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Abstract
The random-cluster model has been widely studied as a unifying framework for random graphs,
spin systems and random spanning trees, but its dynamics have so far largely resisted analysis.
In this paper we study a natural non-local Markov chain known as the Chayes-Machta dynamics
for the mean-field case of the random-cluster model, and identify a critical regime (λs, λS) of
the model parameter λ in which the dynamics undergoes an exponential slowdown. Namely, we
prove that the mixing time is Θ(logn) if λ 6∈ [λs, λS ], and exp(Ω(

√
n)) when λ ∈ (λs, λS). These

results hold for all values of the second model parameter q > 1. In addition, we prove that the
local heat-bath dynamics undergoes a similar exponential slowdown in (λs, λS).
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1 Introduction

Background and previous work. Let H = (V,E) be a finite graph. The random-cluster
model on H with parameters p ∈ (0, 1) and q > 0 assigns to each subgraph (V,A ⊆ E) a
probability

µp,q(A) ∝ p|A|(1− p)|E|−|A|qc(A),

where c(A) is the number of connected components in (V,A). A is a configuration of the
model.

The random-cluster model was introduced in the late 1960s by Fortuin and Kasteleyn [10]
as a unifying framework for studying random graphs, spin systems in physics and random
spanning trees; see the book [14] for extensive background. When q = 1 this model
corresponds to the standard Erdős-Rényi model on subgraphs of H, but when q > 1 (resp.,
q < 1) the resulting probability measure favors subgraphs with more (resp., fewer) connected
components, and is thus a strict generalization.

For the special case of integer q ≥ 2 the random-cluster model is, in a precise sense, dual
to the classical ferromagnetic q-state Potts model, where configurations are assignments of
spin values {1, . . . , q} to the vertices of H; the duality is established via a coupling of the
models (see, e.g., [9]). Consequently, the random-cluster model illuminates much of the
physical theory of the Ising/Potts models. Indeed, recent breakthrough work by Beffara
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and Duminil-Copin [1] uses the geometry of the random-cluster model in Z2 to establish the
critical temperature of the q-state Potts model, settling a long-standing conjecture.

At the other extreme, when q, p→ 0 and p approaches zero at a slower rate (i.e., q/p→ 0)
the random-cluster measure µp,q converges to the uniform random spanning tree measure on
H. Random spanning trees are fundamental probabilistic objects, whose relevance goes back
to Kirchhoff’s work on electrical networks [16]. In this paper we investigate the dynamics
of the random-cluster model, i.e., Markov chains on random-cluster configurations that
are reversible w.r.t. µp,q and thus converge to it. The dynamics of physical models are of
fundamental interest, both as evolutionary processes in their own right and as Markov chain
Monte Carlo (MCMC) algorithms for sampling configurations in equilibrium. In both these
contexts the central object of study is the mixing time, i.e., the number of steps until the
dynamics is close to the equilibrium measure µp,q starting from any initial configuration.
While dynamics for the Ising and Potts models have been widely studied, very little is
known about random-cluster dynamics. The main reason for this appears to be the fact
that connectivity is a global property which has led to the failure of existing Markov chains
analysis tools.

We focus on the mean-field case, where H is the complete graph on n vertices. In this
case the random-cluster model may be viewed as the standard random graph model Gn,p,
enriched by a factor that depends on the component structure. As we shall see, the mean-field
case is already quite non-trivial; moreover, it has historically proven to be a useful starting
point in understanding the dynamics on more general graphs. The structural properties
of the mean-field model are already well understood [3, 19]; in particular, it exhibits a
phase transition (analogous to that in Gn,p) corresponding to the appearance of a “giant”
component of linear size. It is natural here to re-parameterize by setting p = λ/n; the phase
transition then occurs at the critical value λ = λc(q) given by

λc(q) =

q for 0 < q ≤ 2;
2
(
q−1
q−2

)
log(q − 1) for q > 2.

For λ < λc(q) all components are of size O(logn) w.h.p.1, while for λ > λc(q) there is a
unique giant component of size θn (for some constant θ that depends on q and λ). The
former regime is called the disordered phase, and the latter is the ordered phase. Henceforth
we assume q > 1, since the q < 1 regime is structurally quite different; the dynamics are
trivial for q = 1.

Our main object of study is a non-local dynamics known as the Chayes-Machta (CM)
dynamics [6]. Given a random-cluster configuration (V,A), one step of this dynamics is
defined as follows:
(i) activate each connected component of (V,A) independently with probability 1/q;
(ii) remove all edges connecting active vertices;
(iii) add each edge connecting active vertices independently with probability p, leaving the

rest of the configuration unchanged.
It is easy to check that this dynamics is reversible w.r.t. µp,q [6]. Until now, the mixing

time of the CM dynamics has not been rigorously established for any non-trivial random-
cluster measure µp,q on any graph. Our goal in this paper is to analyze the CM dynamics in
the mean-field case for all values of q > 1 and all values of λ > 0.

1 We say that an event occurs with high probability (w.h.p.) if it occurs with probability approaching 1 as
n→∞.
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530 Dynamics for the Mean-field Random-cluster Model

For integer q, the CM dynamics is a close cousin of the well studied and widely used
Swendsen-Wang (SW) dynamics [20]. The SW dynamics is primarily a dynamics for the
Ising/Potts model, but it may alternatively be viewed as a Markov chain for the random-
cluster model using the coupling of these measures mentioned earlier. However, the SW
dynamics is only well-defined for integer q, while the random-cluster model makes perfect
sense for all q > 0. The CM dynamics was introduced precisely in order to allow for this
generalization.

The SW dynamics for the mean-field case is fully understood for q = 2: recent results
of Long, Nachmias, Ning and Peres [18], building on earlier work of Cooper, Dyer, Frieze
and Rue [7], show that the mixing time is Θ(1) for λ < λc, Θ(logn) for λ > λc, and Θ(n1/4)
for λ = λc. Until recently, the picture for integer q ≥ 3 was much less complete: Huber [15]
gave bounds of O(logn) and O(n) on the mixing time when λ is far below and far above λc
respectively, while Gore and Jerrum [13] showed that at the critical value λ = λc the mixing
time is exp(Ω(

√
n)). All these results were developed for the Ising/Potts model, so their

relevance to the random-cluster model is limited to the case of integer q. In work that
appeared after the submission of this manuscript [2], Galanis, Štefankovič and Vigoda [11]
provide a more comprehensive analysis of the q ≥ 3 mean-field case. Finally, for the very
different case of the d-dimensional torus, Borgs et al. [4, 5] proved exponential lower bounds
for the mixing time of the SW dynamics for λ = λc and q sufficiently large.

Our work is the first to provide tight bounds for the mixing time of any random-cluster
dynamics for general (non-integer) values of q.

Results. To state our results we identify two further critical points, λs(q) and λS(q), with
the property that λs(q) ≤ λc(q) ≤ λS(q). (For 1 < q ≤ 2 these three points coincide; for
q > 2 they are all distinct.) The definitions of these points are somewhat technical and can
be found in Section 2.

Our first result shows that the CM dynamics reaches equilibrium very rapidly for λ
outside the “critical” window [λs, λS ]. Moreover, our bounds are tight throughout the fast
mixing regime.

I Theorem 1. For any q > 1, the mixing time of the mean-field CM dynamics is Θ(logn)
for λ 6∈ [λs, λS ].

Our next result shows that, inside the critical window (λs, λS), the mixing time is
dramatically larger. (We state this result only for q > 2 as otherwise the window is empty.)

I Theorem 2. For any q > 2, the mixing time of the mean-field CM dynamics is eΩ(
√
n) for

λ ∈ (λs, λS).

We now provide an interpretation of the above results. When q > 2 the mean-field random-
cluster model exhibits a first-order phase transition, which means that at criticality (λ = λc)
the ordered and disordered phases mentioned earlier coexist [19], i.e., each contributes about
half of the probability mass. (For q ≤ 2, there is no phase coexistence.) Phase coexistence
suggests exponentially slow mixing for most natural dynamics, because of the difficulty
of moving between the phases. Moreover, by continuity we should expect that, within a
constant-width interval around λc, the effect of the non-dominant phase (ordered below λc,
disordered above λc) will still be felt, as it will form a second mode (local maximum) for the
random-cluster measure. This leads to so-called metastable states near that local maximum
from which it is very hard to escape, so slow mixing should persist throughout this interval.
Intuitively, the values λs, λS mark the points at which the local maxima disappear. A similar
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phenomenon was captured in the case of the Potts model by Cuff et al. [8]. Our results
make the above picture for the dynamics rigorous for the random-cluster model for all q > 2;
notably, in contrast to the Potts model, in the random-cluster model metastability affects
the mixing time on both sides of λc. Note that our results leave open the behavior of the
mixing time exactly at λs and λS .

As a byproduct of our main results above, we deduce new bounds on the mixing time of
local dynamics for the random-cluster model (i.e., dynamics that modify only a constant-size
region of the configuration at each step). For definiteness we consider the canonical heat-bath
(HB) dynamics, which in each step updates a single edge of the current configuration (V,A)
as follows:
(i) pick an edge e ∈ E u.a.r;
(ii) replace A by A ∪ {e} with probability µp,q(A∪{e})

µp,q(A∪{e})+µp,q(A\{e}) , else by A \ {e}.
Local dynamics for the random-cluster model are currently very poorly understood (but

see [12] for the special case of graphs with bounded tree-width). However, in a recent
surprising development, Ullrich [21, 22] showed that the mixing time of the heat-bath
dynamics on any graph differs from that of the SW dynamics by at most a poly(n) factor.
Thus the previously known bounds for SW translate to bounds for the heat-bath dynamics
for integer q. By adapting Ullrich’s technology to our CM setting, we are able to obtain a
similar translation of our results, thus establishing the first non-trivial bounds on the mixing
time of the mean-field heat-bath dynamics for all q > 1.

I Theorem 3. For any q > 1, the mixing time of the heat-bath dynamics for the mean-field
random-cluster model is Õ(n4) for λ /∈ [λs, λS ], and eΩ(

√
n) for λ ∈ (λs, λS).

The Õ here hides polylogarithmic factors. We conjecture that the upper bound should be
Õ(n2) for all λ /∈ [λs, λS ]; the additional n2 factor is inherent in Ullrich’s spectral approach.

We conclude this introduction with some brief remarks about our techniques. Both our
upper and lower bounds on the mixing time of the CM dynamics focus on the evolution
of the one-dimensional random process given by the size of the largest component (which
approaches θn for λ > λc and Θ(logn) for λ < λc). A key ingredient in our analysis is a
function that describes the expected change, or “drift”, of this random process at each step;
the critical points λs and λS discussed above arise naturally from consideration of the zeros
of this drift function.

For our upper bounds, we construct a multiple-phase coupling of the evolution of two
arbitrary configurations, showing that they converge in O(logn) steps; this coupling is similar
in flavor to that used by Long et al. [18] for the SW dynamics for q = 2, but there are
additional complexities in that our analysis has to identify the “slow mixing” window (λs, λS)
for q > 2, and also has to contend with the fact that only a subset of the vertices (rather
than the whole graph, as in SW) are active at each step. This latter issue is handled using
precise concentration bounds for the number of active vertices, tailored estimates for the
component structure of random graphs and a new coupling for pairs of binomial random
variables.

For our exponential lower bounds we use the drift function to identify the metastable
states mentioned ealier from which the dynamics cannot easily escape. For both upper and
lower bounds, we have to handle the sub-critical and super-critical cases, λ < λc and λ > λc,
separately, even though our final results are insensitive to λc, because the structure of typical
configurations differs in the two cases.

APPROX/RANDOM’15
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2 Preliminaries

In this section we gather a number of standard definitions and background results that we
will refer to repeatedly in our proofs. For those results that are not available in the literature,
we provide proofs in the full version of this paper [2].

Mixing time. Let P be the transition matrix of a finite, ergodic Markov chain M with
state space Ω and stationary distribution π. The mixing time of M is defined by

τmix = max
z∈Ω

min
t

{
||P t(z, ·)− π(·)||TV ≤ 1/4

}
where ||µ−ν||TV = maxA⊂Ω |µ(A)−ν(A)| is the total variation distance between distributions
µ and ν.

A (one step) coupling of the Markov chainM specifies for every pair of states (Xt, Yt) ∈ Ω2

a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and {Yt}, viewed
in isolation, are faithful copies of M , and if Xt = Yt then Xt+1 = Yt+1. The coupling time is
defined by

Tcoup = max
x,y∈Ω

min
t
{Xt = Yt|X0 = x, Y0 = y}.

For any δ ∈ (0, 1), the following standard inequality (see, e.g., [17]) provides a bound on the
mixing time:

τmix ≤ min
t
{Pr[Tcoup > t] ≤ 1/4} ≤ O

(
δ−1) ·min

t
{Pr[Tcoup > t] ≤ 1− δ} . (1)

Random graphs. Let Gd be distributed as a G(n, p = d/n) random graph where d > 0.
Let L(Gd) denote the largest component of Gd and let Li(Gd) be the size of the i-th largest
component of Gd. (Thus, L1(Gd) = |L(Gd)|.) In our proofs we will use several facts about
the random variables Li(Gd), which we gather here for convenience.

I Lemma 4 ([18, Lem. 5.7]). Let I(Gd) denote the number of isolated vertices in Gd. If
d = O(1), then there exists a constant A > 0 such that Pr[I(Gd) > An] = 1−O

(
n−1).

I Lemma 5. If d = O(1), then L2(Gd) < 2n11/12 with probability 1 − O
(
n−1/12) for

sufficiently large n.

I Lemma 6 ([7, Lem. 7]). If d < 1 is bounded away2 from 1, then L1(Gd) = O(logn) with
probability 1−O

(
n−1).

For d > 1, let β = β(d) be the unique positive root of the equation

e−dx = 1− x. (2)

I Lemma 7. Let G̃dn
be distributed as a G(n+m, dn/n) random graph where limn→∞ dn = d

and |m| = o(n). Assume 1 < dn = O(1) and dn is bounded away from 1 for all n ∈ N. Then,
L2(G̃dn

) = O(logn) with probability 1−O
(
n−1), and for A = o(logn) and n large enough,

there exists a constant c > 0 such that

Pr[|L1(G̃dn
)− β(d)n| > |m|+A

√
n] ≤ e−cA

2
.

I Corollary 8. With the same notation as in Lemma 7, |E[L1(G̃dn)]−β(d)n| < |m|+O(
√
n).

I Lemma 9 ([13, Lem. 6]). If d < 1 is bounded away from 1, then L1(Gd) = O(
√
n) with

probability 1− e−Ω(
√
n).

2 We say that d is bounded away from a if there exists a constant ξ such that |d− a| ≥ ξ.
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The random-cluster model. Recall from the introduction that the mean-field random-
cluster model exhibits a phase transition at λ = λc(q) (see [3]): in the sub-critical regime
λ < λc the largest component is of size O(logn), while in the super-critical regime λ > λc
there is a unique giant component of size ∼θrn, where θr = θr(λ, q) is the largest x > 0
satisfying the equation

e−λx = 1− qx

1 + (q − 1)x. (3)

(Note that, as expected, this equation is identical to (2) when q = 1.)

Drift function. As indicated in the introduction, our analysis relies heavily on understanding
the evolution of the size of the largest component under the CM dynamics. To this end, for
fixed λ and q let φ(θ) be the largest x > 0 satisfying the equation

e−λx = 1− qx

1 + (q − 1)θ . (4)

This equation corresponds to (2) for a G(αn, λ/n) random graph where α = (1+(q−1)θ)q−1.
Thus, φ(θ) = β(αλ) and consequently φ is well-defined when αλ > 1. In particular, φ is
well-defined in the interval (θmin, 1], where θmin = max {(q − λ)/λ(q − 1), 0}.

We will see in Section 3 that for a configuration with a unique “large” component of size
θn, the expected “drift” in the size of the largest component will be determined by the sign
of the function f(θ) = θ − φ(θ): f(θ) > 0 corresponds to a negative drift and f(θ) < 0 to a
positive drift. Thus, let

λs = max{λ ≤ λc : f(θ) > 0 ∀θ ∈ (θmin, 1]}, and

λS = min{λ ≥ λc : f(θ)(θ − θr) > 0 ∀θ ∈ (θmin, 1]}.

In words, λs and λS are the maximum and minimum values, respectively, of λ for which the
drift in the size of the largest component is always in the right direction (i.e., towards 0 in
the sub-critical case and towards θrn in the super-critical case). The following lemma reveals
basic information about these quantities.

I Lemma 10. For q ≤ 2, λs = λc = λS = q; and for q > 2, λs < λc < λS = q.

For integer q ≥ 3, λs corresponds to the threshold βs in the mean-field q-state Potts
model at which the local (Glauber) dynamics undergoes an exponential slowdown [8]. In
fact, a change of variables reveals that λs = 2βs for the specific mean-field Potts model
normalization in [8].

In Figure 1 we sketch f in its only two qualitatively different regimes: q ≤ 2 and q > 2.
The following lemma provides bounds for the drift of the size of the largest component under
CM steps.

I Lemma 11. For all θ ∈ (θmin, 1],
(i) If λ < λs, there exists a constant δ > 0 such that f(θ) ≥ δ.
(ii) When λ > λS, if θ > θr, then θ ≥ φ(θ) ≥ θr and if θ < θr, then θ ≤ φ(θ) ≤ θr.
(iii) If λ > λS , there exists a constant δ ∈ (0, 1) such that δ|θ − θr| ≤ |φ(θ)− θ|.

Binomial coupling. In our coupling constructions we will use the following fact about the
coupling of two binomial random variables.

APPROX/RANDOM’15
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λ<λs

λ=λs

λ>λs

f(θ)

θ
θr(λ, q)

1

λ<λs

λs<λ < λS

λ>λS

f(θ)

θ
θr(λ, q)

1

Figure 1 Sketch of the function f . (Left figure corresponds to q ≤ 2 and right figure to q > 2.)

I Lemma 12. Let X and Y be binomial random variables with parameters m and r, where
r ∈ (0, 1) is a constant. Then, for any y ∈ N, there exists a coupling (X,Y ) such that for a
suitable constant γ = γ(r) > 0,

Pr[X − Y = y] ≥ 1− γy√
m
.

Moreover if y = a
√
m for a fixed constant a, then γa < 1.

Hitting time for supermartingales. We will require the following easily derived hitting
time estimate.

I Lemma 13. Consider the stochastic process {Zt} such that Zt ∈ [−n, n] for all t ≥
0. Assume Z0 > a for some a ∈ [−n, n] and let T = min{t > 0 : Zt ≤ a}. Suppose
E[Zt+1 − Zt|Ft] ≤ −A, where A > 0 and Ft is the history of the first t steps. Then,
E[T ] ≤ 4n/A.

3 Mixing time upper bounds

In this section we prove the upper bound portion of Theorem 1 from the introduction.

I Theorem 14. Consider the CM dynamics for the mean-field random-cluster model with
parameters p = λ/n and q where λ > 0 and q > 1 are constants independent of n. If
λ 6∈ [λs, λS ], then τmix = O(logn).

Proof Sketch. Consider two copies {Xt} and {Yt} of the CM dynamics starting from two
arbitrary configurations X0 and Y0. We design a coupling (Xt, Yt) of the CM steps and show
that Pr[XT = YT ] = Ω(1) for some T = O(logn); the result then follows from (1). The
coupling consists of four phases. In the first phase {Xt} and {Yt} are run independently. In
Section 3.1 we establish that after O(logn) steps {Xt} and {Yt} each have at most one large
component with probability Ω(1). We call a component large if it contains at least 2n11/12

vertices; otherwise it is small.
In the second phase, {Xt} and {Yt} also evolve independently. In Sections 3.2 and 3.3 we

show that, conditioned on the success of Phase 1, after O(logn) steps with probability Ω(1)
the largest components in {Xt} and {Yt} have sizes close to their expected value: O(logn)
in the sub-critical case and ∼θrn in the super-critical case. In the third phase, {Xt} and
{Yt} are coupled to obtain two configurations with the same component structure. This
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coupling, described in Section 3.4, makes crucial use of the binomial coupling of Section 2,
and conditioned on a successful conclusion of Phase 2 succeeds with probability Ω(1) after
O(logn) steps. In the last phase, a straightforward coupling is used to obtain two identical
configurations from configurations with the same component structure. This coupling is
described in Section 3.5 and succeeds w.h.p. after O(logn) steps, conditioned on the success
of the previous phases.

Putting all this together, there exists a coupling (Xt, Yt) such that, after T = O(logn)
steps, XT = YT with probability Ω(1). The reminder of this section fleshes out the above
proof sketch. J

We now introduce some notation that will be used throughout the rest of the paper. As
before, we will use L(Xt) for the largest component in Xt and Li(Xt) for the size of the i-th
largest component of Xt. (Thus, L1(Xt) = |L(Xt)|.) For convenience, we will sometimes
write θtn for L1(Xt). Also, we will use Et for the event that L(Xt) is activated, and At for
the number of activated vertices at time t.

3.1 Convergence to configurations with a unique large component

I Lemma 15. For any starting random-cluster configuration X0, there exists T = O(logn)
such that XT has at most one large component with probability Ω(1).

Proof. Let Nt be the number of new large components created in sub-step (iii) of the CM
dynamics at time t. If At < 2n11/12, then Nt = 0. Together with Lemma 5 this implies that
Pr[Nt > 1|Xt, At = a] ≤ a−1/12 for all a ∈ [0, n]. Thus,

E[Nt|Xt] =
n∑
a=0

E[Nt|Xt, At = a] Pr[At = a|Xt]

≤
n∑
a=0

(
Pr[Nt ≤ 1|Xt, At = a] + a

2n11/12 Pr[Nt > 1|Xt, At = a]
)

Pr[At = a|Xt]

≤
n∑
a=0

(
1 + a

2n11/12
1

a1/12

)
Pr[At = a|Xt] ≤ 2.

Let Kt be the number of large components in Xt and let Ct be the number of activated large
components in sub-step (i) of the CM dynamics at time t. Then,

E[Kt+1|Xt] = Kt − E[Ct|Xt] + E[Nt|Xt] ≤ Kt −
Kt

q
+ 2 ≤

(
1− 1

2q

)
Kt

provided Kt ≥ 4q. Assuming that Kt ≥ 4q for all t < T , we have

E[KT |X0] ≤
(

1− 1
2q

)T
K0.

Hence, Markov’s inequality implies that KT < 4q w.h.p. for some T = O(logn). If at time
T the remaining KT large components become active, then KT+1 ≤ 1 w.h.p. by Lemma 5.
All KT components become active simultaneously with probability at least q−4q and thus
KT+1 ≤ 1 with probability Ω(1), as desired. J

APPROX/RANDOM’15



536 Dynamics for the Mean-field Random-cluster Model

3.2 Convergence to typical configurations: the sub-critical case
I Lemma 16. Let λ < λs; if X0 has at most one large component, then there exists
T = O(logn) such that L1(XT ) = O(logn) with probability Ω(1).

The following fact will be used in the proof. Let ξ =
√

2n23/12 logn.

I Fact 17. If Xt has at most one large component, then for sufficiently large n each of the
following holds with probability 1−O(n−1):
(i) If L(Xt) is inactive, then all new components in Xt+1 have size O(logn).
(ii) If L(Xt) is active, then At ∈ Jt :=

[
L1(Xt) + n−L1(Xt)

q − ξ, L1(Xt) + n−L1(Xt)
q + ξ

]
.

(iii) If there is no large component in Xt, then the largest new component in Xt+1 have size
O(logn).

Proof of Lemma 16. If X0 has at most one large component, then it is easy to check that
Xt retains this property for O(logn) CM steps w.h.p. Thus, we condition on this event
throughout this phase. We show first that one step of the CM dynamics contracts the size of
the largest component in expectation.

For ease of notation set Θs := θmin, with θmin defined as in Section 2. Note that
(Θs + (1 − Θs)q−1)λ = 1. Hence, if L1(Xt) = Θsn and L(Xt) is activated, then the
percolation step (sub-step (iii) of the CM dynamics) is critical with non-negligible probability.
This makes the analysis in the neighborhood of Θsn more delicate.

We consider first the case where θt ≥ Θs + ε for some small constant ε > 0 to be chosen
later. By Fact 17(i), if L(Xt) is inactive all the new components have size O(logn) with
probability 1−O(n−1). Thus,

E[L1(Xt+1) |Xt,¬Et] ≤ L1(Xt) +O(1) = θtn+O(1). (5)

To bound E[L1(Xt+1) |Xt, Et], let h+(θt) = θtn + (1 − θt)q−1n + ξ and let `+(θt) be a
random variable distributed as the size of the largest component of a G(h+(θt), p) random
graph. Then, by Fact 17(ii) we have

E[L1(Xt+1) |Xt, Et] ≤
∑
a∈Jt

E[L1(Xt+1) |Xt, Et, At = a] Pr[At = a |Xt, Et] +O(1)

≤ E[L1(Xt+1) |Xt, Et, At = h+(θt)] +O(1) = E[`+(θt)] +O(1).

When θt ≥ Θs + ε, G(h+(θt), p) is a super-critical random graph. Thus, Corollary 8 implies

E[L1(Xt+1) | Xt, Et] ≤ φ(θt)n+O(ξ), (6)

where φ(θt) is defined as in (4). Since λ < λs, by Lemma 11 there exists a constant δ > 0
such that θt − φ(θt) ≥ δ. Therefore, putting (5) and (6) together, we have

E[L1(Xt+1) | Xt] ≤ (1− q−1)θtn+ q−1φ(θt)n+O(ξ) ≤ θtn− δq−1n+O(ξ). (7)

As mentioned before, in a close neighborhood of Θs the percolation step is critical with
non-negligible probability, so when θt ∈ (Θs − ε,Θs + ε) we use monotonicity to simplify
the analysis. Namely, we assume that θt = Θs + ε and use the previous steps to obtain (7).
Thus, there exists a constant γ > 0 such that for all θt > Θs − ε:

E[L1(Xt+1)− L1(Xt) |Xt] ≤ −γn.

Let τ = min{t > 0 : L1(Xt) ≤ (Θs − ε)n}. Lemma 13 implies E[τ ] ≤ 4/γ and thus
Pr[τ > 8/γ] ≤ 1/2 by Markov’s inequality. Hence, L1(XT ) ≤ (Θs − ε)n for some T = O(1)
with probability Ω(1).
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To conclude, we show that after O(logn) additional steps the largest component has size
O(logn) with probability Ω(1). If L1(XT ) ≤ (Θs − ε)n and L(XT ) is activated, then the
definition of Θs implies that the percolation step of the CM dynamics is sub-critical, and thus
XT+1 has no large component w.h.p. Hence, XT+1 has no large component with probability
Ω(1). Now, by Fact 17(iii) and a union bound, all the new components created during
the O(logn) steps immediately after time T + 1 have size O(logn) w.h.p. Another union
bound over components shows that during these O(logn) steps, every component in XT+1 is
activated w.h.p. Thus, after O(logn) steps the largest component in the configuration has
size O(logn) with probability Ω(1), which establishes Lemma 16. J

The reader is referred to the full version [2] for the proof of Fact 17, as well as some of
the details omitted from the proof of Lemma 16.

3.3 Convergence to typical configurations: the super-critical case
I Lemma 18. Let λ > λS = q and ∆t := |L1(Xt) − θrn|. If X0 has at most one large
component, then for some T = O(logn) there exists a constant c > 0 such that Pr[ ∆T >

A
√
cn ] < 1/A for all A > 0.

The following facts, whose proofs can be found in the full version [2], will be useful. Let
ξ(r) =

√
nr logn, ΘS := 1− q/λ and µt = L1(Xt) + n−L1(Xt)

q .

I Fact 19. If X0 has at most one large component, then there exists T = O(logn) such that
with probability Ω(1): L1(XT ) > (ΘS + ε)n, L2(XT ) = O(logn) and

∑
j≥2 Lj(XT )2 = O(n).

Moreover, once these properties are obtained they are preserved for a further T ′ = O(logn)
CM steps w.h.p.

I Fact 20. Assume Xt has exactly one large component and all its other components have
size at most r < 2n11/12. Then, for a small constant ε > 0 and sufficiently large n, each of
the following holds with probability 1−O

(
n−1):

(i) If L(Xt) is inactive and L1(Xt) > (ΘS + ε)n, then all new components in Xt+1 have
size O(logn).

(ii) If L(Xt) is active, then At ∈ Jt,r := [µt − ξ(r), µt + ξ(r)] and G(At, p) is a super-critical
random graph.

Proof of Lemma 18. We show that one step of the CM dynamics contracts ∆t in expectation.
Observe that by Fact 19 we may assume X0 is such that L1(X0) > (ΘS + ε)n, L2(X0) =
O(logn) and

∑
j≥2 Lj(X0)2 = O(n), and that Xt retains these properties for the O(logn)

steps of this phase w.h.p. Consequently, if L(Xt) is inactive, then L1(Xt+1) = L1(Xt) with
probability 1−O(n−1) by Fact 20(i). Hence,

E[∆t+1 | Xt,¬Et] ≤ E [ |L1(Xt+1)− L1(Xt)| | Xt,¬Et] + |L1(Xt)− θrn| ≤ ∆t +O(1). (8)

To bound E[∆t+1 |Xt, Et], let Mt = At − µt and let `t(m) denote the size of the largest
component of a G(µt +m, p) random graph. Also, let ∆′t+1 := |L1(Xt+1)− φ(θt)n|. Note
that, conditioned on Mt = m, L1(Xt+1) and `t(m) have the same distribution. Moreover, if
At ∈ Jt,r then Mt ∈ J ′t,r := [−ξ(r), ξ(r)]. Hence, Fact 20(ii) with r = O(logn) implies

E[∆′t+1 | Xt, Et] ≤
∑

m∈J′
t,r

E[∆′t+1 | Xt, Et,Mt = m] Pr[Mt = m | Xt, Et] +O(1)

=
∑

m∈J′
t,r

E[|`t(m)− φ(θt)n|] Pr[Mt = m | Xt, Et] +O(1).
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Now, by Fact 20(ii), G(µt + m, p) is a super-critical random graph, and thus E[|`t(m) −
φ(θt)n|] ≤ |m|+O(

√
n) by Corollary 8. Hence,

E[∆′t+1 | Xt, Et] ≤ E[|Mt| | Xt, Et] +O(
√
n).

Since
∑
j≥2 Lj(Xt)2 = O(n), it follows from Hoeffding’s inequality that E[|Mt| |Xt, Et] =

O(
√
n) (the explicit calculation is provided in the full version [2]), and thus E[∆′t+1 |Xt, Et] =

O(
√
n). The triangle inequality then implies

E[∆t+1 | Xt, Et] ≤ E[∆′t+1 | Xt, Et] + |θr − φ(θt)|n ≤ |θr − φ(θt)|n+O(
√
n). (9)

Putting (8) and (9) together, we have

E[∆t+1 | Xt] ≤ (1− q−1)∆t + q−1|θr − φ(θt)|n+O(
√
n).

By Lemma 11(iii), there exists a constant δ ∈ (0, 1) such that δ|θt − θr| ≤ |θt − φ(θt)|.
Together Lemma 11(ii), this implies |θr − φ(θt)| ≤ (1 − δ)|θt − θr|. Thus, there exists a
constant δ′ > 0 such that

E[∆t+1 | Xt] ≤ (1− δ′)∆t + ξ

where ξ = O(
√
n). Inducting, E[∆t] ≤ (1 − δ′)t∆0 + ξ/δ′. Hence, for some t = O(logn),

E[∆t] = O(
√
n) and so Markov’s inequality implies Pr [∆t > A

√
cn] ≤ 1/A for some constant

c > 0 and any A > 0. J

3.4 Coupling to the same component structure
In this section we design a coupling of the CM steps which, starting from two configurations
with certain properties (namely, those obtained in Sections 3.2 and 3.3 for the sub-critical
and super-critical case respectively), quickly converges to a pair of configurations with the
same component structure. (We say that two random-cluster configurations X and Y have
the same component structure if Lj(X) = Lj(Y ) for all j ≥ 1.)

The only additional property we will require is that the starting configurations should
have a linear number of isolated vertices. Although in Sections 3.2 and 3.3 we do not
guarantee this, observe that a single CM step from a configuration with at most one large
component activates a linear number of vertices w.h.p., and thus Lemma 4 implies that the
new configuration has a linear number of isolated vertices w.h.p. We will focus first on the
super-critical case, since a simplified version of the arguments works in the sub-critical case.

I Lemma 21. Let λ > q and let X0, Y0 be random-cluster configurations with Ω(n) isolated
vertices such that: L2(X0) = O(logn), |L1(X0)−θrn| = O(

√
n log2 n),

∑
j≥2 Lj(X0)2 = O(n)

and similarly for Y0. Then, there exists a coupling of the CM steps such that XT and YT
have the same component structure after T = O(logn) steps with probability Ω(1).

Proof. It is straightforward to check that Xt, Yt retain the above structural properties of
X0, Y0 for O(logn) CM steps w.h.p. (The details are provided in the full version [2].)

Our coupling will be a composition of three couplings. Coupling I contracts a certain
notion of distance between {Xt} and {Yt}. This contraction will boost the probability of
success of the other two couplings. Coupling II is a one-step coupling which guarantees
that the largest components from {Xt} and {Yt} have the same size with probability Ω(1).
Coupling III uses the binomial coupling from Lemma 12 to achieve two configurations with
the same component structure with probability Ω(1).
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Coupling I: Excluding L(Xt) and L(Yt), consider a maximal matching Wt between the
components of Xt and Yt with the restriction that only components of equal size are matched
to each other. Let M(Xt) and M(Yt) be the components in the matching from Xt and Yt
respectively. Let D(Xt) and D(Yt) be the complements of L(Xt)∪M(Xt) and L(Yt)∪M(Yt)
respectively, and let dt := |D(Xt)|+ |D(Yt)| where | · | denotes the total number of vertices
in the respective components.

The activation of the components in M(Xt) and M(Yt) is coupled using the matching
Wt. That is, c ∈M(Xt) and Wt(c) ∈M(Yt) are activated simultaneously with probability
1/q. The activations of L(Xt) and L(Yt) are also coupled, and the components in D(Xt) and
D(Yt) are activated independently. Let A(Xt) and A(Yt) denote the set of active vertices in
Xt and Yt respectively, and w.l.o.g. assume |A(Xt)| ≥ |A(Yt)|. Let Rt be an arbitrary subset
of A(Xt) such that |Rt| = |A(Yt)| and let Qt = A(Xt) \Rt. The percolation step is coupled
by establishing an arbitrary vertex bijection bt : Rt → A(Yt) and coupling the re-sampling of
each edge (u, v) ∈ Rt ×Rt with (bt(u), bt(v)) ∈ A(Yt)×A(Yt). Edges within Qt and in the
cut Ct = Rt ×Qt are re-sampled independently. The following claim establishes the desired
contraction in dt.

I Claim 22. Let ω(n) = n/ log4 n; after T = O(log logn) steps, dT ≤ ω(n) w.h.p.

Proof. Let Da(Xt) and Da(Yt) be the number of active vertices from D(Xt) and D(Yt)
respectively, and let Ft be the history of the first t steps. Observe that Coupling I guarantees
that Rt and A(Yt) will have the same component structure internally. However, the vertices
in Qt will contribute to dt+1 unless they are part of the new large component, and each
edge in Ct could increase dt+1 by at most (twice) the size of one component of Rt, which is
O(logn). Thus,

E[dt+1 |A(Xt), A(Yt), Ct,Ft] ≤ dt − (|Da(Xt)|+ |Da(Yt)|) + |Qt|+ 2|Ct| ×O(logn). (10)

Observe that E[|Da(Xt)|+ |Da(Yt)| |Ft] = dt/q, and E[|Ct| |A(Xt), A(Yt),Ft] = |Rt||Qt|p ≤
λ|Qt|. Since |Qt| = O(

√
n log2 n), taking expectations in (10) we get

E[dt+1 | Ft] ≤ dt −
dt
q

+O
(√
n log3 n

)
≤
(

1− 1
2q

)
dt

provided dt > ω(n). Thus, Markov’s inequality implies dT ≤ ω(n) for some T = O(log logn)
w.h.p. Note that for larger values of T , this argument immediately provides stronger bounds
for dT , but neither our analysis nor the order of the coupling time benefits from this. J

Coupling II: Assume now that dt ≤ ω(n) and let Im(Xt) and Im(Yt) denote the isolated
vertices in M(Xt) and M(Yt) respectively. The activation in Xt \ Im(Xt) and Yt \ Im(Yt)
is coupled as in Coupling I, except we condition on the event that L(Xt) and L(Yt) are
activated, which occurs with probability 1/q. This first part of the activation could activate
a different number of vertices from each copy of the chain; let ρt be this difference.

First we show that ρt = O(
√
n) with probability Ω(1). By Lemma 18 (with A =

2), we have |L1(Xt) − L1(Yt)| = O(
√
n) with probability Ω(1). If this is the case, then

||D(Xt)| − |D(Yt)|| = O(
√
n). Also, since

∑
j≥2 Lj(Xt)2 =O(n) and

∑
j≥2 Lj(Yt)2 =O(n),

by Hoeffding’s inequality the numbers of active vertices from D(Xt) and D(Yt) differ by at
most O(

√
n) with probability Ω(1). Thus, ρt=O(

√
n) with probability Ω(1).

Now we show how to couple the activation in Im(Xt), Im(Yt) in a way such that |A(Xt)|=
|A(Yt)| with probability Ω(1). The number of active isolated vertices from Im(Xt) is binomially
distributed with parameters |Im(Xt)| and 1/q, and similarly for Im(Yt). Hence, the activation
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of the isolated vertices may be coupled using the binomial coupling from Section 2. Since
|Im(Xt)|= |Im(Yt)|=Ω(n) and ρt=O(

√
n), Lemma 12 implies that this coupling corrects the

difference ρt with probability Ω(1). If this is the case, then by coupling the edge sampling
bijectively as in Coupling I, we ensure that L1(Xt+1) = L1(Yt+1) and dt+1 ≤ ω(n) with
probability Ω(1).

Coupling III: Assume L1(X0) = L1(Y0) and d0 ≤ ω(n). The component activation is
coupled as in Coupling II, but we do not require the two large components to be active;
rather, we just couple their activation together.

If L1(Xt) = L1(Yt), then |D(Xt)| = |D(Yt)| and thus the expected number of active
vertices from D(Xt) and D(Yt) is the same. Consequently, since dt ≤ ω(n), Hoeffding’s
inequality implies ρt = O

(√
n log−1 n

)
w.h.p. Let Ft be the event that the coupling of the

isolated vertices succeeds in correcting the error ρt. Since |Im(Xt)| = |Im(Yt)| = Ω(n), Ft
occurs with probability 1−O(log−1 n) by Lemma 12. If this is the case, the updated part
of both configurations will have the same component structure; thus, L1(Xt+1) = L1(Yt+1)
and dt+1 ≤ dt. Hence, if Ft occurs for all 0 ≤ t ≤ T , then XT and YT fail to have the same
component structure only if at least one of the initial components was never activated. For
T = O(logn) this occurs with at most constant probability. Since Ft occurs for T = O(logn)
consecutive steps with at least constant probability, thenXT and YT have the same component
structure with probability Ω(1). J

In the sub-critical case we may assume also that L1(X0) and L1(Y0) are O(logn). There-
fore, a simplified version of the same coupling works since Coupling II is not necessary.

I Corollary 23. If λ < λs and X0, Y0 are as in Lemma 21, then there exists a coupling of
the CM steps such that XT and YT have the same component structure with probability Ω(1),
for some T = O(logn).

3.5 Coupling to the same configuration
I Lemma 24. Let X0 and Y0 be two random-cluster configurations with the same component
structure. Then, there exists a coupling of the CM steps such that after T = O(logn) steps
XT = YT w.h.p.

Proof. Let Bt a bijection between the vertices of Xt and Yt. We first describe how to
construct B0. Consider a maximal matching between the components of X0 and Y0 with
the restriction that only components of equal size are matched to each other. Since the two
configurations have the same component structure all components are matched. Using this
matching, vertices between matched components are mapped arbitrarily to obtain B0.

Vertices mapped to themselves we call “fixed”. At time t, the component activation is
coupled according to Bt. That is, if Bt(u) = v for u ∈ Xt and v ∈ Yt, then the components
containing u and v are simultaneously activated with probability 1/q. Bt+1 is adjusted
such that if a vertex w becomes active in both configurations then Bt+1(w) = w; the
rest of the activated vertices are mapped arbitrarily in Bt+1 and the inactive vertices are
mapped like in Bt. The percolation step at time t is then coupled using Bt+1. That is, the
re-sampling of the active edge (u, v) ∈ Xt is coupled with the re-sampling of the active edge
(Bt+1(u), Bt+1(v)) ∈ Yt.

This coupling ensures that the component structures of Xt and Yt remain the same for
all t ≥ 0. Moreover, once a vertex is fixed it remains fixed forever. The probability that
a vertex is fixed in one step is 1/q2. Therefore, after O(logn) steps the probability that a
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vertex is not fixed is at most 1/n2. A union bound over all vertices implies that XT = YT
w.h.p. after T = O(logn) steps. J

4 Mixing time lower bounds

In this section we prove the exponential lower bound on the mixing time of the CM dynamics
for λ in the critical window (λs, λS), as stated in Theorem 2 in the introduction. We also
prove a Ω(logn) lower bound in the “fast mixing” regime, showing that our upper bounds in
Section 3 are tight.

Recall from the introduction that when q = 2 and λ < λs = λc, the SW dynamics mixes
in Θ(1) steps and thus the CM dynamics requires Θ(logn) additional steps to mix. This
is due to the fact that the CM dynamics may require as many steps to activate all the
components from the initial configuration.

I Theorem 25. For any q > 1, the mixing time of the CM dynamics is exp(Ω(
√
n)) for

λ ∈ (λs, λS), and Ω(logn) for λ 6∈ [λs, λS ].

Proof. Note that when q ≤ 2 the interval (λs, λS) is empty and the exponential lower bound
is vacuously true. It is natural to divide the proof into four cases: λ < λs, λ ∈ (λs, λc),
λ ∈ [λc, λS) and λ > λS . First consider the case when λ < λs. Let X0 be a configuration
where all the components have size Θ(log2 n) and let b = q/(q − 1). The probability that a
particular component is not activated in any of the first T = 1

2 logb n steps is (1− 1/q)T =
n−1/2. Therefore, the probability that all initial components are activated in the first T steps
is (1 − n−1/2)K with K = Θ(n/ log2 n). Thus, after T steps, L1(XT ) = Θ(log2 n) w.h.p.,
and the result follows.

Consider now the case q > 2 and λc ≤ λ < λS = q. Let S be the set of graphs G such
that L1(G) = Θ(

√
n) and let X0 ∈ S. Let µ := E[A0] = n/q; then by Hoeffding’s inequality

Pr [|A0 − µ| > εn] ≤ 2 exp
(
−2ε2√n

)
. If A0 < µ+ εn, the percolation step is sub-critical for

sufficiently small ε. Therefore, Lemma 9 implies that Pr[X1 6∈ S|X0 ∈ S] ≤ e−c
√
n for some

constant c > 0. Hence, Pr[X1, ..., Xt ∈ S|X0 ∈ S] ≥ 1− te−c
√
n ≥ 3/4 for t = bec

√
n/4c, and

the result follows.
The intuition for the other two cases, which are more technically involved, comes directly

from Figure 1. When q > 2 and λs < λ < λc, the function f(θ) = θ − φ(θ) has two positive
zeros θ∗ and θr in (θmin, 1]. Moreover, f is negative in the interval (θ∗, θr). Therefore, any
configuration with a unique large component of size θn with θ ∈ (θ∗, θr) will drift towards a
configuration with a bigger large component. However, a typical random-cluster configuration
in this regime does not have a large component. This drift in the incorrect direction is
sufficient to prove the exponential lower bound in this regime.

When λ > λS , we show that the derivative of f between its unique zero θr and 1 is
bounded above by a constant. This implies that, starting from the complete graph, it takes
at least Ω(logn) steps for the size of the largest component to shrink to close to θrn. The
reader is referred to the full version [2] for the proofs of the last two cases. J

5 Local dynamics

In this section we sketch the proof of Theorem 3 from the introduction; the full proof is
included in the full version [2]. Consider an arbitrary finite graph H = (V,E) and let
ΩE = {(V,A) : A ⊆ E} be the set of random-cluster configurations on H. Let P be the
transition matrix of a finite, ergodic and reversible Markov chain over ΩE with stationary
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distribution µ = µp,q and eigenvalues 1 = λ1 ≥ λ2 ≥ ... ≥ λn. The spectral gap of P is defined
by λ(P ) := 1 − λ∗, where λ∗ = max{|λ2|, |λn|}. Let µmin = minx∈ΩE µ(x); the following
bounds on the mixing time are standard (see, e.g., [17]):

λ−1(P )− 1 ≤ τmix(P ) ≤ log
(
2eµ−1

min
)
λ−1(P ). (11)

For r ∈ N, let ΩV = {0, 1..., r − 1}V be the set of “r-labelings” of V , and let ΩJ =
ΩV × ΩE. Assume P can be decomposed as a product of stochastic matrices of the form
P = M(

∏m
i=1 Ti)M∗, where:

(i) M is a |ΩE|× |ΩJ| matrix indexed by the elements of ΩE, ΩJ such that M(A, (σ,B)) 6= 0
only if A = B.

(ii) Each Ti is a |ΩJ| × |ΩJ| matrix indexed by the elements of ΩJ, reversible w.r.t. the
distribution ν = µM and such that Ti((σ,A), (τ,B)) 6= 0 only if σ = τ .

(iii) M∗ is a |ΩJ|× |ΩE| matrix indexed by the elements of ΩJ, ΩE such that M∗((σ,A), B) =
1(A = B).
In words, M assigns a (random) r-labeling to the vertices of H; (

∏m
i=1 Ti) performs a

sequence of m operations Ti, each of which updates some edges of H; and M∗ drops the
labels from the vertices.

Consider now the matrix PL = M( 1
m

∑m
i=1 Ti)M∗. It is straightforward to verify that

PL is also reversible w.r.t. µ. The following theorem, which generalizes a recent result of
Ullrich [21, 22], relates the spectral gaps of P and PL up to a factor of O(m logm).

I Theorem 26. If M , M∗ and Ti are stochastic matrices satisfying (i)–(iii) above, and the
Ti’s are idempotent commuting matrices, then λ(PL) ≤ λ(P ) ≤ 8m logm · λ(PL).

We pause to note that this fact has a very attractive intuitive basis: PL performs a single
update Ti chosen u.a.r., while P performs all m updates Ti, so by coupon collecting one
might expect that O(m logm) PL steps should suffice to simulate a single P step. However,
the proof has to take account of the fact that the Ti updates are interleaved with the vertex
re-labeling operations M and M∗ in PL. The proofs in [21] and [22] are specific to the case
where P corresponds to the SW dynamics. Our contribution is the realization that these
proofs still go through (without essential modification) under the more general assumptions
of Theorem 26, as well as the framework described above that provides a systematic way of
deriving PL from P .

The key observation in the proof of Theorem 3 is that we can express PCM, the transition
matrix of the CM dynamics, as a product of stochastic matrices as above: specifically,
PCM = L(

∏
e∈E Te)L∗ where L is the matrix that assigns a random active-inactive labeling

to a random-cluster configuration, Te samples e with probability p provided both its endpoints
are active, and L∗ drops the active-inactive labeling from a joint configuration.

Now consider the Markov chain given by the matrix PSU = L( 1
|E|
∑
e∈E Te)L∗, which

we call the Single Update (SU) dynamics (PSU plays the role of the matrix PL above.)
The matrices L, L∗ and the Te’s satisfy the assumptions in Theorem 26, so we have
λ(PSU) ≤ λ(PCM) ≤ 8|E| log |E| · λ(PSU).

The SU dynamics is very closely related to the heat-bath dynamics defined in the
introduction; in fact, their spectral gaps differ by a constant. Hence, Theorem 3 now follows
from (11) and Theorems 1 and 2 since in the mean-field case log(µ−1

min) = Õ(n2).
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