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—— Abstract

We study internal compression of communication protocols to their internal entropy, which is
the entropy of the transcript from the players’ perspective. We provide two internal compression
schemes with error. One of a protocol of Feige et al. for finding the first difference between two
strings. The second and main one is an internal compression with error € > 0 of a protocol with
internal entropy H™* and communication complexity C to a protocol with communication at
most order (H"/g)21og(log(C)).

This immediately implies a similar compression to the internal information of public-coin
protocols, which provides an exponential improvement over previously known public-coin com-
pressions in the dependence on C. It further shows that in a recent protocol of Ganor, Kol and
Raz, it is impossible to move the private randomness to be public without an exponential cost.
To the best of our knowledge, No such example was previously known.
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1 Introduction

The problem of compressing information and communication is fundamental and useful. This
paper studies one shot compression of interactive communication (as opposed to amortized
compression).

The basic scenario, the transmission problem, was studied by Fano and Shannon [12]
and by Huffman [17]. In it, Alice wishes to transmit to Bob a message v € U with u
that is distributed according to a known distribution g over U. They proved that the
above transmission can be optimally compressed in the sense that Alice may send u to
Bob using roughly log(1/u(u)) many bits on average, and conversely if Alice sends fewer
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than log(1/p(u)) bits on average then information is lost. In the transmission problem, the
information flow is one-way, only Alice talks.

How about more complex communication protocols in which both sides are allowed
to talk? The standard model for interactive communication was introduced by Yao [28].
Interactive communication, not surprisingly, allows for more efficient conversations than
one-way ones. For example, the following lemma (which we also use later on) demonstrates
the power of interaction (and of public randomness) in handling a variant of the transmission
problem in which only Bob knows the distribution u over U.

» Lemma 1.1. Let U be a finite set, and 0 < e < 1/2. Assume Alice knows some u, € U and
that Bob knows a distribution p on U which Alice does not know. Using public randomness,
Alice and Bob can communicate at most 2log(1/u(uq)) + log(1/e) + 5 bits, after which Bob
outputs uy so that u, = up with probability at least 1 — €.

This lemma describes a one shot protocol (i.e. for a single instance) that enables trans-
mission when Bob has some prior knowledge on Alice’s input. A stronger version of this
lemma was proved in [5] and also in [6], but since this lemma is sufficient for us and its proof
is simpler than that of [5, 6] we provide its proof in Section A.3. A related result for the case
when there is also an underlying distribution on Alice’s input is the Slepian-Wolf theorem
[26] which solves an amortized version of this problem. It is also related to the transmission
problem considered by Harsha et al. [16] who studied the case that Alice knows p and Bob
wishes to sample from it.

Continuing recent works which we survey below, the main question we study is compression
of interactive communication protocols. Compression of protocols, on a high level, means to
simulate a given protocol 7 by a more eflicient protocol ¢ in the sense that the communication
complexity of o is roughly the “information content” of 7. It was shown to be strongly related
to direct sum and product questions in randomized communication complexity [5, 2, 7].

We describe new compression schemes, and also provide a preliminary discussion of
concepts and basic facts related to compression.

1.1 A preliminary discussion

In this section we provide intuitive definitions of important concepts. See Section 2 for formal
definitions.

1.1.1 Computation and simulation

There is a distinction between external computation and internal computation [2, 7]. A
protocol externally computes a function f if an external observer can deduce the value
of f from the transcript, and a protocol internally computes f if the value of f may be
privately obtained by Alice and Bob but not necessarily by an external observer (who only
sees the transcript of the protocol but not the inputs). Note that for f : X x Y — Z the
difference between internal and external computation of f can be at most log|Z|. Indeed,
every protocol that internally computes f can be transformed to a protocol that externally
computes f by adding one more message in which one of the parties sends the value of the
function. Therefore, this distinction is only meaningful for large Z.

It is interesting that for deterministic protocols these two seemingly different notions coin-
cide, so the strength of internal computation is evident only in randomized or distributional
settings (the proof is given in Section A.1).
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» Proposition 1.2, Let f: X xY — Z. If w is a deterministic protocol that internally
computes [ then it also externally computes f.

External and internal computations induce the corresponding types of simulations. Here
we provide an intuitive meaning of the notion of simulation. In Section 2 we provide formal
definitions, and discuss them in more detail. A protocol o externally simulates the protocol
7 if an external observer who has access only to the public data (i.e. transcript and public
randomness) of o can deduce from it the public data of 7. The protocol o internally simulates
7 if each of Alice and Bob can obtain their private data of 7 from their private data of & (i.e.
transcript and private randomness).

As an example which illustrates the difference between internal and external simulation,
consider the simple case when (x,y) are jointly distributed so that z = y, Alice knows =z,
Bob knows y and 7 is the protocol in which Alice sends x to Bob. In this case, it is clear
that the empty protocol internally simulates m but every external simulation of 7 must in
general use many bits. This example also demonstrates that Proposition 1.2 does not hold
for promise problems, when the inputs are guaranteed to come from a non rectangular set.

1.1.2 Compression

To define compression, we should ask ourselves what is the “benchmark quantity” that
we should strive to compress to. Shannon’s source coding theorem [25] states that in the
transmission problem (i.e., one-way communication), the entropy of the message is equal
to the amortized communication of sending many independent messages. Braverman and
Rao [5] analogously showed that the internal information (defined below) is equal to the
amortized cost of making several independent conversations. Entropy and internal information
are therefore two reasonable choices for “benchmark quantities”. Below we survey several
additional options.

1.1.3 Information complexities

The most studied measures in the context of protocol compression are information complex-
ities. For every communication protocol 7 and every distribution p on inputs, two versions
of information have been defined: The internal information [1, 2] denoted Iﬁ”t (m) and the
external one [9] denoted I (7) (see Section 2 for formal definitions). The intuitive semantic
of internal information is the amount of information the communication transcript reveals to
Alice and Bob about the inputs, and the intuitive semantic of external information is the
amount of information the communication transcript reveals to an external observer about
the inputs. It always holds that the internal information is at most the external one, which
is at most the average communication complexity CC}*?(7) (see e.g. [2, 18]).

The following claim shows that information provides a lower bound for errorless simulations.
This generalizes the basic fact that entropy provides a lower bound for errorless transmission.
This claim seems to be known but we could not find an explicit reference to it so we provide a
proof in Section A.2 (the special case of deterministic external simulation was proved in [23]).

» Claim 1.3. Let w be a general protocol with input distribution u.
If o simulates 7 externally without error then CCI*9 (o) > I5*(mr).
If o simulates  internally without error then CC}" () > I} ().

Although I’ (m) < I5**(7), the second bullet in the claim above does not follow from
the first, since not every internal simulation is an external simulation.
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In the other direction, [2] provided two different compression schemes for general protocols.
An external compression with error that uses roughly I¢**(r)log(CC(w)) bits, and an

internal compression with error that uses roughly /1" (7) - CC(mr) bits. A second internal

compression with error that uses at most roughly oL (m) bits, regardless of CC(r), appears
in [3]. Later on, [8, 24] showed that the internal compression from [2] applied to public-coin
protocols yields a much better compression with only order I/ (r)log(CC(m)) bits. We
discuss connections of these works to ours below.

1.1.4 Entropy complexities

We consider two additional complexity measures for compression:

The first one, which was studied in [11], is the external entropy Hﬁ”Lt(ﬂ) Its semantic is
how many bits are required for describing the transcript of m to an external observer. The
second measure we consider is the internal entropy Hf]”(w). Its semantic is the number of
bits required in order to describe the transcript to Alice plus the number of bits required to
describe the transcript to Bob (see Section 2 for formal definitions).

Some connections between the information measures and the entropy measures are
provided in the following claim.

» Claim 1.4. Let 7 be a protocol with input distribution p. Then,
t t int int
H (m) > 157 () and H™(m) > 1" (7).
Moreover, if m does not have private randomness then
ext __ rext nt _ rint
H (m) = 177 (m) and H™(m) = 1" (7).

As mentioned, in the case of one-way deterministic protocols, the external entropy fully
captures the compression problem. The above claim combined with Claim 1.3 implies
that, more generally, for public-coin protocols entropy provides a lower bound on errorless
simulation. Interestingly, the authors of [11] proved that this lower bound is essentially tight.
They gave an optimal external compression of general protocols’

» Theorem 1.5 ([11]). Ewvery protocol m can be externally simulated without error by a
protocol o so that CC" (o) < O(HG™ (7).

1.1.5 With or without error

Another important distinction is between exact simulation and simulation with error.

A meaningful example already appears in the transmission problem, when there is a
distribution p on inputs x and Alice sends a (prefix free) encoding of = to Bob. Any exact
solution to this problem requires expected communication of at least H(u). However, if
w1 is highly concentrated on a point but with probability € it is uniform on the remaining
elements, an empty protocol simulates p with ¢ error while the entropy is potentially huge.
So entropy and information are not in general lower bounds for simulation with error, and
the lower bounds from Claim 1.3 do not hold for simulation with error.

In the other direction, we have seen that entropy (or information) provides a lower bound
on errorless simualtion. We shall see below that this lower bound is not tight, that is, there
are protocols with small entropy that can not be efficiently simulated without error.

1 They only considered deterministic protocols but their arguments can be generalized to general protocols.
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1.2 Internal compression
1.2.1 Impossibility of errorless compression

Theorem 1.5 above provides errorless compression to external entropy. The main compression
question is, however, whether a protocol can be internally simulated with communication
that is close to its internal information. Motivation for studying this questions comes from
direct sum and product questions in randomized communication complexity [5, 2, 7].

How about an errorless internal compression to internal entropy? It is long known that
internal compression to internal entropy is not always possible [14, 22, 20, 3]. In [22], for
example, Orlitsky studied zero-error compression of the transmission protocol in which Alice
sends her input  to Bob who knows y, and constructed distributions on (z,y) such that
every errorless internal simulation of the transmission protocol must communicate at least
H (x) bits, which is strictly larger than the internal entropy H (z|y). Later on, Naor, Orlitskty
and Shor [20] strengthened it to the amortized setting. A concrete statement (that can be
proved e.g. using ideas from [3, 18]) is that for every n, there is a one round deterministic
protocol m and input distribution g so that H"(r) < 1 and CC(x) < n but if o is an
errorless internal simulation of 7 then CC}*(0) > n — 2.

Our internal compression scheme and the ones from [2, 3] must therefore introduce errors.

1.2.2 Finding the first difference

Before stating our general compression scheme, we demonstrate its ideas by an internal
compression of the finding the first difference problem, which lies at the heart of the internal
compression schemes of [2, 8, 24]. Feige et al. [13] gave an optimal randomized protocol for
this problem in terms of communication complexity (Viola [27] proved a matching lower
bound).

» Theorem 1.6 ([13]). There is a public-coin protocol that on inputs x,y € {0,1}" externally
outputs the smallest index i in which x,y differ (or outputs “equal” if x = y) with probability
at least 1 — . The communication complexity of this protocol is at most O(log(n/¢)).

The protocol of Feige et al. externally solves the problem. The following Theorem provides
an internal solution for this problem, which is more efficient when the internal information is
small (the protocol is presented in Section 3).

» Theorem 1.7. Let p be a distribution on (z,y) € {0,1}™ x {0,1}™, and let € > 0. Denote
by i = i(x,y) the smallest index in which x,y differ (or i = “equal” if © = y). Denote
hi"t = H(i|lz) + H(ily). There is a public-coin protocol and an event £ C {0,1}" x {0,1}"
with probability u(€) < e so that for all (z,y) & &, the communication complexity of the
protocol on input (z,y) is at most>

O (log (W) log (log(n)n™ /5)) ,

and it internally computes © with probability at least 1 — . The overall communication
complexity with error € is at most

€

O (hm log (log(n)n™ /5)> :

2 Here and below, for simplicity of notation, we write u(ily) to denote u({(x,v) : i(z,y) = i}|{y})-
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We state the theorem in this form since it hints at the core of its proof. To understand it
better, it may be helpful to observe

1
Hle) + H(ly) = 1Gsalo) + 1(isaly) = By log (ot ).
’ PR\ ule) - pily)
This protocol gives an improvement over that of [13] when the internal entropy is small. It
highlights the importance of internal computation and may help to understand the more
general compression below. It may also be useful in future internal compression schemes.

1.2.3 Main compression

We finally state our internal compression scheme (see Section 4 for its description). As
mentioned above, such a compression must have positive error, even for one round protocols.

» Theorem 1.8. Let i be a distribution on X x Y and let € > 0. Let w be a protocol with
inputs from u. Then, there is a public-coin protocol o with communication complexity

CC(0) <0 (W -1og(log<cc<w>)>>

that internally simulates ™ with error €.

As noted earlier, if 7 is a protocol that uses no private randomness then the internal entropy
of 7 is equal to the internal information of w. So, for public-coin protocols, Theorem 1.8
gives an internal compression in terms of internal information, which exponentially improves
[8, 24] in terms of the dependence on CC(w). It, therefore, also concerns the power of
private randomness in saving information, which we now discuss.

1.2.4 Transferring private to public randomness

Every private-coin protocol can be simulated by a public-coin protocol with the same com-
munication complexity. Conversely, Newman [21] proved that for communication complexity
public randomness may be efficiently replaced by private one, when dealing with computation
of relations (it however does not yield a simulation of public-coin protocols by private-coin
protocols). In the information complexity context the situation is opposite, every public-coin
protocol can be simulated by a private-coin protocol with the same information complexity.
The authors of [8, 4] showed that for information complexity private randomness may be
efficiently simulated by public one when the number of rounds is bounded. If any private-coin
protocol could be simulated by a private-coin one without increasing the information and
communication complexities, then to compress general protocol it would suffice to compress
public-coin protocols.

Our compression shows limitations on moving private randomness to being public. A
recent work of Ganor, Kol and Raz [15] shows that for every large enough k € N there is a
distribution g and a private-coin protocol my with internal information O(k) so that every
protocol that internally simulates my with small error must communicate at least 2% bits.
This marks the first known separation between information and communication complexities.
The protocol 7y has communication complexity O(k - 24k) so that log(log(CC(mg)) = O(k).
Together with our compression scheme, this means that there is no way to simulate 7y using
only public randomness without a cost; for example, every public-coin internal simulation of

Q(k)
To with near-optimal information complexity of O(k) must communicate at least 22°  bits.
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1.2.5 Discussion of the proof of Theorem 1.8

Compression to internal entropy, as mentioned above, must be done in an internal fashion.

Namely, an observer of the conversation (who does not know the inputs nor the private
randomness) should not be able to make much sense of it.

The only two compression schemes with this property that were previously known are
from [2, 3]. The scheme from [3] is not efficient in terms of information complexity so we do
not discuss it in detail here. In the scheme from [2] the players privately sample a candidate
transcript, and they communicate to fix errors. After an error is located, the candidate
transcript is modified until converging to the correct transcript. The errors are fixed using
the protocol of Feige et al. for finding the first difference, and each error fixing costs about
log(CC(m)) bits.

The main problem in analyzing their protocol is bounding the number of errors in terms
of the internal information. They are able to do so but the cost is quite high and the overall
upper bound on the number of errors they show is order® |/CC(m)Ii*t (). The authors

of [8, 24] showed that for a deterministic protocol 7, the expected number of errors in
this scheme decreases? to roughly I"*!(7) which sums up to total communication of order
It (7r) log(CC(m)) bits.

It is natural to consider a slight variation of this scheme in which the errors are fixed
using our protocol from Theorem 1.7, instead of the protocol of Feige et al. However, it is not
clear that this modified scheme yields the desired result. On a high level, this is because it
may be the case that the additional information that is revealed from correcting the mistakes
is large, and we do not know how to bound it by the internal information of the simulated
protocol.

Our approach is different and starts with the compression of deterministic protocols to
external entropy of [11]. The main idea there is that a deterministic protocol induces a
distribution on the leaves of the protocol tree, and that there is always a vertex w in the
tree with probability mass roughly 1/2 (Lemma 2.1 below). Both players know u and they
can check if the rectangle® it defines contains x and y with 2 bits of communication. It can
easily be shown that by doing so they (roughly) learn one bit of information. This yields an
optimal but external compression (an observer knows u as well).

In the internal case, there is no single node that is good for both players. Alice knows a
node v, and Bob a node v, which are in general arbitrary nodes in the protocol tree. The
crux of our protocol is an efficient way for Alice and Bob to learn enough about v, vy so
that at least one of them obtains one bit of information. We show that using Theorem 1.6
one of them, say Alice, can identify a good vertex u to focus on (roughly, u is somewhere in
between v, vp). Using Lemma 1.1 Alice then tries to internally transmit u to Bob. If this
transmission succeeds, then, with high probability, Bob learns one bit of information, and if
this transmission fails then, with high probability, Alice learns one bit of information. The
transmission is indeed internal in that an external observer does not in general learn u even
when Bob does. The full protocol appears in Section 4.

3 On a high level this cost occurs for the following reason: if we denote by h(p) the entropy of a random
bit with bias p € [0,1], then k(% + &) — k() is of order 62. The second power of § yields the square
root CC(7) in the analysis.

4 The improvement comes from that h(d) — h(0) is of order 4.

5 The set of inputs that reach u is a rectangle, that is, it is of the form X’ x )/ C X x ).
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2 Definitions and preliminaries

Logarithms in this text are to the base two. We provide the basic definitions needed for
this text. For background and more details on information theory see the book [10] and on
communication complexity see the book [19].

2.1 Information theory

The entropy of a random variable X taking values in U is defined as

H(X) =Y Pr[X =u]log(1/ Pr[X = u)).
uelU

The entropy of X conditioned on Y is defined as H(X|Y) = H(X,Y) — H(Y). The mutual
information between X,Y conditioned on Z is defined as I(X;Y|Z) = H(X|Z) — H(X|Y, Z).

2.2 Protocols

A deterministic communication protocol m with inputs from X x ) is a rooted directed binary
tree with the following structure. Edges are directed from root to leaves. Each internal node
in the protocol is owned by either Alice or Bob. For every x € X, each internal node v owned
by Alice is associated with an edge e, , from v to one of the children of v. Similarly, for
every y € Y, each internal node v owned by Bob is associated with an edge e, ,. On input
x,1, a protocol 7 is executed by starting at the root and following the unique path defined
by ey 4, €4,y until reaching a leaf. We denote by T = T (z,y) the leaf reached, which we
also call the transcript of 7 with input (z,y). The length of a transcript, denoted |T5|, is the
depth of the corresponding leaf.

In a public-coin protocol, Alice and Bob also have access to public randomness r that
they both know. In a private-coin protocol, Alice has access to a random string r,, and Bob
has access to a random string 7. A general protocol is a protocol which uses both public and
private coins. The four random variables (z,y),r, 74, 7 are always assumed independent.

The communication complexity of a deterministic 7, denoted by CC(7), is the maximum
length of a transcript. For general protocols, CC(r) is defined as the maximum communication
complexity over all randomness as well (i.e. over ,y,7,74,7), and CC;* () is the expected
length of a transcript over all randomness.

2.3 Computation

A deterministic protocol 7 externally computes a function f : X x Y — Z if there is a map M
so that f(z,y) = M(Tx(z,y)) for all z,y. A deterministic protocol 7 internally computes a
function f if there are two maps M,, M, so that M, (z, Tr(x,y)) = My(y, Tr(z,y)) = f(z,y)
for all x,y. In the randomized setting, M may depends on r; M, may depend on r,74; M,
may depend on r,7p; and the equalities should hold with probability at least 1 — € over the
distribution of r, 74,7, for all x,y. In the distributional setting, the probability is taken over
x,y as well.

2.4 Information and entropy of protocols

For a distribution p on the inputs, define

L (m) = I(Ts X|Y, R, Ry) + I(T: Y|X, R, Ry)
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and
ext _ .
[ (n) = I(Tr; X, Y |R).

Similarly, define
HM(w) = H(Tx|Y, R, Ry) + H(Tx|X, R, Ra)

and
Hfft(w) = H(T:|R).

Note that each of these measures also induce a corresponding complexity measure for
functions/relations in the standard way.

2.5 Simulation

Let 7,0 be protocols, let p be a distribution on the input space X x Y and let € > 0.

Our goal is defining when ¢ simulates 7 with error € in the distributional setting®. Namely,
probabilities are taken over all randomness of inputs as well as private and public coins.

The randomness in o is s, Sq, Sp, and the randomness in 7 is r,r,, 7. We say that o
externally simulates m with error ¢ if there exists a function M = M(T,,s) so that the
distribution of (z,y, (T, 7)) is e-close in L; distance to the distribution of (z,y, M (T,, s)).

We say that o internally simulates m with error e if there exist functions M, =
M,(Ty,x,8q,8) and My = My(T,,y, sp,s) so that the distribution of (z,y, (Ty,7,74)) is
e-close in L; distance to the distribution of (x,y, M,), and the distribution of (x,y, (T, 7,75))
is e-close in L; distance to the distribution of (x,y, Mj).

The simulation we present in the proof of Theorem 1.8 is in fact of a stronger form. In
the beginning of o, Alice and Bob interpret the public randomness as a pair s = (r,s’) and
their private randomness as s, = (rq,s,) and s, = (rp,s;). They think of r, 74,7, as the
fixed randomness of 7, and communicate in order to privately compute the fixed transcript
T = Tr(x,y,7,1r4,7p), with error probability (over the remaining randomness s, s/,, s;) of at
most €.

This stronger type of simulation is sometimes too strong to be useful, as the following
example demonstrates. Consider a protocol in which z,r, are uniform in {0,1}", and Alice
just sends x 4+ r, € {0,1}" to Bob. The transcript of this protocol is just a random noise,
and its external information is indeed zero. It can, indeed, be externally simulated without
error by a protocol with zero communication; interpret s as a uniform element in {0,1}"
and set M(0,s) = (s,0). However, every strong simulation of this protocol (as the one in
Theorem 1.8 mentioned above) must communicate many bits. Indeed, the transcript of a
strong simulation must reveal the value of x4 r, to Bob, with high probability. This stronger
type of simulation corresponds to internal entropy rather than internal information. In the
example above, the internal information is 0 but the internal entropy is n.

2.6 Balanced nodes in trees
We use the following well known lemma (see e.g. [19]).

» Lemma 2.1. Let p be a probability measure on the leaves of a rooted binary tree. The
distribution p may be extended to a function on all nodes in the tree by setting u(v) to be the
p-probability that a leaf that is a successor of v is chosen. Then, there exists a node u such
that either u is a leaf and p(u) > 2/3, or 1/3 < p(u) < 2/3.

6 There is also a natural variant of this definition in the randomized setting but it is not relevant for this
text.
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3 Finding the first difference

Proof of Theorem 1.7. Denote by £ the (event) set of inputs (z,y) so that

(i) - pu(ily) <27
By Markov’s inequality,
w(€) <e/2.
For inputs in &, the protocol may fail. For the rest of the proof, fix (z,y) € £ and set

i =1i(z,y).

The protocol proceeds in iterations indexed by ¢t € N. For every ¢, Alice knows a
distribution a; on [n] U {“equal”} and Bob a distribution 8, on [n] U {“equal”} where we
use the order 1 < 2 < ... < n < “equal”. It may help to think of the distributions a; and
B as representing Alice and Bob’s opinions for what is the first difference, given what they
have learned upto iteration ¢t. They start with

ao(j) = Prli = jle] and Bo(j) = Prli = jly], for all j.

Tteration t starts with Alice knowing «; and Bob knowing f;, and ends with an update
of these distributions to a1, 8;+1. There are O(h™ /¢) iterations, and the probability of
failure in each iteration is at most ¢ for § = ce2/h™* for a small constant ¢ > 0. The union
bound implies that the overall error is at most .

The goal of every iteration is, given oy, f;, to construct with probability at least 1 — O(0)
distributions «y41, 8¢+1 so that (if they did not stop)

app1(i) > ae(i) , Biya(i) > Be(i)

and
a1(2) - By (2) >

N W

This immediately implies that the number of iterations is at most O <log (m)) =

O(h™"t /) since we conditioned on not € and since a4, 3; are probability distributions so
their maximum value is at most 1.

The protocol uses the following subroutine we call check(j) with error 6. It gets as input
J € [n]U{“equal”} and with communication O(log(1/d)) it externally outputs “yes” if j =1
and “no” if j # 4. This subroutine just uses public randomness” to check if z; = y~; and
xj #y; for j € [n] or if x =y for j = “equal”.

Iteration t is performed as follows:

1. Let d, be the maximum integer so that a;({1,2,...,d, —1}) < 2/3 and let d; be the
maximum integer so that 8;({1,2,...,d, — 1}) < 2/3. Alice knows d, and Bob d;. Using
the protocol from Theorem 1.6, with communication O(log(log(n)/d)) the players find® d
that is between d,, d, with error at most 4.

2. If ax(d) > 1/3 then the players check(d) with error ¢. If the answer is “yes” then they
stop and output d.

If the answer is “no” then they update ay, B¢ to a¢y1, Bir1 by conditioning on the event
([n] U “equal”) \ {d} and continue to the next iteration.

" For example, using the standard randomized protocol for equality [19].
8 If we represent dq,dp as binary strings of length order log(n) then to find d it suffices to find the first
index in which dg, d;, differ.
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3. If B¢(d) > 1/3 then the players check(d) with error §. If the answer is “yes” then they stop
and output d. If the answer is “no” then they update ay, 8y to ayy1, Si41 by conditioning
on the event ([n] U “equal”) \ {d} and continue to the next iteration.

4. The players check using public randomness with error § if x«g = y<q.

If the answer is “yes” then they update o, 5; to aiy1, Si+1 by conditioning on the event
{d,d+1,...,n}U{“equal”} and continue to the next iteration.

If the answer is “no” then they update oy, B¢ to a¢y1, Ber1 by conditioning on the event
{1,2,...,d — 1} and continue to the next iteration.

We analyse the correctness step by step assuming that no error occurred (we have already
bounded the probability of error):

1. The players found d that is between d, dp.
2. If a4(d) > 1/3 and the players output d then indeed the output is correct. If ay(d) > 1/3
and the players do not output d then d # ¢ which means that

o (’L) _ Oét(i) Oét(i)
i 1—ou(d) ~ 2/3

and Bii1(i) = Be(i).
3. As in previous case.
4. If the players reached here then ay(d), B:(d) < 1/3. Assume without loss of generality
that d, < dp. The proof in the other case is similar.
If x«q = Yy<q then i > d > d,. This implies that S;41(z) > B:(i). By choice,
a({d,d+1,...,n}) =ay(d) +1— e ({1,...,d}) <

+5 <

i

[SCAI )

W
Wl =

which implies a;41(7) > 30y (7)/2.
If g # y<q then i < d < dp. This implies that a;41(¢) > ay(¢). By choice,

Be({1,2,...,d—1}) S%

which implies 8:41(7) > 36:(i)/2. |

4 Internal compression

Proof of Theorem 1.8. Let x,y be the inputs to 7, let r be the public randomness, and let
74, Tp be the private randomness. The first observation is that

. ) 1
Hznt — Hznt = F , , 1
0 =B 6 )

where here T, = T (x,y,7,74,7) . Denote by &€ the event (i.e. set of (x,y,r,7r4,7)) that

/'L(Tﬂ'|x> T, Ta) : M(Tﬂ'|ya T, Tb) < 2_2Hi”t/8~
By Markov’s inequality,
Pr(€) < ¢/2.

When £ occurs, the protocol o may fail. For the rest of the proof, fix (x,y,r,rq, 1) € € and
set T = T (2,9, 7,74, 7).

The protocol o proceeds in iterations indexed by ¢t € N. The starting point of every
iteration is a distribution «; on leaves of 7 that Alice knows and a distribution 8; on the
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leaves of 7 that Bob knows. These distributions reflect the current perspective of the players
after the communication so far. The first distributions are

ao(v) = Prfvle, r,r,] and Bo(v) = Prloly,r,m]

for all leaves v of the protocol tree (the probability in ag for example is over Bob’s randomness).
The goal of every iteration is to construct with probability at least 1—4 distributions ai41, Be41
so that

i 1(Tr) = ap(Tr) 5 Bey1(Tr) = Be(Tr)

and

N W

ar11(Tr) - Bey1(Tr) >

The number of iterations is set to be at most

at(Tw) : ﬁt(Tﬂ')

O(log(22™' /%)) = O(H™ /),

and the communication complexity of each iteration is at most

0 (log (log(cf () > + Hjt +log(1 /5)) .

Thus, setting § = ce?/H™ for some small constant ¢ > 0, the union bound implies the
overall bound on the error.
Here is how iteration ¢ is performed:

1. Alice finds a vertex v, promised by Lemma 2.1 with «a;, and Bob finds v, promised by
Lemma 2.1 with 3;. Denote d, = depth(v,) and d, = depth(vp).

2. Using the protocol from Lemma 1.6, with communication O(log(log(CC(w))/éd)) the
players find® d that is between d,, d, with error §/2.

3. If d, > dp, the players do the following: Let u be the ancestor of v, at depth d and let U
be the set of nodes of depth d of w . Using the protocol from Lemma 1.1 Alice sends u
to Bob. They use this protocol with error parameter 6/2, where Alice’s input is u and
Bob’s input is the distribution £; induced on U.

If this stage takes more than O((H™/¢) + log(1/§)) bits, then the players abort.

At the end of this stage, either Bob thinks'® he knows u as well or they have aborted.
If Bob thinks he knows u there are two options:
If uw is a leaf then the players stop and internally output wu.
Otherwise, the players set a;11 = a; and S41 to be the distribution ; conditioned
on passing through w.
Otherwise, the players aborted and they set ;11 = 5 and ay41 to be the distribution
oy conditioned on not passing through wu.

4. When d, < dy, the players exchange roles.

We now analyse the performance in iteration ¢. For this, we assume that no error occurred.
That is, that the protocols from Theorem 1.6 and Lemma 1.1 gave the desired result (this
happens with probability at least 1 — §). The analysis follows the outline of the protocol:

9 Represent dg,dp as binary strings of length roughly log(CC).
10 There is some small probability that Bob holds some u’ # u but he still thinks he knows wu.



N

. Bauer, S. Moran, and A. Yehudayoff

Lemma 2.1 says that there are always such nodes v, vp.
the players find d that is between d,, dp.
We distinguish between two cases:

Bob thinks he knows u: This means that 8;(u) > 0 and so (y,7) is in the rectangle

defined by u. Thus, ((z,74), (y,73)) is in the rectangle defined'! by u, which implies
that T, is a successor of u.

If w is a leaf then indeed T, = u.

Otherwise, there are two cases:

The first is when v, is an ancestor of u. In this case, vy, is not a leaf, B¢(vy) > B (u)

and
_ 5t(T7r) > 5t(Trr) > ﬂt(TW)
Pe(w) = Pelvs) — 2/3
The second is when vy is not an ancestor of u. In this case, B:(u) <1 — B¢(vp) < 2/3

and
— ﬁt(Tﬂ') > Bt(Tﬂ)
Bi(u) — 2/3 °

Bry1(Tr)

Bt+1 (Tﬂ')

Bob does not think he knows u: Since we assumed £ does not occur, if u is an ancestor

of T then »
ﬂt(u) Z ﬂt(Tﬂ) 2 ﬂO(Tﬂ') Z 272}[1" /E'

Since the players aborted (we ignore possibility of error), this means that v is not an
ancestor of Ty. Since u is an ancestor of vg, as(u) > at(vg) > 1/3. Thus, by choice,

o oy(Ty) ot (Tx) o (Tx)
(T = T ) 2 T ar(n) = 23

4. When d, < dyp, the proof is similar. <
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A Appendix

A.1 Internal deterministic computation is also external

Proof of Proposition 1.2. There are maps M,, M}, so that for all x,y,
Mo(z, Tr(z,y)) = Moy, Tr(2,y)) = f(z,y).

Fix some rectangle p = {(z,y) : Tr(z,y) = Tr(z0,y0)}. For every (z,y) € p, we know
Mq(z, p) = f(z,y) = f(x,y0), and similarly My (yo, p) = f(x,y0) = f(x0,y0)- Therefore, f is
constant on p and we can define M (p) = f(zo,yo)- <

A.2 Information lower bounds errorless simulation

Proof of Claim 1.3. The external case: Let o be a protocol that externally simulated m
without error. By definition of simulation, there exists a function M so that for all (z,y) so
that p(z,y) > 0, it holds that p, = p,, where p, is the distribution of M (7,,s) and p, is
that of (T, ). Thus,

CC (o) > IZ‘”(U) (see e.g. [18])
=I1(T,; X,Y|S)
=I1(T,,5;X,Y) (S is independent of (X,Y))
>I(M(T,,5); X.,Y) (data processing inequality)
=T, R; X,Y) (errorless simulation)
=I1(Tx; X,Y|R) (R is independent of (X,Y))
= Iﬁm(ﬂ)

The internal case: similarly to the external case,

CCM(0) > I (o)
> I, (o)
=I1(T,,S5,Sy; X|Y)+ I(T,,5,5,;Y|X)
> I(My(T5,Y, S, 8); X|Y) + I(Ma(T5, X, S, 540); Y|X)
= I(Ty, R, Ry; X|Y) + I(Tr, R, Ry; Y| X)
= Iﬁ"t(ﬂ').

A.3 Transmission

Proof of Lemma 1.1. The players interpret the public randomness as boolean random hash
functions on U. The protocol proceeds in iterations indexed by ¢ € N. In iteration ¢ = 0, the
following is performed:

1. Alice sends k = [log(1/¢)] + 2 hash values of u, to Bob.
2. Bob computes the set
So={uelU:puu) e (1/2,1]}.
He compares every element of Sy to the k hash values he received. He deletes every
s € Sp that does not agree with at least one of these k hash values. Denote by Sj) the set
So after this deletion.
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If S} is empty, he sends a “0” to Alice.
If S{ is not empty, he sets u; as an arbitrary element S}, and sends “1” to Alice, and the
players stop.

For every t = 1,2,. .., the following is performed (until the players stop):

1. Alice sends 2 new hash values of u, to Bob.

2. Bob computes the set

Sy ={uelU:pu)e @127}

He compares every element of Sy to the k + 2t hash values he received so far. He deletes
every s € Sy that does not agree with at least one of these hash values. Denote by S} the
set Sy after this deletion.

If S] is empty, he sends a “0” to Alice.

If S; is not empty, he sets u; as an arbitrary element in Sj, and sends “1” to Alice, and
the players stop.

We now analyse the protocol. Let ty be so that u, € St,. First, the protocol stops after
at most to < log(1/u(us)) + 1 iterations, because u, agrees with all hash values sent. Second,
for every t, by the union bound,

- —lo, e)—t— €
Pr[S) # {u,} N ;] < 27 (k+209t+L < g—log(l/e)—t—1 _ CEE
Thus, by the union bound, the probability that either there is some ¢ < ¢y for which S; # 0
or Sj, # {uq} is at most .7 /2t <e. <
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