
How to Tame Rectangles: Solving Independent
Set and Coloring of Rectangles via Shrinking
Anna Adamaszek1, Parinya Chalermsook2, and Andreas Wiese2

1 Department of Computer Science (DIKU), University of Copenhagen,
Denmark, anad@di.ku.dk

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany,
{parinya,awiese}@mpi-inf.mpg.de

Abstract
In the Maximum Weight Independent Set of Rectangles (MWISR) problem, we are given a col-
lection of weighted axis-parallel rectangles in the plane. Our goal is to compute a maximum
weight subset of pairwise non-overlapping rectangles. Due to its various applications, as well as
connections to many other problems in computer science, MWISR has received a lot of attention
from the computational geometry and the approximation algorithms community. However, de-
spite being extensively studied, MWISR remains not very well understood in terms of polynomial
time approximation algorithms, as there is a large gap between the upper and lower bounds, i.e.,
O(logn/ log logn) v.s. NP-hardness. Another important, poorly understood question is whether
one can color rectangles with at most O(ω(R)) colors where ω(R) is the size of a maximum clique
in the intersection graph of a set of input rectangles R. Asplund and Grünbaum obtained an
upper bound of O(ω(R)2) about 50 years ago, and the result has remained asymptotically best.
This question is strongly related to the integrality gap of the canonical LP for MWISR.

In this paper, we settle above three open problems in a relaxed model where we are allowed
to shrink the rectangles by a tiny bit (rescaling them by a factor of (1−δ) for an arbitrarily small
constant δ > 0.) Namely, in this model, we show (i) a PTAS for MWISR and (ii) a coloring with
O(ω(R)) colors which implies a constant upper bound on the integrality gap of the canonical LP.

For some applications of MWISR the possibility to shrink the rectangles has a natural, well-
motivated meaning. Our results can be seen as an evidence that the shrinking model is a promis-
ing way to relax a geometric problem for the purpose of better algorithmic results.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, independent set, resource augmentation, rect-
angle intersection graphs, PTAS

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.43

1 Introduction

The main motivation of this paper is to study barriers in designing approximation algorithms
for the Maximum Weight Independent Set of Rectangles (MWISR) problem and propose
a way to break them. In this problem, we are given a collection of weighted axis-parallel
rectangles in the plane, and our goal is to select a maximum weight subset of pairwise
non-overlapping rectangles. Besides being a special case of Maximum Independent Set,
which has been one of the most extensively studied problems in combinatorial optimization,
MWISR is a fundamental geometric problem in itself. The problem arises in multiple
applications and has connections to other problems in various areas of computer science,
such as map labeling [4], data mining [19], networking [26], and pricing [14]. Therefore, it is

© Anna Adamaszek, Parinya Chalermsook, and Andreas Wiese;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 43–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

not surprising that MWISR has received a significant amount of attention from researchers
in both computational geometry and approximation algorithms communities.

While for Maximum Independent Set in general it is NP-hard to obtain approximation
ratios of n1−ε for any ε > 0 [22, 28], much better approximation ratios are possible for MWISR.
Agarwal, van Kreveld and Suri first proposed the problem with tentative applications in map
labeling, where they showed the first O(logn)-approximation algorithm [4]. Since then, a
significant amount of research has been done in various directions: (i) Proposing O(logn)
approximation algorithms with faster running times [7, 12, 27] or (ii) Showing approximation
schemes or constant factor approximation algorithms for special cases, when the input
rectangles are squares [16, 11], unit-height rectangles [24], or have restricted positions [26, 15].
Currently the best result for the general case is a O(logn/log logn)-approximation by Chan
and Har-Peled [13]. When all rectangles have unit weights, Chalermsook and Chuzhoy [10]
present an O(log logn)-approximation algorithm. A much better approximation is possible
for super-polynomial time algorithms. Recently, Adamaszek and Wiese [1] showed a quasi-
polynomial time approximation scheme for MWISR, thus showing that the problem cannot
be APX-hard unless NP ⊆ DTIME(2poly(logn)).

Despite extensive effort of various groups of researchers, the approximability status of
MWISR has so far remained elusive. On one hand, the existence of the recent QPTAS suggests
that a PTAS is possible, but on the other hand, even a sub-logarithmic approximation has
not been obtained for two decades. No substantial progress in the lower bound has been
made, and even for the integrality gap of the natural LP relaxation we only have a lower
bound of 2!

Closely related to MWISR (and notoriously hard) is the question of rectangle coloring.
In this problem, we are given a collection of axis-parallel rectangles in the plane, and the
goal is to color the rectangles so that intersecting rectangles have different colors, while
minimizing the number of colors used. In 1948 [8] Bielecki asked whether one can bound the
number of colors in such a coloring by the clique size of the intersection graph of the input
rectangles. Denote the clique size of the intersection graph of R by ω(R). In 1960, Asplund
and Grunbaum [6] showed that at most O(ω(R)2) colors are needed. This status has not
changed for half a century. The upper bound of O(ω(R)2) is still asymptotically the best
known result, while the best known lower bound is 3ω(R) [6]. Closing this gap is seen as a
challenging open problem in discrete mathematics (see, e.g., a survey by Kostochka [25]).

The state of the art of these two problems gives convincing evidence that rectangle
problems are hard to deal with, and clearly new insights are needed.

1.1 A Relaxed Model: Shrinkable Rectangles
Motivated by the barriers of designing approximation algorithms for MWISR, we study a slight
relaxation of the problem. Instead of computing a set of pairwise non-overlapping rectangles,
we allow our algorithm to output a subset of rectangles that is almost feasible in the following
sense. The subset of the rectangles must be pairwise non-overlapping after we shrink each
rectangle by a multiplicative factor of 1−δ for some small constant δ > 0. Formally, this means
that a rectangle (a, a+x)× (b, b+y) will become (a+ δ

2x, a+(1− δ
2)x)× (b+ δ

2y, b+(1− δ
2)y).

We compare the value of our (almost feasible) solution to the value of an optimal feasible
solution. We call this problem δ-MWISR. Observe that δ-MWISR remains NP-hard (see
Appendix A for a proof). We remark that similar models have been studied before. In
particular, Har-Peled and Lee showed approximation algorithms for geometric set cover
problems for fat objects when the input objects are allowed to expand slightly [21]. In fact,
this relaxed model still serves the purposes of many applications such as map labeling where
it is tolerable to slightly shrink the rectangles without losing much benefit.

A. Adamaszek, P. Chalermsook, and A. Wiese 45

1.2 Our Contributions
We solve three long-standing open problems in the domain of rectangle intersection graphs in
our new model. First, we give a polynomial time approximation scheme for δ-MWISR while,
as mentioned above, the best known polynomial time algorithm in the ordinary setting has a
superconstant approximation ratio of O(logn/ log logn).

I Theorem 1. Let ε, δ > 0 be any constants. There is a (1 + ε) approximation algorithm for
δ-MWISR that runs in time n(1

εδ)O(1/ε) .

The core of this result is a plane cutting procedure that follows the framework of [1]. The
high-level idea is that we recursively partition the input plane into a collection of axis-parallel
polygons. Rectangles overlapping the boundaries of the partition are lost. In [1], it has been
shown that for any set of pairwise non-overlapping rectangles there exists such a cutting
sequence where only an ε-fraction of all rectangles (or rectangles of small total weight)
is cut and the maximum complexity of a polygon arising in this sequence is bounded by
(logn/ε)O(1). When guessing this cut sequence recursively, we obtain an (1+ε)-approximation
algorithm with a running time of n(logn/ε)O(1) , i.e., quasi-polynomial. For our relaxed model,
we construct a totally different cut sequence,

where any polygon arising in this sequence has constant complexity, and still only an
ε-fraction of the overall weight is lost. Therefore, when embedding the search for this cut
sequence into a dynamic program, we obtain a polynomial time approximation scheme.

Next, we study the rectangle coloring problem. Let us first give a formal statement of
the problem. For any collection R of axis-parallel rectangles in the plane, one can define an
intersection graph G = (V,E) by introducing one vertex in V for each rectangle in R and
connecting two vertices if and only if their corresponding rectangles overlap. We denote by
ω(R) the clique number of the resulting intersection graph of R and by χ(R) its chromatic
number. For rectangles, the clique number is identical to the minimum number q such that
any point in the plane is contained in at most q rectangles. Clearly, χ(R) ≥ ω(R). The main
open question is whether χ(R) = O(ω(R)) for any collection of rectangles R.

The relation between χ(R) and ω(R) is also interesting in our model. We now want to
compute a minimum number of colors c for which there exists a c-coloring of the rectangles
such that after the shrinking operation rectangles with the same color are pairwise non-
overlapping. We prove the following result.

I Theorem 2. For any δ > 0, any collection of axis-parallel rectangles R in the plane
can be colored with O((1

δ)2 log2(1
δ))ω(R) colors, such that after shrinking each rectangle by

a multiplicative factor of (1 − δ) the resulting rectangles with the same color are pairwise
non-overlapping. Moreover, we can compute such a coloring in polynomial time.

We prove this theorem by showing a rather general partitioning lemma that splits any
collection of rectangles into O((1

δ)2 log2(1
δ)) sub-collections. Each of the resulting collections

has the property that its rectangles can be shrunk by a factor of at most (1− δ) such that
any two overlapping rectangles are either contained in one another or they do not overlap
on a corner, i.e., they cross each other. It has been shown in [9] (building on the previous
work [6, 13, 26]) that such collections of rectangles R′ admit a coloring algorithm with at
most ω(R′) colors. This gives us the desired result.

Due to a connection between coloring and the integrality gap of the natural LP-relaxation
of MWISR (see, e.g, [9]), we obtain the following corollary (in fact, our partitioning lemma
also yields this directly). We will define this relaxation formally in Section 3.

APPROX/RANDOM’15

46 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

I Corollary 3. The integrality gap for the natural LP relaxation for δ-MWISR is at most
O((1

δ)2 log2(1
δ)) and there is a polynomial time O((1

δ)2 log2(1
δ))-approximation algorithm for

δ-MWISR that rounds this LP.

1.3 Other Related Work
The framework of Adamaszek and Wiese has been further extended in [2, 20] to give a
QPTAS for the maximum independent set of polygons in general. In polynomial time, the
best result is a nε-approximation by Fox and Pach [18] for independent set of arbitrary curves
in the plane. For the rectangle coloring problem better bounds are known for some special
cases of rectangles [26, 3]. Also, a small improvement over Asplund and Grünbaum was
discussed in [23]. We refer the readers to a nice survey by Kostochka for a more complete
literature on the coloring problem for other objects [25].

Finally, we remark that special cases of both MWISR and rectangle coloring when
intersection patterns are restricted are much simpler than the general problem. When one
rectangle is not allowed to contain any corner of another, the intersection graph is a perfect
graph; therefore both problems are polynomial time solvable (see, e.g., [13, 26]).

1.4 Problem Definition and Notation
We are given a set of n axis-parallel rectangles R = {R1, . . . , Rn} in the plane. Each input
rectangle Ri is specified by an open set Ri := {(x, y)|x(1)

i < x < x
(2)
i ∧ y

(1)
i < y < y

(2)
i }

together with its weight wi1. For each rectangle Ri we denote its width and height by
gi := |x(1)

i − x
(2)
i | and hi = |y(1)

i − y
(2)
i |, respectively. We say that a subset of rectangles

S ⊆ R is an independent set if every pair of rectangles Ri, Rj ∈ S satisfies Ri ∩Rj = ∅.
Our model uses the following relaxed notion of an independent set. For Ri ∈ R, a

δ-shrunk rectangle R−δi is defined by the x-coordinates x(1)
i + 1

2δgi and x
(2)
i − 1

2δgi, and the y-
coordinates y(1)

i + 1
2δhi and y

(2)
i − 1

2δhi respectively. Then, for any subset S ⊆ R of rectangles,
we denote by S−δ the collection of δ-shrunk rectangles of S, i.e., S−δ = {R−δi : Ri ∈ S}. We
say that a subset S ⊆ R is a δ-independent set if S−δ is an independent set.

Now we define our problems formally. In δ-MWISR our goal is to find a maximum weight
subset S ⊆ R that is δ-independent. For the coloring problem, we define a δ-chromatic
number, denoted by χ−δ(S), of a collection S ⊆ R as the minimum integer c such that
rectangles in S can be colored using c colors so that rectangles with the same color form a
δ-independent set. Our goal is to bound χ−δ(R) in terms of ω(R)2.

2 Approximation Scheme for Independent Set

In this section, we present a polynomial time approximation scheme for δ-MWISR for
any constant δ > 0. More precisely, for any constants ε > 0 and δ > 0, we present a
(1 + ε)-approximation algorithm for δ-MWISR with a running time of n(1

εδ)O(1/ε) . Denote by
N := maxi{x(1)

i , y
(1)
i , x

(2)
i , y

(2)
i }. Suppose for now that N is bounded by a polynomial in n.

We will show later how to remove this assumption.

1 By linear scaling we can assume the rectangle coordinates to be integers, even if in the actual input we
are given rationals.

2 Notice that there is a collection R for which the lower bound of ω(R) still holds, e.g., consider a
collection of identical rectangles.

A. Adamaszek, P. Chalermsook, and A. Wiese 47

0 2n− 1
0

2n− 1

P

P2
P3

P4

P6

P5

P1

P7

P8

(a) Partitioning of polygons

1
2δ · µ′`

µ′`
(b) Shrinking of rectangles

Figure 1 Illustration of our algorithm. Figure 1a denotes the partition of polygon P (grey area)
into at most k smaller polygons, each with at most k edges. In Figure 1b depicted in light grays are
original rectangles Ri from the input, in dark gray the slightly shrunk rectangles R′

i, and in black
the shrunk rectangles.

2.1 The Algorithm

Our algorithm, called GEO-DP, is exactly the same dynamic program which was used
in [1] for obtaining a QPTAS for MWISR (without the shrinking assumption). GEO-DP is
parametrized by a value k ∈ N. For our purposes, we will later choose k := (1

εδ)O(1/ε).
Fix a parameter k ∈ N. Let P denote the set of all simple polygons within the [0, N]×[0, N]

input square whose corners have only integer coordinates, and which have at most k axis-
parallel edges each. We introduce a DP-cell for each polygon P ∈ P , where a cell corresponding

to P stores a near-optimal solution sol(P) ⊆ R−δP , where R−δP denotes the set of all
rectangles from R−δ contained in P . Here, near-optimal means with respect to the optimal
solution using (original) rectangles from R contained in P .

I Proposition 4. The number of DP-cells is at most NO(k).

To compute the solution sol(P) for some polygon P ∈ P we use the following procedure.
If R−δP = ∅ or |R−δP | = 1 then we set sol(P) := R−δP and terminate. Otherwise, we enumerate
all possibilities to partition P into k′ polygons P1, . . . , Pk′ ∈ P such that k′ ≤ k. See Figure 1a
for an illustration. Since by Proposition 4 we have |P| ≤ NO(k), the number of potential
partitions we need to consider is upper bounded by

(
NO(k)

k

)
= NO(k2). Let P1, . . . , Pk′ , where

k′ ≤ k, be a feasible partition, i.e., each Pj has at most k edges and they form a partition of P .
For any enumerated set {P1, . . . , Pk′} ⊆ P , one can efficiently verify whether this is a feasible
partition since all polygons have axis-parallel edges with integer coordinates in {0, . . . , N}.
For each polygon Pi ∈ {P1, . . . , Pk′} we look up the DP-table value sol(Pi) and compute∑k′

i=1 w(sol(Pi)). We set sol′(P) :=
⋃k′
i=1 sol(Pi) for the partition {P1, . . . , Pk′} which yields

the maximum profit. Now we define sol(P) := sol′(P) if w(sol′(P)) > maxR∈R−δ
P
w(R), and

otherwise sol(P) := {Rmax} where Rmax ∈ R−δP is the rectangle with maximum weight in
R−δP . At the end, the algorithm outputs the value in the DP-cell which corresponds to the
polygon containing the entire input region [0, N]× [0, N].

APPROX/RANDOM’15

48 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

Thus, the entry in the DP-table for each polygon P can be computed in time NO(k2),
assuming that all entries for all polygons P ′ (P have been computed already. Since we
have |P| ≤ NO(k), we get the following upper bound on the running time of GEO-DP.

I Proposition 5. When parametrized by k the running time of GEO-DP is upper bounded
by NO(k2).

For bounding the approximation ratio of GEO-DP for any parameter k, it is sufficient to
consider only the special case that the input set R is already an optimal feasible solution.
This can be proven formally by induction on the DP-cells. For R∗ ⊆ R being the optimal
solution, we can prove that when GEO-DP is given R as input, the value for each DP-cell is
at least as high as when given R∗ as input. Therefore, we will assume from now on in our
whole argumentation about GEO-DP that R is already the (optimal) independent set.

2.2 A Suitable Shrunk Solution

Consider ε, δ > 0 such that εδ < 1. We define k := (1
δε)

O(1/ε) and show that for this choice
of the parameter, GEO-DP yields a (1 + ε)-approximate solution for δ-MWISR. Starting
with an optimal solution R∗ ⊆ R for the (non-shrunk) input set R, we first define a (1 + ε)-
approximative set R′ consisting of one rectangle R′i for each rectangle Ri ∈ R∗ such that
R−δi ⊆ R′i ⊆ Ri. Then, in the second step, we show that if the input consisted only of R′,
then GEO-DP would compute the whole set R′ as a feasible solution. This implies that
GEO-DP finds a (1 + ε)-approximate solution for δ-MWISR.

Now we start with the description of the first step. Let R∗ ⊆ R be the maximum weight
set of pairwise non-overlapping rectangles, i.e., where w(R∗) = OPT. Assume for simplicity
that 1/ε and 1/δ are integers. We partition the rectangles of R into Oδ,ε(logN) groups
R`, according to the lengths of their respective longer edge (where Oδ,ε hides constants
that depend only on ε and δ). Using standard shifting techniques (see, e.g., Hochbaum and
Maas [24]), by losing only a factor of 1 + ε in our objective function, we can assume that for
any two rectangles in different groups, the lengths of their respective longer edge differ at
least by a factor of 1

εδ , and for any two rectangles in the same group they differ at most by a
factor of (1

εδ)1/ε.

I Lemma 6. By losing a factor of 1 + ε in the value of the optimal solution, we can assume
that there is a partition of the rectangles R into O(logN) groups R` and values µ′`, µ` ∈ N
for each group R` such that

µ′` ≤ max{gi, hi} < µ` for each Ri ∈ R` (recall that gi and hi are width and height of
rectangle Ri respectively), and
δε · µ′` = µ`+1 and µ`/µ′` = (1/δε)1/ε for each `.

Proof. We first group rectangles in R into R1, . . . ,Rm for m = O(logN) based on their
values vi = max{hi, gi}, where Rj = {Ri : vi ∈ [(1/δε)j−1, (1/δε)j)}. Then, we again group
every 1/ε consecutive groups Rj together to obtain supergroups. We define supergroups
with respect to different values of “shifts” as follows. For each shift s ∈ {1, . . . , 1/ε}, the
supergroup Ts,0 =

⋃s−1
j=1Rj and for each α ≥ 1, we have Ts,α =

⋃s+α/ε−1
j=s+(α−1)/ε+1Rj . Notice

that for each fixed s, if we take the union of supergroups Ts,α, we would get Ts =
⋃
α Ts,α =⋃

j:j 6=s (mod 1/ε)Rj .

I Observation 7.
∑1/ε
s=1 OPT(Ts) ≥ (1− ε)OPT/ε.

A. Adamaszek, P. Chalermsook, and A. Wiese 49

Proof. Let R∗ be an optimal solution. We argue that

1/ε∑
s=1

w(Ts ∩R∗) ≥ (1− ε)w(R∗)/ε

Notice that each rectangle Ri ∈ R∗ appears in (1/ε)− 1 terms on the left-hand-side (more
precisely, if Ri ∈ Rj where j = s (mod 1/ε), then the contribution from rectangle Ri does
not appear). The claim then follows. J

Then there must be a shift s ∈ {0, . . . , 1/ε − 1} such that w(Ts ∩ R∗) ≥ (1 − ε)w(R∗).
We complete the proof of this lemma by observing that for each s, the collection Ts has the
following properties:

For any α, for any two rectangles Ri, Ri′ ∈ Ts,α, we have vi/vi′ ≤ (1/δε)(1/ε).
For two integers α < α′, for rectangles Ri ∈ Ts,α, Ri′ ∈ Ts,α′ , we have hi′/hi ≥ 1

δε .
J

The readers may think of the values µ0, µ
′
0, µ1, . . . , µ

′
q as being the values N,N(δε)1/ε,

N(δε)1+1/ε, N(δε)1+2/ε, Next, we place a grid with a random offset in the plane. Let
a ∈ {0, . . . , µ0 − 1} be a random offset. We draw the grid cells of various granularities, and
we use the notion of levels to indicate the granularities of the cells. Denote by G` the grid of
level `. Each grid cell of G` has a width and height of w` = 2δ · µ′` and there is one grid cell
whose top left corner has the coordinates (a, a). More formally, the horizontal (resp. vertical)
grid lines at level ` are those with y-coordinates (resp. x-coordinates) a, a+ w`, a+ 2w`,
Observe that each grid line in G` is a also a grid line in G`′ whenever `′ > `.

For each set R` we remove all rectangles which are intersected by a grid G`′ with `′ < `.
The next lemma shows that this comes at a negligible cost, by exploiting the fact that the
grid granularity w`′ of each grid G`′ is at least by a factor of 1/ε larger than max{gi, hi} for
any rectangle Ri in a set R` with `′ < `, and the fact that a was a random offset.

I Lemma 8. Let ε > 0 be any constant. There is a randomized algorithm that, given a
collection R of rectangles, produces a new collection R′ ⊆ R together with grid lines {G`}
such that no rectangle in group R` ∩R′ is intersected by grid lines G`′ for `′ < `. Moreover,
OPT(R′) ≥ (1− ε)OPT(R) in expectation.

Proof. We first argue that, for any `′ < `, the probability that a rectangle Ri ∈ R` is
intersected by a grid line of G`′ is at most ε`−`′ : Consider a rectangle Ri ∈ R`. Two
consecutive parallel grid lines of the grid G`′ have a distance of w`′ = 2δµ′`′ > 2

ε`−`′
µ` >

2
ε`−`′

max{gi, hi}. Therefore, the probability that Ri is intersected by a horizontal grid line
of G`′ is at most ε`−`′/2; similarly, the probability that Ri is intersected by a vertical grid
line of G`′ is at most ε`−`′/2. By the union bound the probability that Ri is intersected by
some grid line of G`′ is bounded by ε`−`′ .

Now let R∗ be an optimal solution. Observe that any rectangle R ∈ R`∩R∗ is removed if
it intersects some a grid line of G`′ with `′ < `. So the probability that R is removed from the
instance is, by the union bound, at most

∑
`′:`′>` ε

`′−` ≤ 2ε. Therefore, in expectation, the
total weight of the remaining rectangles in R∗ is at least (1− 2ε)w(R∗) ≥ 1

(1+3ε)w(R∗). J

We remark that if N is polynomially bounded in the number of input rectangles, our
algorithm does not need to execute this lemma; only the existential statement is sufficient
for the DP to find a good solution. The lemma is only needed when N is superpolynomial.

Denote by R̃ the set of rectangles from the optimal solution in the set obtained by
Lemma 8. We will now shrink these rectangles for the purpose of proving that GEO-DP finds

APPROX/RANDOM’15

50 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

a good solution. We remark that our algorithm does not need to compute this shrinking.
For each rectangle Ri ∈ R̃ we define a new rectangle R′i such that R−δi ⊆ R′i ⊆ Ri. Consider
a rectangle Ri ∈ R̃ ∩ R`. If µ′` ≤ hi < µ` then we move the top and bottom boundaries
of Ri towards each other so that they align with the closest horizontal grid lines of G`. If
µ′` ≤ gi < µ`, then we move the left and right boundaries of Ri towards each other so that
they align with the closest vertical grid lines of G`. Note that R−δi ⊆ R′i ⊆ Ri since we
apply the above procedure only to the edges that are at least µ′` = w`/2δ units long and in
their corresponding dimension Ri crosses at least 1/2δ grid lines of G`. See Figure 1b for an
illustration. Note, the actual shrinking for Ri is always R−δi (R′i is defined only for analysis.)
Denote by R′ the solution consisting of all rectangles R′i for Ri ∈ R̃.

2.3 Analysis of the Dynamic Program
In this section we show that, when given the set R as an input, GEO-DP will find the
solution R′ when parametrized by k := (1

εδ)10/ε. Using the fact that w(R′) ≥ (1−O(ε))w(R∗)
(from Lemmas 6 and 8), this implies that GEO-DP is a (1 + ε)-approximation algorithm for
δ-MWISR.

In its recursion, GEO-DP tries all possibilities to partition the input square [0, N]× [0, N]
into at most k smaller polygons and then selects the most profitable partition. For each
polygon in the latter partition, it again computes an optimal partition into at most k smaller
polygons and so on. The sequence of cuts produced by GEO-DP can be described by a tree
T where each node v is associated with a region Pv in the plane. We say that a tree T is a
good (k,R′)-region decomposition if the following holds:

For each node v in T and each rectangle R ∈ R′, we have that if R does not coincide
with Pv, i.e., R 6= Pv, then either R is contained in Pv, or R is disjoint from Pv.
For tree nodes u and v such that u is a parent of v, we have Pv ⊆ Pu. Each node v ∈ T
has at most k′ ≤ k children u1, . . . , uk′ in T , and

⋃k′
i=1 Pui = Pv.

For each leaf node v of T , the polygon Pv coincides with a rectangle in R′ or Pv has
empty intersection with every rectangle in R′.

I Lemma 9. If a good (k,R′)-region decomposition exists, then the algorithm GEO-DP
parametrized by k is a (1 + ε)-approximation algorithm for δ-MWISR.

Proof. We assume that there is a non-overlapping set of rectangles R′ with w(R′) ≥
(1−O(ε))OPT for which a (k,R′)-region decomposition exists. For each R′i ∈ R′, we denote
by Ri the original, non-shrunk counterpart of R′i. Let T be the tree that represents the
region decomposition for R′. We now prove the following statement by induction on the
structure of T from its leaves to the root:

For any node u ∈ T , when GEO-DP processes the instance given by the input
rectangles that are contained in Pu, it outputs a set of rectangles R̄u whose weight
w(R̄u) is at least the total weight of the rectangles in R′ that are contained in Pu.

In particular, this statement implies that for the root node r with Pr = [0, N]× [0, N]
GEO-DP computes a set of rectangles R̄r with weight w(R̄r) ≥ w(R′) ≥ (1−O(ε))OPT as
desired.

The base case is obvious: For each leaf node v its polygon Pv coincides with a rectangle
R′i ∈ R′ and thus R−δi is in Pv; so GEO-DP returns a solution whose weight is at least
w(R′i). Now for the inductive step, consider a node v for which the induction hypothesis
holds for all children of v. Let R′v denote all rectangles from R′ that are contained in

A. Adamaszek, P. Chalermsook, and A. Wiese 51

Pv. Denote the children of v by v1, . . . , vk′ for some k′ ≤ k. We have that Pv =
⋃k′
j=1 Pvj

and that the polygons Pv1 , . . . , Pvk′ are pairwise disjoint. For each j ∈ {1, . . . , k′} let R′vj
denote the rectangles from R′ that are contained in Pvj . Since each rectangle in R′v is
contained in some polygon Pvj the sets R′vj form a partition. In particular, this implies
that w(R′v) =

∑k′

j=1 w(R′vj). Moreover, GEO-DP considers the cut which partitions Pv into
Pv1 , . . . , Pvk′ and returns, by the induction hypothesis, a solution R̄v consisting of one solution
R̄vj for each polygon Pvj such that w(R̄v) =

∑k′

j=1 w(R̄vj) ≥
∑k′

j=1 w(R′vj) = w(R′v). This
completes the proof. J

We prove the existence of a (k,R′)-region decomposition by iteratively cutting the
polygons. Initially, before the first iteration, we have the tree T which contains only the
root r with corresponding region Pr = [0, N]× [0, N] (the whole input square). Denote the
grid lines we have by {G`}q`=0. In each iteration `, we use grid G` as a template to further
cut the polygons into sub-polygons (updating the tree T accordingly). We will ensure that
the following invariant holds at the beginning of iteration `: For each leaf node v ∈ T , the
polygon Pv has only four edges (i.e., it is a rectangular region3), and Pv is either contained
in a grid cell of G`−1 or Pv coincides with some rectangle in R′; each region Pv has empty
intersection with every rectangle in R′ ∩ (

⋃
`′<`R`′). Finally, every internal node has degree

at most k. It is not hard to see that if we have maintained the invariant until the last
iteration q, the tree T would satisfy all properties of good (k,R′)-region decomposition.

Partition into groups of cells

Now assume that we have so far maintained the invariant up to iteration `, and we will
provide a sequence of cuts extending the so far constructed tree such that the invariant holds
for ` + 1. Consider a leaf node v of T . If Pv coincides with a rectangle in R′, no further
partition is necessary (it satisfies the invariant until the end). Otherwise, we consider the
grid G` restricted to Pv. Denote by Rcorv,` ⊆ R′ ∩R` all rectangles of R′ ∩R` that overlap
corners of G` inside Pv. We add each such rectangle as a child node of v. Notice that these
nodes satisfy the invariant for level `+ 1. Let M = (µ′`/µ′`+1)2 (i.e., M equals the maximum
number of grid cells of G` within Pv). Since |Rcorv,` | ≤ M , the polygon Pv after removing
such rectangles has at most 4M + 4 edges. We then focus on the other rectangles. The way
we shrunk rectangles guarantees the following.

I Observation 10. Consider a grid cell C in G`. Either the cell C is not touched by any
rectangle R′i ∈ R` ∩R′, i.e., C ∩R′i = ∅ for all R′i ∈ R` ∩R′, or C is crossed by a rectangle
R′i ∈ R` ∩R′, i.e., C without the relative interior of R′i has two connected components.

Since their longer edges start and end at grid coordinates, the rectangles in Rcorv,` partition
the grid cells into three disjoint groups: cells which are not crossed by any rectangle in
R` ∩ R′, cells which are horizontally crossed, and cells which are vertically crossed (see
Figure 2). The cells of the first group already satisfy the invariant for ` + 1 because no
rectangle in R` ∩R′ intersects it (but we remark that there may be rectangles in R`+1, . . . ,

that may still be in such cells). For each of them we create a child node v′ of v. We partition
the remaining grid cells into at most M groups C1, C2, . . . such that two adjacent grid cells are
in the same group if and only if there is a rectangle R′i ∈ R` crossing both of them. For each

3 A rectangular region refers to a region in the plane which may not coincide with any input rectangle.

APPROX/RANDOM’15

52 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

group Cj we add a child node vj to v and we define the region Qj = (
⋃
C∈Cj C)\

⋃
Ri∈Rcorv,`

Ri

corresponding to node vj .

I Lemma 11. All cells in each group Cj are contained in either a grid row or a grid column
of G`. Moreover, the region Qj has at most 9M edges, and no rectangle in R′ ∩ (

⋃
`′≥`R`′)

touches its boundary.

Proof. Assume for contradiction that there is a group Cj that is not horizontally or vertically
contained in a grid row or column. Then Cj contains more than one cell and thus each cell
in Cj is crossed horizontally or vertically but no both. If there is no cell in Cj that is crossed
vertically then no two cells from Cj in different rows can be in the same group which is a
contradiction since we assumed Cj not to be contained in one grid row. The same reasoning
applies if no cell in Cj is crossed horizontally. Thus, there must be a grid cell C in Cj that is
crossed horizontally and another grid cell C ′ that is crossed vertically. However, then the
cells in Cj that are crossed horizontally and the ones that are crossed vertically must be in
different groups.

Moreover, the edges of Qj consist of the grid cell boundaries of G` (at most 4M edges as
there are M such cells with 4 edges each), the boundaries of rectangles in Rcor` (at most 4M
edges as there are at most M such rectangles), and the boundaries of the polygon Pv (at
most 4 edges by the induction hypothesis). So Qj has at most 8M + 4 ≤ 9M edges. Also,
no rectangle in a set R`′ with `′ ≥ ` touches the boundary of Qj because no rectangle in
R′ ∩R`′ can cross a grid line of G` (by Lemma 8), the boundary of other rectangles in R′,
or the boundary of the polygon Pv (by the induction hypothesis). J

So the “correct” partition of Pv has one polygon for each cell that is not crossed by a
rectangle in R`, one polygon for each group Cj , and one polygon for each rectangle in Rcorv,` .
Note that in total those are at most 5M many. Notice that these tree nodes for a group Cj
do not necessarily satisfy the invariant since Qj might not be contained in a grid cell of G`.

While this partition has similarities to quad-tree approaches like in Arora’s algorithm
for Euclidean TSP [5] we note that in such classical approaches the pieces arising in the
recursive partition (typically squares) do not depend on the instance and are predetermined.
In constrast, in our case this partition depends on the structure of the optimal solution R′
and the algorithm has to guess the correct one. Furthermore, before proceeding to the next
level we must further refine the partitions that correspond to groups Cj step-by-step as we
explain in the sequel.

Further partitioning of each group

Next, we show that there is a sequence of cuts that further partition each group Cj into a
family of smaller polygons such that at each intermediate step each polygon has at most
k edges. Consider group Cj that is horizontally crossed (the other case is symmetric). We
construct a (planar) graph Hj = (Vj , Ej) within Qj , see Figure 3 for a sketch. The set Vj
has a node for each vertex of the polygon Qj and for each intersection of the top or bottom
edge of a rectangle R′i ∈ R′ ∩ R` with a vertical grid line in G` (including the corners of
R′i). Denote by V (0)

j , V
(1)
j , V

(2)
j , . . . the vertices in Vj ordered by the vertical grid lines they

appear on, i.e. V (p)
j contains the vertices in Vj on the pth vertical grid line in G` inside Qj .

For each p, we introduce a horizontal edge in Ej between two vertices v ∈ V (p)
j , v′ ∈ V (p+1)

j

if and only if v and v′ lie on the same edge of a rectangle in R′ ∩R`; also we add a vertical
edge in Ej between two vertices v ∈ V (p)

j , v′ ∈ V (p)
j if the line segment L between v and v′

A. Adamaszek, P. Chalermsook, and A. Wiese 53

Figure 2 The pieces P ′
j for the groups Cj and the grid cells that are not touched by any rectangle.

The shading indicates whether the group is a horizontal or a vertical group.

V
(0)
j V

(1)
j V

(2)
j V

(3)
j V

(4)
j V

(5)
j V

(6)
j V

(7)
j V

(8)
j

Figure 3 The graph Hj for one piece P ′
j . The thick lines represent the edges Ej of Hj .

does not cross any rectangle R′ ∩R` and also no other vertex v′′ ∈ V (p)
j with v′′ 6∈ {v, v′}.

By construction, no edge in Ej crosses through any rectangle in R′.
Now we cut the region Qj step-by-step along simple paths in Hj which go from left to

right, visiting a vertex in V (p)
j after having visited a vertex in V (p−1)

j , for each p. We call
such paths cutting paths. Each polygon arising in this partition sequence can be described as
the polygon P (σ, σ′) between two cutting paths σ and σ′ that start at some common point s
and end at t; also they are disjoint except at the two endpoints. Observe that such polygons
have at most O(M) edges each and that Qj itself equals P (σT , σB) where σT and σB denote
the paths describing the top and bottom boundary of Qj , respectively. Now the idea is that
if a polygon P (σ, σ′) for two cutting paths σ, σ′ does not satisfy the invariant, then it can be
further partitioned along another cutting path σ′′, as the following lemma shows (we will
prove it later in Section 2.4).

I Lemma 12. Let σ, σ′ be two cutting paths in Qj. Then either
P (σ, σ′) has rectangular shape, is contained in a grid cell of G`, and has empty intersection
with each rectangle in R` ∩R′, or
P (σ, σ′) has rectangular shape and it coincides with a rectangle in R′ ∩R`, or
there is a cutting path σ′′ with σ 6= σ′′ 6= σ′ such that P (σ, σ′) = P (σ, σ′′)∪̇P (σ′′, σ′).

We invoke Lemma 12 on each region Qj until the invariant is satisfied: If invoking the
lemma on Qj holds with the first or second cases, then we are done; otherwise, Qj can be
further partitioned into Q′ and Q′′ based on the cutting path. In such case, we add two

APPROX/RANDOM’15

54 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

nodes corresponding to regions Q′ and Q′′ into the tree T as children of Qj , and then invoke
the lemma on Q′ and Q′′. Since these polygons are always defined by two cutting paths,
their complexities are bounded by O(M). Now each leaf node that does not coincide with a
rectangle in R′ ∩R` satisfied the invariant. The above shows that there is a (k,R′)-region
decomposition for k = O(M) = (1/δε)1/ε.

Note that already in the last part—the partitioning of each group—one single group
might be partitioned into up to Ω(n) pieces. Thus, we cannot use an approach which guesses
this partition in a single step only. In particular, to ensure polynomial running time we
crucially need our DP and cannot replace it by a brute-force recursive algorithm since the
depth of T can be up to Ω(logn). This is a key difference to the QPTAS in [1] where instead
of the DP one could alternatively use such a recursion and obtain the same result.

Superpolynomial input data

To remove the assumption that N is bounded by a polynomial, observe that there are only
O(logN) recursion levels, which is polynomial in the length of the input encoding. Each
coordinate used in our cut sequence coincides with a coordinate of a rectangle in R′ or with a
horizontal or vertical grid line (these coordinates can be computed efficiently in a randomized
fashion by Lemma 8). While the last recursion level can give rise to up to Ω(N) of those, it
suffices to consider only grid lines belonging to grid cells C such that there exists an input
rectangle R with R ⊆ C. In each of the O(logN) levels, there can be only n such grid cells
which bounds the total number of needed coordinates by O(n logN). This completes the
proof of Theorem 1.

2.4 Proof of Lemma 12
In this section we prove Lemma 12. Assume w.l.o.g. that the polygon Qj is completely
contained in a grid row. Consider the polygon P (σ, σ′) defined by two cutting paths where σ
is above σ′, i.e. paths σ and σ′ contain the upper and lower boundaries of polygon P (σ, σ′)
respectively. Let H ′j be the subgraph of Hj induced by all vertices that are used by σ or σ′
or which lie in the relative interior of P (σ, σ′). We assume w.l.o.g. that paths σ and σ′ do
not intersect except at the endpoints, i.e. they both start at some node s ∈ V (H ′j) and end
at some node t ∈ V (H ′j). We will argue that one of the three cases of Lemma 12 applies.

We say that a path τ in H ′j is monotone if τ is empty or can be written as τ =
(v0, v1, . . . , vz) such that for each i, vertex vi is either on the left of vi+1 or on the top (i.e.
the monotone path only goes right or down.) First, we need the following lemma.

I Lemma 13. Let u ∈ V (H ′j) be a vertex that corresponds to the bottom-right corner of a
rectangle R in R`. Then there is a monotone path τ from vertex u to some vertex v′ on path
σ′; symmetrically, any top-left corner of a rectangle is reachable from a vertex in σ by a
monotone path.

Proof. We only prove this statement when u 6∈ σ′; otherwise, it is trivial (notice that u
cannot be on σ.) To prove this statement, it is sufficient to show that there is a monotone
path τ ′ that either connects vertex u to the bottom-right corner of another rectangle R′ or
to some vertex on σ′: Applying this claim iteratively gives us the lemma.

Now notice that vertex u is on the right boundary of rectangle R, so u ∈ V (p)
j for some p.

From the way we construct graph Hj , there must be a downward edge from u to either a
vertex on the top boundary of some other rectangle R′ or on the path σ′. In the latter case,
we are immediately done. In the former case, let u′ be a vertex on the top boundary of R′

A. Adamaszek, P. Chalermsook, and A. Wiese 55

that is connected to u via an edge (u, u′). We define path τ ′ that first takes an edge (u, u′)
and then from u′ there is always a monotone path to the bottom-right corner of R′ using
edges on the boundary of R′. J

Using this lemma, we now prove Lemma 12. We have the following cases:
First, if there is a vertex u ∈ V (Hj) that is a corner of some rectangle R ∈ R` ∩R′, we
show that we can find a cutting path σ′′ implying the third case of the lemma. Define σ′′t
to be the monotone path that connects the top-left corner utop of R to u (this path could
be empty). Also σ′′b is the monotone path that connects u to the bottom-right corner
ubot of R. Observe that σ′′t is disjoint from σ′′b and that at least one edge in σ′′b ∪ σ′′t is in
the interior of P (σ, σ′).
We now apply Lemma 13 to find a path τt that connects a vertex vtop on σ to utop,
and similarly we can find a path τb that connects vertex ubot to some vertex vbot on
σ′. It is easy to see that all paths σ′′b , σ′′t , τb, τt are disjoint. Now the cutting path σ′′ is
easily defined: Start from s, follow path σ until it reaches vtop, then follow the paths
τt, σ

′′
t , σ

′′
b , τb in this order until vbot is reached, and finally from vbot we use the path σ′

towards vertex t. This is a cutting path because we always go from left to right and the
path cuts through the interior.
Now assume that there is no such corner in the interior. There are two possibilities. First
if there is no rectangle in R` ∩ R′ that lies in polygon P (σ, σ′), then either P (σ, σ′) is
contained in one cell (in which case we are done with the first case of Lemma 12 applied),
or there is a vertical edge that connects two vertices in V (p)

j for some p where we can cut.
Otherwise, there is a rectangle R ∈ R` ∩R′ that lies in P (σ, σ′) where all four corners
lie on the border of polygon P (σ, σ′), i.e. on σ ∪ σ′. If the upper boundary of R does
not lie on σ, we could cut the polygon P (σ, σ′) using this upper boundary as our σ′′
(in which case, the third case of Lemma 12 applies.) Similar arguments hold for the
bottom boundary of R. Hence, the only case left to analyze is when the top and bottom
boundaries of R lie on σ and σ′ respectively. In such case, polygon P (σ, σ′) coincides
with rectangle R, and the second case of Lemma 12 applies.

3 Coloring and Integrality Gap

In this section, we consider the rectangle coloring problem and bound the integrality gap of
the LP for MWISR in our model. Both results rely on a partitioning lemma that divides
rectangles into sub-collections with “nice” properties. We will first define these properties
precisely and state the partitioning lemma. Then we will describe how it can be used to
prove Theorem 2 and Corollary 3.

For pairs of intersecting rectangles we distinguish three types of intersections: crossing,
containment, and corner intersections. We say that two rectangles R,R′ have a crossing
intersection if no rectangle contains a corner of the other, a containment intersection if one
rectangle completely contains the other, and otherwise they have corner intersection. We
call a collection of rectangles nice if no two rectangles in R have corner intersections (but
may still have containment).

It is known that if a collection of rectangles R is nice then we have χ(R) = ω(R), see
e.g., [9, Theorem 4] (which implies that then the intersection graph is perfect). Note that this
statement is slightly more general than the classical result in [6] that the latter equality holds
if the rectangles in R have only crossing intersections (and thus no containment intersections).
Our partitioning scheme is formally summarized in the following lemma that we will prove
later in Section 3.1.

APPROX/RANDOM’15

56 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

I Lemma 14 (Partitioning lemma). Let R be a set of rectangles. For any δ > 0, there
is a value M = O((1

δ)2 log2(1/δ)) and a polynomial time algorithm computing a partition
of R into groups R1, . . . ,RM and a rectangle Si for each rectangle Ri ∈ R such that
R−δi ⊆ Si ⊆ Ri. The computed partition and the rectangles Si have the property that each
collection Sj = {Si : Ri ∈ Rj} is nice.

We explain now how to use Lemma 14 in order to prove Theorem 2 and Corollary 3.

Rectangle Coloring

It is straightforward to see that Lemma 14 implies the coloring algorithm. Partition the
input collection R into M = O((1

δ)2 log2(1/δ)) collections R1, . . . ,RM . Now we know that
each set Sj is nice, so we can color its rectangles with ω(Sj) ≤ ω(R) colors while using a
different set of colors for each set Sj . In total, the number of used colors is at most M ·ω(R).
This proves that χ−δ(R) ≤ O((1

δ)2 log2(1/δ))ω(R) and thus Theorem 2.

Integrality Gap

We use Lemma 14 in order to bound the integrality gap of the natural LP-formulation of
MWISR in our shrinking model. To this end, we first define this LP and the meaning of an
integrality gap in our model and subsequently prove Corollary 3.

First recall the following standard LP relaxation for MWISR. For each rectangle Ri, we
have a variable xi which indicates whether rectangle Ri is included in the solution.

(LP-IS) max
∑
Ri∈R

wixi

s.t.
∑

Ri:p∈Ri

xi ≤ 1 for all p ∈ P

xi ≥ 0 for all Ri ∈ R

Here P denotes the set of “interesting points” defined as follows: define a non-uniform grid by
drawing a horizontal and a vertical line through each corner of an input rectangle. Note that
each point in the interior of a grid cell is overlapped by exactly the same set of rectangles.
For each grid cell add an arbitrary point from its interior to P . Note that |P| ≤ O(|R|2). In
the MWISR problem, the integrality gap is the maximum possible ratio supR

LP(R)
OPT(R) where

LP(R) denotes the optimal value of (LP-IS) on the instance R. For the model of shrinking
the rectangles, we use the following natural modification of the integrality gap definition. For
each collection R, let OPTδ(R) be the weight of a maximum-weight δ-feasible independent
set R′ ⊆ R. Notice that for any δ > 0 we have that OPTδ(R) ≥ OPT(R). Then the δ-shrunk
integrality gap is defined as supR

LP(R)
OPTδ(R) . We need the following lemma.

I Lemma 15 (Implied by Theorem 4 in [9]). Let R be a nice collection of rectangles and let
x be a solution to (LP-IS) for R. Then there is a set of independent rectangles R′ ⊆ R with
w(R′) ≥

∑
Ri∈R wixi.

Now we prove Corollary 3. Let x∗ be an optimal LP solution to an input collection R of
rectangles, so we have

∑
Ri∈R wix

∗
i = LP(R). Use Lemma 14 to partition R into R1, . . . ,RM .

By the pigeon hole principle there must be a group Rj with
∑
Ri∈Rj wix

∗
i ≥ LP(R)/M .

Together with Lemma 15, applied on a nice set Rj , this yields the proof of Corollary 3.

A. Adamaszek, P. Chalermsook, and A. Wiese 57

3.1 Proof of the Partitioning Lemma
We prove Lemma 14 now. Our algorithm deals with the x and y coordinates of the input
rectangles separately in the following way: We compute two collections of intervals Ix, Iy
obtained by projecting the rectangles in R onto the x and y-axes, respectively. Then for
each such collection we invoke the following lemma where for any interval I = (a, a+ x) we
define I−δ := (a+ δ

2x, a+ (1− δ
2)x). For simplicity, we prove the following lemma only for

open intervals, as also our rectangles are defined as open sets. However, it holds also for
general intervals.

I Lemma 16. Let I = {I1, . . . , In} be a set of open intervals with integral start and end
points. There is a value M = O((1/δ) log(1/δ)) and a polynomial time algorithm computing
a partition of I into groups I1, . . . , IM and an open interval I ′i with I−δi ⊆ I ′i ⊆ Ii for each
interval Ii ∈ I such that each collection I ′j = {I ′i : Ii ∈ Ij} is nested (i.e. any two intervals
in it are either disjoint or one is contained in another.)

It follows straightforwardly that invoking this lemma for Ix and Iy gives the desired
result: Let {Ixj }Mj=1 and {Iyj }Mj=1 be the partitioning obtained by the lemma. We can define
a partition {Rj,k}Mj,k=1 where Rj,k = {Ri : Ixi ∈ Ixj and Iyi ∈ I

y
k}. Notice that any two

overlapping rectangles in the same set Rj,k must be nested in both x and y coordinates, so
either they are crossing or one is contained in the other.

The proof of the above lemma has two main steps. In the first step, we group intervals
into many groups by their lengths, where intervals in the same groups have roughly the same
length, and the ratio of lengths of two intervals in different groups is sufficiently large. We
pay a factor of O(log(1/δ)) in this step. In the second step, we partition the intervals into at
most O(1/δ) groups and shrink intervals in each group to obtain the claimed properties.

Step 1: Preprocessing

We first group the intervals geometrically by their lengths into I =
⋃
j Ij such that each

set Ij contains all intervals whose lengths are within [2j , 2j+1). Let L := dlog 8
δ e. For each

r ∈ {0, . . . , L − 1} we define a collection Γr = {Ij : j ≡ r mod L}. Notice that, for any
collection Γr, if we take two intervals from different sets Ij , their lengths differ by at least a
factor of 4/δ. This property will be crucial in our algorithm. In the next step, we further
partitioning each collection Γr into O(1/δ) sub-collections.

Step 2: Shrinking

Recall that our intervals have integral start and end points and assume w.l.o.g. that they
are all contained in [0, N] for some large integer N . Consider a collection Γr. By the first
step, we know that Γr = {Ir, IL+r, I2L+r, . . . , I`maxL+r} with `max being the largest integer
such that I`maxL+r 6= ∅. We say that an interval is at level-` if it belongs to I`L+r, i.e., its
length is in the interval [2`L+r, 2 · 2`L+r). For later convenience, we define µ′` = 2`L+r and
µ` = 2`L+r+1. Note that µ′`+1/µ

′
` = 2L ≥ 8/δ for each `. Moreover, for each ` we define a

collection of level-` points P` = {k · δµ′`|k ∈ Z}.

I Observation 17. Each level-` interval contains at least 1/δ points in P`. Moreover, for
any two consecutive points p, p′ ∈ P`+1 there are µ′`+1/µ

′
` − 1 points in P` ∩ (p, p′).

We now describe our shrinking process. For each interval Ii = (xi, yi) at level `, we
shrink the left-endpoint of Ii towards its centroid to the closest point in P`; similarly for the

APPROX/RANDOM’15

58 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

right endpoint. Formally, we define I ′i :=
(⌈

xi
δµ′
`

⌉
· δµ′`,

⌊
yi
δµ′
`

⌋
· δµ′`

)
to be the shrunk interval

corresponding to Ii. From the above observation, each interval gets shrunk by a factor of at
most (1− 2δ). Let Igood be the set of intervals that do not contain points of levels higher
than the interval itself, i.e., each interval Ii is contained in Igood if and only if Ii does not
contain a point in P`+1. Note that the latter condition implies that Ii does not contain a
point in P`+2,P`+3, . . . since the values µ′`, µ′`+1, . . . pairwise divide each other.

I Lemma 18. The collection of intervals Igood can be partitioned into M ′ = O(1/δ) sub-
collections such that each shrunk sub-collection is nested.

Proof. We define M ′ := 2L = O(1/δ). Note that µ′`+1/µ
′
` = M ′ for each `. We partition

Igood into {Ja}M
′−1

a=0 as follows. Since each good level-` interval Ii does not contain a point
in P`+1, its shrunk counterpart I ′i is of the form (Kiδµ

′
`+1 + ai(δµ′`),Kiδµ

′
`+1 + bi(δµ′`)) for

some integers Ki, ai, bi, where ai, bi ∈ {0, . . . ,M ′ − 1}; that is for an interval Ii = (xi, yi)
with I ′i = (x′i, y′i), we have that

Ki =
⌊

x′i
δµ′`+1

⌋
, ai =

x′i −Kiδµ
′
`+1

δµ′`
and bi =

y′i −Kiδµ
′
`+1

δµ′`

We include each such interval Ii in the set Jai . There can be at most O(1/δ) such sets.
Now we argue that each set Ja is nested. Consider a set Ja for some a and two intervals

Ii, Ij ∈ Ja that are in levels `i and `j respectively. If Ii and Ij are disjoint, we are done, so
assume that they are overlapping. If `i 6= `j then one interval must contain the other. Here
we use that for each ` no level-` interval contains a point in P`+1,P`+2, If `i = `j we
have Ki = Kj , and therefore one interval must contain the other. J

Finally, we need to deal with intervals in Ibad = I \ Igood. The intuition is that, if we
define point sets similar to P` but with respect to some shift s, then the bad intervals are
behaving like the good intervals above. Formally, we define s = δ

∑
`
µ′`
4 be the shift and for

each ` we define P ′` = {s+ k · δµ′`|k ∈ Z}. The intervals in Ibad are shrunk with respect to
these new points in a way similar to intervals in Igood but instead we use the points in {P ′`}
rather than {P`}. Formally, for each interval Ii = (xi, yi) ∈ Ibad we define a new shrunk
counterpart I ′′i :=

(⌈
xi−s
δµ′
`

⌉
· δµ′` + s,

⌊
yi−s
δµ′
`

⌋
· δµ′` + s

)
.

I Lemma 19. Any level-` interval Ii ∈ Ibad does not contain any point in P ′`+1.

Proof. Assume otherwise that some level-` interval Ii ∈ Ibad intersects some new point
q′ ∈ P ′`+1. Since Ii ∈ Ibad, the interval intersects some old point q in P`+1 as well. Recall
that the length of the interval Ii is strictly smaller than 2µ′` ≤ δ

4µ
′
`+1.

It must be the case that the coordinate of q is a multiple of δµ′`+1, while the coordinate
of q′ is equal to s+ k′δµ′`+1 for some k′ ∈ Z. The shift s can also be written as k′′δµ′`+1 +
δ
∑
`′≤`+1

µ′
`′
4 for some k′′ ∈ Z (because the terms δµ′`+2, δµ

′
`+3, . . . , are multiples of δµ′`+1.)

Observe that the term δ
∑
`′≤`+1

µ′
`′
4 is at least δµ′`+1/4 and at most 3δµ′`+1/4 as the values

of µ′` are geometrically increasing in `. This implies that the distance between q and q′ is at
least δµ′`+1/4, and since the interval Ii contains both points, its length must be at least that
much. This is a contradiction. J

With similar arguments as in Lemma 18 we can partition Ibad into O(1/δ) sub-collections
whose respective shrunk counterparts I ′′i are nested.

A. Adamaszek, P. Chalermsook, and A. Wiese 59

References
1 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight inde-

pendent set of rectangles. In Proceedings of the 54th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2013), pages 400–409. IEEE, 2013.

2 Anna Adamaszek and Andreas Wiese. A QPTAS for maximum weight independent set of
polygons with polylogarithmically many vertices. In Proceedings of the 25th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2014), pages 645–656. SIAM, 2014.

3 Pankaj K. Agarwal and Nabil H. Mustafa. Independent set of intersection graphs of convex
objects in 2D. Computational Geometry: Theory and Applications, 34(2):83–95, 2006.

4 Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by maximum
independent set in rectangles. Computational Geometry: Theory and Applications, 11(3-
4):209–218, 1998.

5 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. Journal of the ACM (JACM), 45:753–782, 1998.

6 E. Asplund and Branko Grünbaum. On a coloring problem. Mathematica Scandinavica,
8:181–188, 1960.

7 Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Improved
approximation algorithms for rectangle tiling and packing. In Proceedings of the 12th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pages 427–436. SIAM,
2001.

8 A. Bielecki. Problem 56. Colloquium Mathematicum, 1:333, 1948.
9 Parinya Chalermsook. Coloring and maximum independent set of rectangles. In Proceed-

ings of the 14th International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX 2011), pages 123–134. Springer, 2011.

10 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2009), pages 892–901. SIAM, 2009.

11 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

12 Timothy M. Chan. A note on maximum independent sets in rectangle intersection graphs.
Information Processing Letters, 89(1):19–23, 2004.

13 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. In Proceedings of the 25th Annual Symposium on Computational
Geometry (SoCG 2009), pages 333–340. ACM, 2009.

14 George Christodoulou, Khaled M. Elbassioni, and Mahmoud Fouz. Truthful mechanisms
for exhibitions. In Proceedings of the 6th International Workshop on Internet and Network
Economics (WINE 2010), pages 170–181. Springer, 2010.

15 José R. Correa, Laurent Feuilloley, and José A. Soto. Independent and hitting sets of rect-
angles intersecting a diagonal line. In Proceedings of the 11th Latin American Symposium
on Theoretical Informatics (LATIN 2014), pages 35–46. Springer, 2014.

16 Thomas Erlebach and Klaus Jansen. The complexity of path coloring and call scheduling.
Theoretical Computer Science, 255(1-2):33–50, 2001.

17 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and
covering in the plane are np-complete. Information processing letters, 12(3):133–137, 1981.

18 Jacob Fox and János Pach. Computing the independence number of intersection graphs.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2011), pages 1161–1165. SIAM, 2011.

19 Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data
mining with optimized two-dimensional association rules. ACM Transactions on Database
Systems (TODS), 26(2):179–213, 2001.

APPROX/RANDOM’15

60 How to Tame Rectangles: Solving IS and Coloring of Rectangles via Shrinking

20 Sariel Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of poly-
gons. In Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG
2014), page 120. ACM, 2014.

21 Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. JoCG,
3(1):65–85, 2012.

22 Johan Håstad. Clique is hard to approximate within n1−ε. Electronic Colloquium on
Computational Complexity, 4(38), 1997.

23 C. Hendler. Schranken für Färbungs-und Cliquenüberdeckungszahl geometrisch repräsen-
tierbarer Graphen. Master’s thesis, FU Berlin, Germany, 1998.

24 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985.

25 Alexandr V. Kostochka. Coloring intersection graphs of geometric figures with a given
clique number. Contemporary Mathematics, 342, 2004.

26 Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Routing and admission control in net-
works with advance reservations. In Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization (APPROX 2002), pages 215–
228. Springer, 2002.

27 Frank Nielsen. Fast stabbing of boxes in high dimensions. Theoretical Computer Science,
246:53–72, 2000.

28 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3:103–128, 2007.

A NP-Hardness Proof

We give a sketch for the proof that δ-MWISR is NP-hard. We note that (ordinary) MWISR
is NP-hard even for unit squares [17, Theorem 2]. Let R be an instance produced by this
reduction. By analysing the proof in [17] one can easily show that the intersection area between
any pair of intersecting squares in R is at least a constant ε. Notice that shrinking a (unit)
square R ∈ R by a factor of (1−δ) reduces its area by at most 1−(1−δ)(1−δ) = 2δ−δ2 ≤ 2δ.
This implies that if δ is chosen such that 4δ < ε then any collection of rectangles S ⊆ R is
non-overlapping if and only if S−δ is non-overlapping. Thus, for the instance R, any subset
S ⊆ R is δ-independent if and only if S is independent. So if one were able to compute a
δ-independent set of value OPT(R) in polynomial time, it would also imply that such an
algorithm can compute an optimal independent set of R.

	Introduction
	A Relaxed Model: Shrinkable Rectangles
	Our Contributions
	Other Related Work
	Problem Definition and Notation

	Approximation Scheme for Independent Set
	The Algorithm
	A Suitable Shrunk Solution
	Analysis of the Dynamic Program
	Proof of Lemma 12

	Coloring and Integrality Gap
	Proof of the Partitioning Lemma

	NP-Hardness Proof

