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Abstract
An instance of the 2-Lin(2) problem is a system of equations of the form “xi + xj = b (mod 2)”.
Given such a system in which it’s possible to satisfy all but an ε fraction of the equations, we
show it is NP-hard to satisfy all but a Cε fraction of the equations, for any C < 11

8 = 1.375
(and any 0 < ε ≤ 1

8 ). The previous best result, standing for over 15 years, had 5
4 in place of 11

8 .
Our result provides the best known NP-hardness even for the Unique-Games problem, and it
also holds for the special case of Max-Cut. The precise factor 11

8 is unlikely to be best possible;
we also give a conjecture concerning analysis of Boolean functions which, if true, would yield a
larger hardness factor of 3

2 .
Our proof is by a modified gadget reduction from a pairwise-independent predicate. We also

show an inherent limitation to this type of gadget reduction. In particular, any such reduction
can never establish a hardness factor C greater than 2.54. Previously, no such limitation on
gadget reductions was known.
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1 Introduction

The well known constraint satisfaction problem (CSP) 2-Lin(q) is defined as follows: Given n
variables x1, . . . , xn, as well as a system of equations (constraints) of the form “xi + xj = b

(mod q)” for constants b ∈ Zq, the task is to assign values from Zq to the variables so
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that there are as few unsatisfied constraints as possible. It is known [15, 17] that, from
an approximability standpoint, this problem is equivalent to the notorious Unique-Games
problem [14]. The special case of q = 2 is particularly interesting and can be equivalently
stated as follows: Given a “supply graph” G and a “demand graph” H over the same set of
vertices V , partition V into two parts so as to minimize the total number of cut supply edges
and uncut demand edges. The further special case when the supply graph G is empty (i.e.,
every equation is of the form xi − xj = 1 (mod 2)) is equivalent to the Max-Cut problem.

Let’s say that an algorithm guarantees an (ε, ε′)-approximation if, given any instance in
which the best solution falsifies at most an ε-fraction of the constraints, the algorithm finds
a solution falsifying at most an ε′-fraction of the constraints. If an algorithm guarantees
(ε, Cε)-approximation for every ε then we also say that it is a factor-C approximation.

We remark here that we are prioritizing the so-called “Min-Deletion” version of the
2-Lin(2) problem. We feel it is the more natural parameterization. For example, in the
more traditional “Max-2-Lin(2)” formulation, the discrepancy between known algorithms
and NP-hardness involves two quirky factors, 0.878 and 0.912. However, this disguises what
we feel is the really interesting question – the same key open question that arises for the
highly analogous Sparsest-Cut problem: Is there an efficient (ε, O(ε))-approximation, or even
one that improves on the known (ε, O(

√
logn)ε)- and (ε, O(

√
ε))-approximations?

The relative importance of the “Min-Deletion” version is even more pronounced for
the 2-Lin(q) problem. As we describe below, this version of the problem is essentially
equivalent to the highly notorious Unique-Games problem. By way of contrast, the traditional
maximization approximation factor measure for Unique-Games is not particularly interesting
– it’s known [10] that there is no constant-factor approximation for “Max-Unique-Games”,
but this appears to have no relevance for the Unique Games Conjecture.

1.1 History of the problem
No efficient (ε, O(ε))-approximation algorithm for 2-Lin(2) is known. The best known efficient
approximation guarantee with no dependence on n dates back to the seminal work of Goemans
and Williamson:

I Theorem 1 ([11]). There is a polynomial-time (ε, 2
π

√
ε+ o(ε))-approximation algorithm

for 2-Lin(2).

Allowing the approximation to depend on n, we have the following result building on [3]:

I Theorem 2 ([1]). There is a polynomial-time factor-O(
√

logn) approximation for 2-Lin(2).

Generalizing Theorem 1 to 2-Lin(q), we have the following result of Charikar, Makarychev,
and Makarychev:

I Theorem 3 ([7]). There is a polynomial time (ε, Cq
√
ε)-approximation for 2-Lin(q) (and

indeed for Unique-Games), for a certain Cq = Θ(
√

log q).

The question of whether or not this theorem can be improved is known to be essentially
equivalent to the influential Unique Games Conjecture of Khot [14]:

I Theorem 4. The Unique Games Conjecture implies ([15, 17]) that for all sufficiently small
ε > 0, (ε, 2

π

√
ε+o(ε))-approximating 2-Lin(2) is NP-hard, and for general q, (ε,Ω(

√
log q)

√
ε)-

approximating 2-Lin(q) is NP-hard. On the other hand ([19]), if there exists q = q(ε) such
that (ε, ω(

√
ε))-approximating 2-Lin(q) is NP-hard then the Unique Games Conjecture holds.
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The recent work of Arora, Barak, and Steurer has also emphasized the importance of
subexponential-time algorithms in this context:

I Theorem 5 ([2]). For any β ≥ log logn
logn there is a 2O(qnβ)-time algorithm for (ε, O(β−3/2)

√
ε)-

approximating 2-Lin(q). For example, there is a constant K < ∞ and an O(2n0.001)-time
algorithm for (ε,K

√
ε)-approximating 2-Lin(q) for any q = no(1).

Finally, we remark that there is an exact algorithm for 2-Lin(2) by [21] that runs in time
roughly 1.73n.

The known NP-hardness results for 2-Lin(q) are rather far from the known algorithms. It
follows easily from the PCP Theorem that for any q, there exists C > 1 such that factor-C
approximation of 2-Lin(q) is NP-hard. However, getting an explicit value for C has been
a difficult task. In 1995, Bellare, Goldreich, and Sudan [5] introduced the Long Code
testing technique, which let them prove NP-hardness of approximating 2-Lin(2) to factor of
roughly 1.02. Around 1997, Håstad [13] gave an optimal inapproximability result for the
3-Lin(2) problem; combining this with the “automated gadget” results of Trevisan et al. [20]
allowed him to establish NP-hardness of factor-C approximation for any C < 5

4 . By including
the “outer PCP” results of Moshkovitz and Raz [16] we may state the following more precise
theorem:

I Theorem 6 ([13]). Fix any C < 5
4 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2)

(for any 0 < ε ≤ ε0 = 1
4). In fact ([16]), there is a reduction with quasilinear blowup; hence

(ε, Cε)-approximation on size-N instances requires 2N1−o(1) time assuming the Exponential
Time Hypothesis (ETH).

Since 1997 there had been no improvement on this hardness factor of 5
4 , even for the

(presumably much harder) 2-Lin(q) problem. We remark that Håstad [13] showed the same
hardness result even for Max-Cut (albeit with a slightly smaller ε0) and that O’Donnell
and Wright [18] showed the same result for 2-Lin(q) (even with a slightly larger ε0, namely
ε0 → 1

2 as q →∞).

1.2 Our results and techniques
In this work we give the first known improvement to the factor- 5

4 NP-hardness for 2-Lin(2)
from [13]:

I Theorem 7. Fix any C < 11
8 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2) (for

any 0 < ε ≤ ε0 = 1
8). Furthermore, the reduction takes 3-Sat instances of size n to 2-Lin(2)

instances of size n7+o(1); hence (ε, Cε)-approximating 2-Lin(2) instances of size N requires
at least 2N1/7−o(1) time assuming the ETH.

I Remark. The power 7 in the size of the reduction comes from Chan’s hardness reduction
for the 7-ary Hadamard predicate [6].
We sketch the proof of this theorem in Section 3. The same theorem also holds in the special
case of Max-Cut (albeit with some smaller, inexplicit value of ε0). Proofs for both results
can be found in the full version of the paper.

Our result is a gadget reduction from the “7-ary Hadamard predicate” CSP, for which
Chan [6] recently established an optimal NP-inapproximability result. In a sense our The-
orem 7 is a direct generalization of Håstad’s Theorem 6, which involved an optimal gadget
reduction from the “3-ary Hadamard predicate” CSP, namely 3-Lin(2). That said, we should
emphasize some obstacles that prevented this result from being obtained 15 years ago.

APPROX/RANDOM’15
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First, we employ Chan’s recent approximation-resistance result for the 7-ary Hadamard
predicate. In fact, what’s crucial is not its approximation-resistance, but rather the stronger
fact that it’s a useless predicate, as defined in the recent work [4]. That is, given a nearly-
satisfiable instance of the CSP, it’s NP-hard to assign values to the variables so that the
distribution on the 7-tuples of the constraints is noticeably different from the uniform
distribution.

Second, although in principle our reduction fits into the “automated gadget” framework
of Trevisan et al. [20], in practice it’s completely impossible to find the necessary gadget
automatically, since it would involve solving a linear program with ∼ 2120 constraints. Instead
we had to construct and analyze our gadget by hand. On the other hand, by also constructing
an appropriate LP dual solution, we are able to show the following.

I Theorem 8 (Informally stated). Our gadget achieving factor- 11
8 NP-hardness for 2-Lin(2)

is optimal among gadget reductions from Chan’s 7-ary Hadamard predicate hardness.

In spite of Theorem 8, it seems extremely unlikely that factor- 11
8 NP-hardness for 2-Lin(2)

is the end of the line. Indeed, we view Theorem 7 as more of a “proof of concept” illustrating
that the longstanding factor- 5

4 barrier can be broken; we hope to see further improvements
in the future. In particular, in Section 4 we present a candidate NP-hardness reduction from
high-arity useless CSPs that we believe may yield NP-hardness of approximating 2-Lin(2) to
any factor below 3

2 . The analysis of this reduction eventually depends on a certain conjecture
regarding analysis of Boolean functions that we were unable to resolve; thus we leave it as
an open problem.

Finally, in Section 5 we show an inherent limitation of the method of gadget reductions
from pairwise-independent predicates. We prove that such reductions can never establish an
NP-hardness factor better than 1

1−e−1/2 ≈ 2.54 for (ε, Cε)-approximation of 2-Lin(2). We
believe that this highlights a serious bottleneck in obtaining hardness results matching the
performance of algorithms for this problem as most optimal NP-inapproximability results
involve pairwise-independent predicates.

2 Preliminaries

I Definition 9. Given x, y ∈ {−1, 1}n, the Hamming distance between x and y, denoted
dH(x, y), is the number of coordinates i where xi and yi differ. Similarly, if f, g : V → {−1, 1}
are two functions over a variable set V , then the Hamming distance dH(f, g) between them
is the number of inputs x where f(x) and g(x) disagree.

I Definition 10. A predicate on n variables is a function φ : {−1, 1}n → {0, 1}. We say that
x ∈ {−1, 1}n satisfies φ if φ(x) = 1 and otherwise that it violates φ.

I Definition 11. Given a predicate φ : {−1, 1}n → {0, 1}, Sat(φ) is the set of satisfying
assignments.

I Definition 12. A set S ⊆ {−1, 1}n is a balanced pairwise-independent subgroup if it satisfies
the following properties:
1. S forms a group under bitwise multiplication.
2. If x is selected from S uniformly at random, then Pr[xi = 1] = Pr[xi = −1] = 1

2 for any
i ∈ [n]. Furthermore, xi and xj are independent for any i 6= j.

A predicate φ : {−1, 1}n → {0, 1} contains a balanced pairwise-independent subgroup if there
exists a set S ⊆ Sat(φ) which is a balanced pairwise-independent subgroup.
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I Definition 13. For a subset S ⊆ [n], the parity function χS : {−1, 1}n → {−1, 1} is defined
as χS(x) :=

∏
i∈S xi.

I Definition 14. The Hadk predicate has 2k − 1 input variables, one for each nonempty
subset S ⊆ [k]. The input string {xS}∅6=S⊆[k] satisfies Hadk if for each S, xS = χS(x).

I Fact 15. The Hadk predicate contains a balanced pairwise-independent subgroup. (In fact,
the whole set Sat(Hadk) is a balanced pairwise-independent subgroup.)

Given a predicate φ : {−1, 1}n → {0, 1}, an instance I of the Max-φ CSP is a variable
set V and a distribution of φ-constraints on these variables. To sample a constraint from this
distribution, we write C ∼ I, where C = ((x1, b1), (x2, b2), . . . , (xn, bn)). Here the xi’s are
in V and the bi’s are in {−1, 1}. An assignment A : V → {−1, 1} satisfies the constraint C if

φ (b1 ·A(x1), b2 ·A(x2), . . . , bn ·A(xn)) = 1.

We define several measures of assignments and instances.

I Definition 16. The value of A on I is just val(A; I) := PrC∼I [A satisfies C], and the value
of the instance I is val(I) := maxassignments A val(A; I). We define uval(A; I) := 1− val(A; I)
and similarily uval(I).

I Definition 17. Let (=) : {−1, 1}2 → {0, 1} be the equality predicate, i.e. (=)(b1, b2) = 1
iff b1 = b2 for all b1, b2 ∈ {−1, 1}. We will refer to the Max-(=) CSP as the Max-2-Lin(2)
CSP. Any constraint C = ((x1, b1), (x2, b2)) in a Max-2-Lin(2) instance tests “x1 = x2” if
b1 · b2 = 1, and otherwise tests “x1 6= x2”.

Typically, a hardness of approximation result will show that given an instance I of the
Max-φ problem, it is NP-hard to tell whether val(I) ≥ c or val(I) ≤ s, for some numbers
c > s. A stronger notion of hardness is uselessness, first defined in [4], in which in the second
case, not only is val(I) small, but any assignment to the variables A appears “uniformly
random” to the constraints. To make this formal, we will require a couple of definitions.

I Definition 18. Given two probability distributions D1 and D2 on some set S, the total
variation distance dTV between them is defined to be dTV (D1,D2) :=

∑
e∈S

1
2 |D1(e)−D2(e)|.

I Definition 19. Given a Max-φ instance I and an assignment A, denote by D(A, I) the
distribution on {−1, 1}n generated by first sampling ((x1, b1), . . . , (xn, bn)) ∼ I and then
outputting (b1 ·A(x1), . . . , bn ·A(xn)).

The work of [6] showed uselessness for a wide range of predicates, including the Hadk
predicate.

I Theorem 20 ([6]). Let φ : {−1, 1}n → {0, 1} contain a balanced pairwise-independent
subgroup. For every ε > 0, given an instance I of Max-φ, it is NP-hard to distinguish between
the following two cases:

(Completeness): val(I) ≥ 1− ε.
(Soundness): For every assignment A, dTV (D(A, I),Un) ≤ ε, where Un is the uniform
distribution on {−1, 1}n.

APPROX/RANDOM’15
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

1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1


Figure 1 The Had3-matrix. The rows are the satisfying assignments of Had3.

2.1 Gadgets
The work of Trevisan et al [20] gives a generic methodology for constructing gadget reductions
between two predicates. In this section, we review this with an eye towards our eventual
Hadk-to-2-Lin(2) gadgets.

Suppose φ : {−1, 1}n → {0, 1} is a predicate one would like to reduce to another predicate
ψ : {−1, 1}m → {0, 1}. Set K := |Sat(φ)|. We begin by arranging the elements of Sat(φ) as
the rows of a K × n matrix, which we will call the φ-matrix. An example of this is done for
the Had3 predicate in Figure 1.

The columns of this matrix are elements of {−1, 1}K . Naming this set V := {−1, 1}K ,
we will think of V as the set of possible variables to be used in a gadget reduction from φ

to ψ. One of the contributions of [20] was to show that the set V is sufficient for any such
gadget reduction, and that any gadget reduction with more than 2K variables has redundant
variables which can be eliminated.

Of these variables, the n variables found as the columns of the φ-matrix are special; they
correspond to n of the variables in the original φ instance and are therefore called generic
primary variables. We will call them v1, v2, . . . , vn, where they are ordered by their position
in the φ-matrix. The remaining variables are called generic auxiliary variables. For example,
per Figure 1, (1, 1, 1, 1,−1,−1,−1,−1) and (1,−1,−1, 1,−1, 1, 1,−1) are generic primary
variables in any gadget reducing from φ, but (−1,−1, 1,−1, 1,−1, 1,−1) is always a generic
auxiliary variable.

On top of the variables V will be a distribution of ψ constraints. As a result, a gadget G
is just an instance of the Max-ψ CSP using the variable set V . As above, we will associate
G with the distribution of ψ constraints and write C ∼ G to sample a constraint from this
distribution. Given an assignment A : V → {0, 1}, the goal is for G to be able to detect
whether the values A assigns to the generic primary variables satisfy the φ predicate. For
shorthand, we will say that A satisfies φ when

φ (A(v1), A(v2), . . . , A(vn)) = 1.

On the other hand, A fails to satisfy φ when this expression evaluates to 0. Of all assignments,
we are perhaps most concerned with the dictator assignments. The i-th dictator assignment,
written di : {−1, 1}K → {−1, 1}, is defined so that di(x) = xi for all x ∈ {−1, 1}K . The
following fact shows why the dictator assignments are so important:

I Fact 21. Each dictator assignment di satisfies φ.

Proof. The string ((v1)i, (v2)i, . . . , (vn)i) is the i-th row of the φ-matrix, which, by definition,
satisfies φ. J
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At this point, we can now give the standard definition of a gadget. Typically, one
constructs a gadget so that the dictator assignments pass with high probability, whereas
every assignment which fails to satisfy φ passes with low probability. This is formalized in
the following definition, which is essentially from [20]:

I Definition 22 (Old definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a
gadget G satisfying the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any assignment A which fails to satisfy φ, uval(A;G) ≥ s.

We use uval as our focus is on the deletion version of 2-Lin(2). We include the word generic
in this definition to distinguish it from the specific type of gadget we will use to reduce Hadk
to 2-Lin(2). See Section 2.3 for details.

This style of gadget reduction is appropriate for the case when one is reducing from a
predicate for which one knows an inapproximability result and nothing else. However, in our
case we are reducing from predicates containing a balanced pairwise-independent subgroup,
and Chan [6] has shown uselessness for this class of predicates (see Theorem 20). As a result,
we can relax the (Soundness) condition in Definition 22; when reducing from this class of
predicates, it is sufficient to show that this (Soundness) condition holds for distributions
of assignments which appear random on the generic primary variables. In the following
paragraph we expand on what this means.

Denote by A a distribution over assignments A. The value of A is just the average value
of an assignment drawn from A, i.e. val(A;G) := EA∼A val(A;G), and similarly for uval(A;G).
We say that A is random on the generic primary variables if the tuple

(A(v1), A(v2), . . . , A(vn))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}n.

I Definition 23. Denote by Rgen(φ) the set of distributions which are (uniformly) random
on the generic primary variables.

Our key definition is the following, which requires that our gadget only does well against
distributions in Rgen(φ).

I Definition 24 (New definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a
gadget G satisfying the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any A ∈ Rgen(φ), uval(A;G) ≥ s.

The following proposition is standard, and we sketch its proof for completeness.

I Proposition 25. Suppose there exists a (c, s)-generic gadget reducing Max-φ to Max-ψ,
where Max-φ is any predicate containing a balanced pairwise-independent subgroup. Then for
all ε > 0, given an instance I of Max-ψ, it is NP-hard to distinguish between the following
two cases:

(Completeness): uval(I) ≤ c+ ε.
(Soundness): uval(I) ≥ s− ε.

Proof sketch. Let I be an instance of the Max-φ problem produced via Theorem 20. To
dispense with some annoying technicalities, we will assume that every constraint C in the
support of I is of the form C = ((x1, 1), . . . , (xn, 1)). Construct an instance I ′ of Max-ψ as
follows: for each constraint C = ((x1, 1), . . . , (xn, 1)) in the support of I, add in a copy of G
– call it GC – whose total weight is scaled down so that it equals the weight of C. Further,
identify the primary variables v1, . . . , vn of GC with the variables x1, . . . , xn.

APPROX/RANDOM’15
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Completeness: In this case, there exists an assignment A to the variables of I which
violates at most an ε-fraction of the constraints. We will extend this to an assignment
for all the variables of I ′ as follows: for any constraint C = ((x1, 1), . . . , (xn, 1)) which A
satisfies, there is some dictator assignment to the variables of GC which agrees with A on
the primary variables v1, . . . , vn. Set A to also agree with this dictator assignment on the
auxiliary variables in GC. Regardless of how A is extended in the remaining GC’s, it now
labels a (1 − ε)-fraction of the G gadgets in I ′ with a dictator assignment, meaning that
uval(A; I ′) ≤ (1− ε) · c+ ε · 1 ≤ c+ ε.

Soundness: Let A be an assignment to the variables in I ′. Consider the distribution
A of assignments to the gadget G generated as follows: sample C ∼ I and output the
restriction of A to the variables of GC. Because the distribution (A(x1), . . . , A(xn)) is ε-
close to uniform in total variation distance, A is ε-close in total variation distance to some
distribution A′ ∈ Rgen(φ). As a result, uval(A;G) ≥ uval(A′;G) − ε ≥ s − ε. But then
uval(A;G) = uval(A; I), which is therefore bounded below by s− ε. J

2.2 Reducing into 2-Lin(2)
In this section, we consider gadgets which reduce into the 2-Lin(2) predicate. We show
several convenient simplifying assumptions that can be made in this case.

I Definition 26. An assignment A : {−1, 1}K → {−1, 1} is folded if A(x) = −A(−x) for all
x ∈ {−1, 1}K . Here −x is the bitwise negation of x. In addition, a distribution A is folded if
every assignment in its support is folded.

The following proposition shows that when designing a gadget which reduces into 2-Lin(2),
it suffices to ensure that its (Soundness) condition holds for folded distributions. The proof
is standard.

I Proposition 27. For some predicate φ, suppose G is a gadget reducing Max-φ to Max-
2-Lin(2) which satisfies the following two conditions:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any folded A ∈ Rgen(φ), uval(A;G) ≥ s.

Then there exists a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2).

Proof. For each pair of antipodal points x and −x in {−1, 1}K , pick one (say, x) arbitrarily,
and set

canon(x) := canon(−x) := x.

This is the canonical variable associated to x and −x. The one constraint is that if either
x or −x is one of the generic primary variables, then it should be chosen as the canonical
variable associated to x and −x. Now, let G′ be the gadget whose constraints are sampled as
follows:
1. Sample a constraint A(x1) ·A(x2) = b from G.
2. For i ∈ {1, 2}, set bi = 1 if canon(xi) = xi and bi = −1 otherwise.
3. Output the constraint A(canon(x1)) ·A(canon(x2)) = b · b1 · b2.
We claim that G′ is a (c, s)-gadget reducing Max-φ to Max-2-Lin(2). To see this, set is-canon(x)
to be 1 if canon(x) = x and (−1) otherwise. Then the probability that an assignment A fails
on G′ is the same as the probability that the assignment A′(x) := is-canon(x) ·A(canon(x))
fails on G. For any dictator function di, di(x) = is-canon(x) ·di(canon(x)) for all x. Therefore,
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di fails G′ with probability c. Next, it is easy to see that for any assignment A, A′ is folded
and, due to our restriction on canon(·), A′ agrees with A on the generic primary variables.
Thus, given a distribution A ∈ Rgen(φ), A fails on G′ with the same probability that some
folded distribution in Rgen(φ) fails on G, which is at least s. J

I Proposition 28. For fixed values of c and s, let G be a gadget satisfying the (Completeness)
and (Soundness) conditions in the statement of Proposition 27. Then there exists another
gadget satisfying these conditions which only uses equality constraints.

Proof. Let G′ be the gadget which replaces each constraint in G of the form x 6= y with the
constraint x = −y. If A is a folded assignment,

A(x) 6= A(y) ⇐⇒ A(x) = A(−y).

Thus, for every folded assignment A, val(A;G) = val(A,G′). As the (Completeness) and
(Soundness) conditions in Proposition 27 only concern folded assignments, G′ satisfies these
conditions. J

This means that sampling from G can be written as (x, y) ∼ G, meaning that we have sampled
the constraint “x = y”.

2.3 The Hadk-to-2-Lin Gadget
Now we focus on our main setting, which is constructing a Hadk-to-2-Lin(2) gadget. Via
Section 2.2, we need only consider how well the gadget does against folded assignments.

The Hadk predicate has 2k−1 variables. In addition, it hasK := 2k satisfying assignments,
one for each setting of the variables x{1} through x{k}. It will often be convenient to take
an alternative (but equivalent) viewpoint of the variable set V := {−1, 1}K as the set of
k-variable Boolean functions, i.e.

V =
{
f
∣∣ f : {−1, 1}k → {−1, 1}

}
.

The Hadk matrix is a 2k × (2k − 1) matrix whose rows are indexed by strings in {−1, 1}k and
whose columns are indexed by nonempty subsets S ⊆ [k]. The (x, S)-entry of this matrix is
χS(x). This can be verified by noting that for any x ∈ {−1, 1}k,(

χ{1}(x), χ{2}(x), . . . , χ{k}(x), χ{1,2}(x), . . . , χ{1,2,...,k}(x),
)

is a satisfying assignment of the Hadk predicate. As a result, for each S 6= ∅, χS is a column
in the Hadk matrix. Therefore, these functions are the generic primary variables. However, it
will be convenient to consider a larger set of functions to be primary. For example, because
we plan on using our gadget on folded assignments, χS and −χS will always have opposite
values, and so the −χS ’s should also be primary variables. In addition, it is a little unnatural
to have every parity function but one be a primary variable, so we will include the constant
function χ∅ and its negation −χ∅ in the set of primary variables. In total, we have the
following definition.

I Definition 29. The primary variables of a Hadk-to-2-Lin(2) gadget are the functions ±χS ,
for any S ⊆ [k]. The remaining functions are auxiliary variables.

To account for the inclusion of χ∅ as a primary variable, we will have to modify some of
our definitions from Section 2.1. We begin by defining a modification to the Hadk predicate.
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I Definition 30. The Had∗k predicate has 2k input variables, one for each subset S ⊆ [k].
The input string {xS}S⊆[k] satisfies Had∗k if for each S, xS = x∅ ·

∏
i∈S x{i}.

In other words, if x∅ = 1, then the remaining variables should satisfy the Hadk predicate, and
if x∅ = −1, then their negations should. We will say that A satisfies the Had∗k predicate if

Had∗k
(
A (χ∅) , A

(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]
))

= 1.

Otherwise, A fails to satisfy the Had∗k predicate. We say that A is random on the primary
variables if the tuple(

A (χ∅) , A
(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]
))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}K .

I Definition 31. Denote by R(Hadk) the set of folded distributions which are uniformly
random on the primary variables.

I Definition 32. A (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2) is a gadget G satisfying
the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any A ∈ R(Hadk), uval(A;G) ≥ s.

I Proposition 33. The following two statements are equivalent:
1. There exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).
2. There exists a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2).

Proof. We prove the two directions separately.

(1) ⇒ (2): Let G be a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2). We claim that
for any folded A ∈ Rgen(Hadk), uval(A;G) ≥ s. To see this, consider the distribution
A′ ∈ R(Hadk) which samples A ∼ A and outputs either A or −A, each with half probability.
Then uval(A′;G) = uval(A;G), and furthermore we know that uval(A;G) ≥ s. As a result, G
satisfies the (Completeness) and (Soundness) conditions in the statement of Proposition 27,
meaning there exists a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2).

(2) ⇒ (1): Let G be a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2). Let
A ∈ R(Hadk), and for b ∈ {−1, 1}, write A(b) for A conditioned on the variable χ∅ being
assigned the value b. Then b · A(b) (by which we mean the distribution where we sample
A ∼ A(b) and output b ·A) is in Rgen(Hadk) for both b ∈ {−1, 1}, and so uval

(
b · A(b);G

)
≥ s.

As uval(A(b);G) = uval
(
b · A(b);G

)
, uval(A;G) ≥ s, and so G is a (c, s)-gadget reducing

Max-Hadk to Max-2-Lin(2). J

Combining this with Proposition 25, we have the following corollary.

I Corollary 34. Suppose there exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).
Then for all ε > 0, given an instance I of Max-2-Lin(2), it is NP-hard to distinguish between
the following two cases:

(Completeness): uval(I) ≤ c+ ε.
(Soundness): uval(I) ≥ s− ε.
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2.4 Reducing to the length-one case
When constructing good gadgets, we generally want dictators to pass with as high of
probability as possible. By Proposition 28, we can assume that our gadget operates by
sampling an edge (x, y) and testing equality between the two endpoints. Any such edge of
Hamming distance i will be violated by i

K of the dictator assignments. Intuitively, then, if we
want to dictators to pass with high probability, we should concentrate the probability mass
of our gadget G on edges of low Hamming distance. The following proposition shows that
this is true in the extreme: so long as we are only concerned with maximizing the quantity
s
c , we can always assume that G is entirely supported on edges of Hamming distance one.

I Proposition 35. Suppose there exists a (c, s)-gadget G reducing Max-Hadk to Max-2-Lin(2).
Then there exists a (c′, s′)-gadget reducing Max-Hadk to Max-2-Lin(2) using only length-one
edges for which

s′

c′
≥ s

c
.

Proof. For each i ∈ {1, . . . ,K}, let pi be the probability that an edge sampled from G has
length i, and let Gi denote the distribution of G conditioned on this event. Then sampling
from G is equivalent to first sampling a length i with probability pi, and then sampling an
edge from Gi.

Let Q = 1 · p1 + 2 · p2 + . . .+K · pK , and for each i ∈ {1, . . . ,K} define qi = i·pi
Q . It is

easy to see that the qi’s form a probability distribution. Now we may define the new gadget
G′ as follows:
1. Sample a length i with probability qi.
2. Sample (x, y) ∼ Gi.
3. Pick an arbitrary shortest path x = x0, x1, . . . , xi = y through the hypercube {−1, 1}K .
4. Output a uniformly random edge (xj , xj+1) from this path.
Note that G′ only uses length-one edges. Let G′i denote the distribution of G′ conditioned
on i being sampled in the first step. (Note that G′i is defined in a way that is different from
the way Gi is defined.)

Let A : {−1, 1}K → {−1, 1} be any assignment. Then

uval(A;G) =
K∑
i=1

pi · uval(A;Gi), and uval(A;G′) =
K∑
i=1

qi · uval(A;G′i).

We can relate uval(A;G′i) to uval(A;Gi) as follows: if A assigns different values to the
endpoints of the edge (x, y) ∼ G, then on any shortest path x = x0, x1, . . . , xi = y through
the hypercube {−1, 1}K , A must assign different values to at least one of the edges (xj , xj+1).
As a result, every time A errs on Gi, it must err at least a (1/i)-fraction of the time on G′i.
This means that:

uval(A;G′i) ≥
uval(A;Gi)

i
. (1)

In the case when A is a dictator function, Equation (1) becomes an equality. This is because
x = x0, x1, . . . , xi = y is a shortest path between x and y through the hypercube {−1, 1}K . If
A assigns the same values to x and y, then it will assign the same values to all of x0, x1, . . . , xi.
If, on the other hand, it assigns different values to x and y, then it will assign different values
to the endpoints of exactly one edge (xj , xj+1).
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Now we can use this relate uval(A;G′) to uval(A;G):

uval(A;G′) =
K∑
i=1

qi · uval(A;G′i)

≥
K∑
i=1

(
i · pi
Q

)
· uval(A;Gi)

i

= 1
Q

K∑
i=1

pi · uval(A;Gi)

= 1
Q

uval(A;G). (2)

Here the inequality follows from the definition of qi and Equation (1). As Equation (1) is an
equality in the case when A is a dictator function, we have that uval(A;G′) = 1

Quval(A;G) in
this case.

Let A ∈ R(Hadk) maximize val(A;G′), and let di be any dictator function. Then

s′

c′
= uval(A;G′)

uval(di;G′)
≥

1
Quval(A;G)
1
Quval(di;G)

= uval(A;G)
uval(di;G) ≥

s

c
.

Here the first inequality is by Equation (2) (and the fact that it is an equality for dictators),
and the second inequality follows from the fact that uval(A,G) ≥ s and uval(di,G) = c. J

2.5 Linear programs
One of the key insights of the paper [20] is that optimal gadgets (as per Definition 22) can
be computed by simply solving a linear program. Fortunately, the same holds for computing
optimal gadgets as per Definition 32. In our case, the appropriate linear program (taking
into account Proposition 35) is:

max s

s.t. uval(A;G) ≥ s, ∀A ∈ R(Hadk),
G is a gadget supported on edges of length one.

As written, this linear program has an (uncountably) infinite number of constraints, but
this can fixed by suitably discretizing the set R(Hadk). This is not so important for us, as
even after performing this step, the linear program is simply too large to ever be feasible in
practice. What is important for us is that we can take its dual; doing so yields the following
linear program:

I Definition 36. The dual LP is defined as

min s

s.t. Pr
A∼A

[A(x) = A(y)] ≤ s, ∀ edges (x, y) of length one, (3)

A ∈ R(Hadk). (4)

The dual linear program shows us that we can upper-bound the soundness of any gadget
with the value s by exhibiting a distribution on assignments in R(Hadk) which passes each
length-one edge with probability at least s. Moreover, strong LP duality tells us that the
optimum values of the two LPs are the same. Hence, we can prove a tight upper bound by
exhibiting the right distribution. We do this in Section 3 for gadgets reducing Max-Had3 to
Max-2-Lin(2).
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2.6 The Had3 gadget
In this section, we will prove some structural results about the hypercube {−1, 1}8 which
are relevant to any Had3-to-2-Lin(2) gadget. The results of this section will be useful for
Section 3.

Given a string x ∈ {−1, 1}n and subset of strings B ⊆ {−1, 1}n, we define the distance
of x to B as dH(x,B) := miny∈B dH(x, y).

I Proposition 37. The vertex set V = {−1, 1}8 can be partitioned as V = V0 ·∪V1 ·∪V2, in
which V0 is the set of primary variables, and Vi = {x ∈ V | dH(x, V0) = i}, for i = 1, 2.

I Proposition 38. |V0| = 16, |V1| = 128, and |V2| = 112.

I Proposition 39.
Each x ∈ V0 has eight neighbors in V1.
Each x ∈ V1 has one neighbor in V0 and seven neighbors in V2.
Each x ∈ V2 has eight neighbors in V1. Furthermore, there are four elements of V0 which
are Hamming distance two away from x.

I Proposition 40. Let f ∈ V2, and let g1, g2, g3, and g4 be the four elements of V0 which
are Hamming distance two away from f . Then for any x ∈ {−1, 1}3, three of the gi’s have
the same value and one has a different value, and f(x) = sign(g1(x) + g2(x) + g3(x) + g4(x)).

Proof of Propositions 37, 38, 39, and 40. In this proof, we will take the viewpoint of V
as the set of 3-variable Boolean functions. The primary variables are of the form ±χS , where
S ⊆ [3]. There are 16 such functions, and so |V0| = 16.

Let f ′ differ from one of the primary variables on a single input. From above, it must be
at least distance 3 from any of the other primary variables. This immediately implies that
f ′’s seven other neighbors are in V2. There are 16 · 8 = 128 distinct ways of constructng f ′,
and so |V1| = 128.

This leaves 256−16−128 = 112 variables in V not yet accounted for. We will now show a
method for constructing 112 different elements of V2; by the pigeonhole principle, this shows
that V can be partitioned as Proposition 37 guarantees. Given three primary variables b1χS1 ,
b2χS2 , and b3χS3 , where b1, b2, b3 ∈ {−1, 1}, set b4 := −b1 · b2 · b3 and S4 := S1∆S2∆S3.
Consider the function f : {−1, 1}3 → {−1, 1} defined as

f(x) := sign (b1χS1(x) + b2χS2(x) + b3χS3(x) + b4χS4(x)) .

Our claim is that f is distance-2 from each of the biχSi ’s. First, to see that this sign(·) is
well-defined, note that by definition,

∏4
i=1 biχSi(x) = −1 for all x ∈ {−1, 1}3. As a result,

for any x, three of the biχSi(x)’s have the same value, while the other one has a different
value. This means that

4∑
i=1

biχSi(x) = 2 · sign
( 4∑
i=1

biχSi(x)
)
.

for all x. Thus, the correlation of any of the biχSi ’s with f is

E
x

[f(x) · biχSi ] = 1
2 E

x

[( 4∑
i=1

biχSi(x)
)
· biχSi

]
= 1

2 .

In other words, Prx[f(x) = biχSi ] = 3
4 for each i ∈ {1, . . . , 4}.
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There are 8 neighbors of f ; each biχSi neighbors two of them. As a result, all of f ’s
neighbors are in V1. In addition, since they are neighbors to the biχSi ’s, they can’t be
neighbors for any of the other primary variables. This means that the only variables in V0
that f is distance 2 from are the biχSi ’s.

There are 2 ·
(8

3
)

= 112 ways of selecting the biχSi ’s. As there are only 112 variables in V
which are not in either V0 or V1, all of the remaining variables in V must be contained in V2,
and they must all be generated in the manner above. J

I Proposition 41. Let B = sat(Had∗3). Then

Pr
x

[dH(x, B) = 0] = 1
16 , Pr

x
[dH(x, B) = 1] = 1

2 , and Pr
x

[dH(x, B) = 2] = 7
16 ,

where x is a uniformly random element of {−1, 1}8.

Proof. This can be proven using a proof similar to Proposition 38. Alternatively, we can
just show a direct correspondence between the setting here and the setting in Proposition 38,
as follows.

The input to Had∗3 is a set of bits {xS}S⊆[k], which can also be thought of as the function
f : P({1, 2, 3}) → {−1, 1} in which f(S) := xS . The satisfying assignments are then any
function of the form S → b · χS(x), where b ∈ {−1, 1} and x ∈ {−1, 1}3 are both fixed. For
a string x ∈ {−1, 1}3, let α(x) be the corresponding set, i.e. α(S)i = −1 if and only if
i ∈ S. For any function f : P({1, 2, 3}) → {−1, 1}, we can associate it with the function
α(f) : {−1, 1}3 → {−1, 1} defined by α(f)(x) := f(α(x)) for all x. Then α maps any
satisfying assignment to Had∗3 into one of the primary variables in V0, and more generally,
dH(f,B) = i if and only if α(f) ∈ Vi. The proposition therefore follows by applying
Proposition 38 and by noting that 16

256 = 1
16 ,

128
256 = 1

2 , and
112
256 = 7

16 . J

I Proposition 42.
1. Let f, g ∈ V0 be a pair of distinct affine functions. Then either dH(f, g) = 8, or

dH(f, g) = 4.
2. For any x, y ∈ {−1, 1}3, x 6= y, bx, by ∈ {−1, 1}, the number of functions f ∈ V0 such that

f(x) = bx is 8, and the number of functions f ∈ V0 such that f(x) = bx and f(y) = by is
4.

Proof. Proof of (1): Let f = bfχS , and g = bgχT . Then E[fg] = bfbg E[χS∆T ] where ∆ is
the symmetric difference of two sets. If f = −g, then clearly dH(f, g) = 8. Now we assume
that f 6= ±g, and therefore S 6= T . Then E[χS∆T ] = 0. This completes the proof.

Proof of (2): Consider function f(x) = a0 + a1x1 + a2x2 + a3x3. Construct a linear
system where a0, a1, a2, a3 are the variables and f(x) = bx and f(y) = by are the constraints.
The result follows from working out the size of the solution space. J

2.7 Reducing to Max-Cut
I Definition 43. Let ( 6=) : {−1, 1}2 → {0, 1} be the inequality predicate, i.e. ( 6=)(b1, b2) = 1
iff b1 6= b2 for all b1, b2 ∈ {−1, 1}. The Max-Cut CSP is the special case of the Max-( 6=) CSP
in which every constraint C = ((x1, b1), (x2, b2)) satisfies b1 = b2 = 1. In other words, every
constraint is of the form “x1 6= x2”.

I Proposition 44. For some predicate φ, suppose G is (c, s)-generic gadget reducing Max-φ
to Max-2-Lin(2). Then there exists a (c′, s′)-gadget reducing Max-φ to Max-Cut satisfying

s′

c′
= s

c
.
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Proof. Suppose the vertex set of G is V = {−1, 1}K . Let G′ be the gadget which operates
as follows:
1. With probability 1− 1

2K−1 , pick x ∈ {−1, 1}K and output the constraint “x 6= −x”.
2. Otherwise, sample C ∼ G. If C is of the form “x 6= y”, output “x 6= y”. If C′ is of the form

“x = y”, output “x 6= −y”.
Any folded assignment A fails G’ with probability at most 1

2K−1 . Any assignment A which is
not folded fails G’ with probability at least 1

2K−1 . As a result, we can always assume that
any assignment is folded.

Now, if A is folded, then for any x, y ∈ {−1, 1}K , A(x) = A(y) if and only if A(x) 6=
A(−y). As a result, uval(A;G′) = uval(A;G)/2k−1. Thus, c′ = c/2k−1, s′ = s/2k−1, and so
s′/c′ = s/c. J

3 The factor-11/8 gadget and its optimality

In this section, we prove the following main theorem.

I Theorem 45. There is a
( 1

8 ,
11
64
)
-gadget reducing Had3 to 2-Lin(2). By a simple padding

argument, this implies that for any C < 11
8 , it is NP-hard to achieve a factor-C approximation

for both the Max-2-Lin(2) and the Max-Cut CSPs.
Furthermore, the value of the LP in (3) is 11

64 . This means that for every (c, s)-gadget
reducing Max-Had3 to Max-2-Lin(2), s

c ≤
11
8 . In other words, the gadget we construct is

optimal among gadget reductions from Chan’s 7-ary Hadamard predicate.

The result of NP-hardness for Max-2-Lin(2) and Max-Cut follows from discussions in
Section 2. We now focus on the gadget construction part. First, we give the construction
of our

( 1
8 ,

11
64
)
-gadget reducing Had3 to 2-Lin(2). Recall that the set of variables in our

gadget is the set of Boolean functions on 3 variables. Let V0 := {±χS}S⊆[k], V1 be the set
of 3-variable Boolean functions that are at distance 1 from some function in V0, and V2 be
those at distance 2 from some function in V0.

We will assign a non-negative weight to each constraint in the gadget. Our gadget will
then sample each constraint with probability equal to its weight normalized by the weight
of the entire gadget. As argued in Proposition 35, the gadget will only use constraints on
functions at distance 1. For f, g ∈ V with dH(f, g) = 1, the weight of the edge {f, g} is 5 if
and only if either f ∈ V0 or g ∈ V0, and otherwise the weight is 1. The total weight of the
edges in G is 5× 128 + 896 = 1536.

To prove completeness, the fact that the dictators pass with probability 7
8 follows

immediately from the fact that G only uses edges of length one. The soundness is proved by
case analysis on the effect of different partial assignments based on the structure of the gadget.
Since there are no edges between variables in V1, whenever we have a partial assignment to
the variables in V0 and V2, we can complete it optimally by giving assignments greedily to
variables in V1. We then argue that given any folded partial assignment to variables in V0,
there is some greedy heuristics for assigning values to variables in V2 that always achieves
optimum.

To establish optimality of our gadget, we construct an optimal solution to the dual LP
given in (3). Our goal is to construct A ∈ R(Had3), i.e. a folded distribution of assignments
which is random on the primary variables. For i ∈ {0, 1, 2}, denote by Ri(Had3), the set of
distributions Ai such that over a random assignment A ∼ Ai, the string

(
{A(χS)}S⊆[k]

)
is

distributed like a uniformly random element of {0, 1}8 that is at distance i from satisfying
the Had3 predicate. We construct three separate distributions A0, A1, and A2 with the
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property that Ai ∈ Ri(Had3) for each i ∈ {0, 1, 2}. Then, we set A = 1
16A0 + 1

2A1 + 7
16A2.

We study the value of A0, A1 and A2 on edges between V0 and V1, and edges between V1
and V2, and show that the values of A on both sets of edges are 53

64 . We complete the proof
by noting that 1− 53

64 = 11
64 , the number guaranteed by the theorem.

A complete proof of Theorem 45 can be found in Section 3 and 4 of the full paper.

4 A candidate factor-3/2 hardness reduction

Herein we present an interesting problem concerning analysis of Boolean functions. We
make a conjecture about its solution which, if true, implies NP-hardness of factor-( 3

2 − δ)
approximating 2-Lin(2) for any δ > 0.

I Definition 46. Let g : {−1, 1}n → {−1, 1} be an odd function (i.e., g(−x) = −g(x)). The
Game Show, played with Middle Function g, works as follows. There are two players: the
Host and the Contestant. Before the game begins, the Host secretly picks a uniformly random
monotone path π from (1, 1, . . . , 1) to (−1,−1, . . . ,−1) in the Hamming cube. (We say that a
path is monotone if at each step, a 1 is changed to a −1. Equivalently, π is a uniformly random
permutation on [n].) The Host also secretly picks T ∼ Binomial(n, 1

2 ). We define the secret
half-path to be the sequence of the first T edges along π: (x0, x1), (x1, x2), . . . , (xT−1, xT ).
Note that xT is uniformly distributed on {−1, 1}n.

The Game now begins, with the current time being t = 0, the current point being
x0 = (1, 1, . . . , 1), and the current function being g̃ = g. (The current function will always be
±g.) At each time step t = 0, 1, 2, . . . , the Host asks whether the Contestant would like to
negate the current function, meaning replace g̃ with −g̃. If the Contestant does not negate
the current function there is no cost. However, if the Contestant elects to negate the current
function, the Contestant must pay a cost of w(t) := 1

(1−t/n)2 . After the Contestant makes the
decision, the Host reveals to the Contestant what the (t+ 1)-th point on the secret half-path
is, and increases the time by 1.

As soon as time T is reached, the Game ends. At this instant, if g̃(xT ) 6= 1, then the
Contestant incurs a further cost of w(T ). (It’s as though the Contestant is now obliged
to negate g̃.) Thus one can think of the Contestant’s goal throughout the Game as trying
to ensure that g̃(xT ) will equal 1, while trying to minimize the total cost incurred by all
negations.

We define cost(g) to be the least expected cost that a Contestant can achieve when
the Game Show is played with Middle Function g. For g : {−1, 1}n → {−1, 1} and
“negation pattern” b ∈ {−1, 1}n, we write g+b to denote the function defined by g+b(x) =
g(b1x1, . . . , bnxn).

Roughly speaking, our conjecture about the Game Show is that for every odd g, the
average value of cost(g+b) over all b is at least 3

2 . To be precise, we need to be concerned
with averaging over merely pairwise-independent distributions on b.

I Game Show Conjecture. Let g : {−1, 1}n → {−1, 1} be odd and let D be any distribution
on {−1, 1}n which is pairwise-independent and symmetric (meaning PrD[b] = PrD[−b]).
Then Eb∼D[cost(g+b)] ≥ 3

2 − on(1).

Our motivation for making the Game Show Conjecture is the following result:

I Theorem 47. Suppose the Game Show Conjecture is true. Then it is NP-hard to approx-
imate 2-Lin(2) (and hence also Max-Cut) to factor 3

2 − δ for any δ > 0.



J. Håstad, S. Huang, R. Manokaran, R. O’Donnell, J. Wright 357

The proof of the above theorem can be found in the complete version of the paper.
We remark that given a Middle Function g, in some sense it is “easy” to determine the

Contestant’s best strategy. It can done with a dynamic program, since the Game Show is
essentially a 2-Lin(2) instance on a tree graph. Nevertheless, we have been unable to prove
the conjecture. A discussion about some of our efforts in proving the conjecture can be found
in the full paper.

5 Limitations of gadget reductions

In this section, we show a limitation to proving inapproximability using gadget reductions
from balanced pairwise-independent predicates: that is, predicates φ that admit a set
S ⊆ sat(φ) satisfying Property 2 in Definition 12. We show that gadget reductions from φ to
2-Lin(2) can not prove inapproximability larger than a factor-2.54 for the deletion version.
Note that this applies to the Hadk predicates and to a broader class of predicates that do
not necessarily admit a natural group operation.

I Theorem 48. Let G be a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2), where φ
admits a balanced pairwise-independent set. Then

s

c
≤ 1

1− e−1/2 ≈ 2.54.

Proof. As before, K is the number of satisfying assignments of φ. Recall that the vertex set
of G is V = {−1, 1}K . Further, via Propositions 27 and 28, we need only consider folded
assignments to these variables, and we can assume G only uses (=)-constraints. Finally,
via Proposition 35, we can assume that every (=)-constraint used by G is between two
variables x and y which are Hamming distance one from each other. Let P be the set of
generic primary variables, let −P be their negations, and let P± = P ∪ (−P ) denote the
union of the two. Since φ is balanced pairwise-independent, we have a set S ⊆ [K] so that
for i picked uniformly at random from S, Pri[ui = vi] = 1/2 for distinct primary variables
u, v ∈ P .

Define the similarity between x and y to be sim(x, y) := Pri[xi = yi] and set sim(x, P±) :=
maxy∈P± sim(x, y). Pairwise-independence allows us to claim that any variable x is strongly
similar (i.e. has similarity > 3

4 ) with at most one variable y ∈ P±; define y to be x’s closest
primary variable.

I Fact 49. For any x ∈ V , if sim(x, y) > 3
4 for some y ∈ P±, then sim(x, y′) < 3

4 for all
other y′ ∈ P±.

Proof. If x has sim(x, y1) > 3
4 and sim(x, y2) ≥ 3

4 for y1, y2 ∈ P±, then

sim(y1, y2) ≥ sim(y1, x) + sim(x, y2)− 1 > 1
2 ,

contradicting the assumption on φ. J

This fact allows us to design the following “threshold-rounding” procedure to construct
a distribution A ∈ Rgen(φ). Let C = 2

e2−e3/2 , and D be a distribution over [3/4, 1] with
probability density function D(t) = C · e2t, for t ∈ [3/4, 1].
1. Pick a random assignment to the primary variables.
2. Pick a number t ∼ D. For any variable x ∈ V , call x type 1 if sim(x, P±) > t and type 2

otherwise.

APPROX/RANDOM’15
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3. Assign all type-1 variables the value of their closest primary variable.
4. Pick a uniformly random dictator di and set all the type-2 variables to agree with this

dictator.
5. Output the resulting assignment.
Note that the assignments are folded and are random on the primary variables. We analyse
the performance of this assignment. Let (x, y) be an edge in {−1, 1}K of Hamming weight
one. If both sim(x, P±), sim(y, P±) ≤ 3

4 , then regardless of the value of t, x and y will
both always be type-2 variables, in which case A violates the edge between them with the
probability of a random dictator, which is 1

K ≤
1

1−e−1/2 · 1
K .

On the other hand, suppose WLOG that sim(x, P±) > sim(y, P±) and that sim(x, P±) >
3
4 . If we set s := sim(y, P±), then sim(x, P±) = s + 1

K . Because y is distance one from x,
s ≥ 3

4 . Not only that, if y has a closest primary variable, then that variable is the same as
x’s closest primary variable (this is by Fact 49). Now, to calculate the probability that A
violates (x, y), there are three cases:
1. If t ∈

[ 3
4 , s
)
, then x and y are assigned the value of the same variable in P±, so (x, y) is

never violated in this case.
2. If t ∈

[
s, s+ 1

K

)
, then y’s value is chosen according to a uniformly random dictator

assignment, meaning that it is a uniformly random ±1-bit. independent from x’s value
In this case, (x, y) is violated with probabiltiy 1

2 .
3. If t ∈

[
s+ 1

K , 1
]
, then both x and y are assigned values according to a random dictator,

in which case (x, y) is violated with probability 1
K .

In total,

Pr[A violates (x, y)] = 1
2 · Pr

t∼D
[t ∈ [s, s+ 1/K)] + 1

K
· Pr
t∼D

[t ∈ [s+ 1/K, 1)]

= 1
2

∫ s+ 1
K

s

Ce2tdt+ 1
K

∫ 1

s+ 1
K

Ce2tdt

≤ 1
2 ·

Ce2s+2/K

K
+ 1
K

∫ 1

s+ 1
K

Ce2tdt

= Ce2

2K = 1
1− e−1/2 ·

1
K
,

as promised. Here the inequality follows from the fact that e2t is an increasing function. As
G only uses length-one edges, c = 1

K . We have just shown that uval(A;G) ≤ 1
1−e−1/2 · 1

K .
Because A ∈ Rgen(φ), we conclude that s

c ≤
1

1−e−1/2 . J

6 Conclusion

As mentioned, we view our factor- 11
8 NP-hardness result more as a proof of concept, illustrating

that the longstanding barrier of factor- 5
4 NP-hardness for Max-Cut/2-Lin(2)/Unique-Games

can be broken. There are quite a few avenues for further work:
Derive a better NP-hardness result for 2-Lin(2) by reduction from Had4. As one can
always embed a Had3-based gadget into a Had4-based gadget, this will always yield a
hardness of at least 11

8 . But presumably the optimal Had4-based gadget will do slightly
better.
Since our analysis of the optimal Had3 gadget is already somewhat complicated, it might
be challenging to analyze the Had4 case explicitly. A weaker but more plausible goal
would be to prove (perhaps indirectly) that there exists a δ0 > 0 such that the optimal
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Had4 gadget achieves factor-( 11
8 +δ0) NP-hardness. This would at least definitely establish

that 11
8 is not the “correct answer” either.

Prove the Game Show Conjecture which would yield the improved NP-hardness factor of
3
2 . It may also be simpler to try to prove a non-optimal version of the conjecture, yielding
some hardness factor better than 11

8 but worse than 3
2 .

For Max-Cut, our work establishes NP-hardness of (ε, Cε)-approximation for any C < 11
8 ,

but only for ε ≤ ε0 where ε0 is some not-very-large constant (see full version for details).
It would be nice to get a Max-Cut gadget yielding a larger ε0, like the ε0 = 1

8 we have for
2-Lin(2).
A recent result of Gupta, Talwar, and Witmer [12] showed NP-hardness of approximating
the (closely related) Non-Uniform Sparsest Cut problem to factor- 17

16 , by designing a
gadget reduction from the old ( 4

21 ,
5
21 )-approximation hardness of Håstad [13]. A natural

question is whether one can use ideas from this paper to make a direct reduction from
Had2 or Had3 to Non-Uniform Sparsest Cut, improving the NP-hardness factor of 17

16 .
We are now in the situation (similar to the situation prior to [18]) wherein the best
NP-hardness factor we know how to achieve for 2-Lin(q) (or Unique-Games) is achieved
by taking q = 2. In fact, we don’t know how to achieve an NP-hardness factor better
than 5

4 for 2-Lin(q) for any q > 2, even though 2-Lin(q) is presumably harder for larger q.
Can this be remedied?
In light of the limitations described in Section 5, it makes sense to seek alternative
methodology of establishing improved NP-hardness for 2-CSPs. An example showing that
this is not at all hopeless comes from the decade-old work of Chlebík and Chlebíková [8],
which shows NP-hardness of approximating 2-Sat(-Deletion) to factor 8

√
5− 15 ≈ 2.8885.

Their result is essentially a small tweak to the Vertex-Cover hardness of Dinur and Safra [9]
and thus indeed uses a fairly radical methodology for establishing two-bit CSP-hardness,
namely direct reduction from a specialized Label-Cover-type problem.

Acknowledgments. The authors would like to warmly thank Per Austrin for his assistance
with computer analysis of the 11

8 -gadget.
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