be
bad. Happily, it is enough to require only the last log2 1/ε sample summaries to be good,
since the other items we disregard constitute only a small fraction of the total stream.

I Corollary 5. Let d = log2 1/ε. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all of
Sr−1(tr), . . . , Sr−d(tr−d+1) are good, then |R(y, Yr)−R(y,X)| ≤ 2r+2εm.

Proof. By Lemma 3 we have |R(y, Yr)−R(y, Yr−d)| ≤ 2r+1εm. At time t ≥ tr−d, Yr−d and
X share all except possibly the first 2(r−d)−1m = 2r−1m/2d = 2r−1εm items. Thus

|R(y, Yr)−R(y,X)| ≤ |R(y, Yr)−R(y, Yr−d)|+ |R(y, Yr−d)−R(y,X)| ≤ 2r+1εm+ 2rεm

proving the corollary. J

We now prove that if the last several sample streams were good then querying our
summary will give us a good result.

I Lemma 6. Let d = log2
1
ε and r = r(t). If all Sr(t), Sr−1(tr), . . . , Sr−d(tr−d+1) are good,

then querying our summary with rank ρ (= querying the active GK summary Gr with ρ/2r32
if r ≥ 1, or with ρ if r = 0) returns y = y(ρ) such that |R(y,X)− ρ| ≤ εt.
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Proof. For r ≥ 1 we have by Corollary 5 that |R(y, Yr) − R(y,X)| ≤ 2r+2εm ≤ εt/2. We
apply Lemma 2 once more at row r, which tells us that |R(y, Yr)− ρ| ≤ εt/2, and combine
these bounds with the triangle inequality.

For r = 0, the GK guarantee alone proves the lemma. J

Lastly, we prove that m = O(poly(1/ε)) suffices to ensure that all of Sr(t), Sr−1(tr), . . . ,
Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

I Lemma 7. Let d = log2 1/ε and r = r(t). If m ≥ 400000 ln 1/ε
ε3 then all Sr(t), Sr−1(tr), . . . ,

Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

Proof. There are at most 1+log2 1/ε ≤ 4/ε of these summary streams total. Lemma 2 and
the union bound give us

P (some Sr is bad) ≤ 4
ε

ε3

8 e
−1/ε ≤ e−1/ε

which implies our claim. J

3.3 Space and time complexity
A minor issue with the algorithm is that, as written in section 3.1, we do not actually have a
bound on the worst-case space complexity of the algorithm; we only have a bound on the
space needed at any given point in time. This issue is due to the fact that there are low
probability events in which |Sr| can get arbitrarily large and the fact that over n items there
are a total of Θ(logn) sample streams. The space complexity of the algorithm is O(max |Sr|),
and to bound this value with constant probability using the Chernoff bound appears to
require that max |Sr| = Ω(log logn), which is too big.

Fortunately, fixing this problem is simple. Instead of feeding every sample of Sr into
the GK summary Gr, we only feed each next sample if Gr has seen < 2m samples so far.
That is, we deterministically restrict Gr to receiving only 2m samples. Lemmas 3 through 6
condition on the goodness of the sample streams Sr, which ensures that the Gr receive at
most 2m samples each, and the claim of Lemma 7 is independent of the operation of Gr.
Therefore, by restricting each Gr to receive at most 2m inputs we can ensure that the space
complexity is deterministically O( 1

ε log 1
ε ) without breaking our error guarantees.

From a practical perspective, the assumption in the streaming setting is that new items
arrive over the input stream X at a high rate, so both the worst-case per-item processing
time as well as the amortized time to process n items are important. For our per-item time
complexity, the limiting factor is the duplication step that occurs at the end of each time
tr = 2r−1m, which makes the worst-case per-item processing time as large as Θ(n). Instead,
at time tr we could generate Qr−1 and store it in O(1/ε) words, and then on each arrival
t = 2r−1m+1 . . . 2rm we could insert both xt and also the next item in Rr. By the time
tr+1 = 2tr that we generate Qr, all items in Rr will have been inserted into Jr. Thus the
worst-case per-item time complexity is O( 1

εT
max
GK ), where Tmax

GK is the worst-case per-item
time to query or insert into one of our GK summaries. Over 2r32m items there are at most
2m insertions into any one GK summary, so the amortized time over n items in either case
is O( m log(n/m)

n TGK), where TGK is the amortized per-item time to query or insert into one
of our GK summaries. Algorithm 2 includes the changes of this section.

4 Discussion

Our starting point is a very natural idea used in Manku et al. [6]: downsample the input
stream and feed the resulting sample stream into a deterministic summary data structure

APPROX/RANDOM’15
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Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr if Gr has seen < 2m insertions.
if r ≥ 1 and 2r−1m < t ≤ 2rm and Gr has seen < 2m insertions then

with probability 1/2r32 do
Also insert item t−2r−1m of Rr into Gr.

if t = 2r−1m for some r ≥ 1 then
Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get Qr−1 = y1 . . . y8/ε.
Store Qr−1, to implicitly define Rr.

if t = 2r16m for some r ≥ 1 then
Mark row r as active. Unmark row r−1 as active.

if t = 2r32m for some r ≥ 0 then
Unmark row r as live. Free space for Gr.

on query ρ do
Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 2. Procedural listing of the algorithm in Section 3.3. The changes between
Sections 3.1 and 3.3 are that Gr never has more than 2m insertions and that stream
Rr is paired with items in Br.

(compare our Figure 1 with figure 1 on page 254 of [6]). At a very high level, we are
simply replacing their deterministic O( 1

ε log2 εn) MRL summary [5] with the deterministic
O( 1

ε log εn) GK summary [3].
However, our implementation of this idea differs conceptually from the implementation of

Manku et al. in two important ways. First, we use the GK algorithm strictly as a black box,
whereas Manku et al. peek into the internals of their MRL algorithm, using its algorithm-
specific interface (New, Collapse, Output) rather than the more generic interface (Insert,
Query). At an equivalent level, dealing with the GK algorithm is already unpleasant—the
space complexity analysis in [3] is quite involved, and in fact a simpler analysis of the GK
algorithm is an open problem [8]. Using the generic interface, our implementation could
just as easily replace the GK boxes in the diagram in Figure 2 with MRL boxes; or, for the
bounded universe model, with boxes running the q-digest summary of Shrivastava et al. [9].

The second way in which our algorithm differs critically from that of Manku et. al. is
that we operate on streams rather than on stream items. We use this approach in our proof
strategy too; the key step in our error analysis, Lemma 3, is a statement about (what to us
are) static objects, so we can trade out the complexity of dealing with time-varying data
structures for a simple induction. We believe that developing streaming algorithms with
analyses that hinge on analyzing streams rather than just stream items is likely to be a useful
design approach for many problems.
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