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Abstract
The all-terminal reliability polynomial of a graph counts its connected subgraphs of various sizes.
Algorithms based on sequential importance sampling (SIS) have been proposed to estimate a
graph’s reliability polynomial. We show upper bounds on the relative error of three sequential
importance sampling algorithms. We use these to create a hybrid algorithm, which selects the
best SIS algorithm for a particular graph G and particular coefficient of the polynomial.

This hybrid algorithm is particularly effective when G has low degree. For graphs of average
degree ≤ 11, it is the fastest known algorithm; for graphs of average degree ≤ 45 it is the
fastest known polynomial-space algorithm. For example, when a graph has average degree 3, this
algorithm estimates to error ε in time O(1.26nε−2).

Although the algorithm may take exponential time, in practice it can have good performance
even on medium-scale graphs. We provide experimental results that show quite practical per-
formance on graphs with hundreds of vertices and thousands of edges. By contrast, alternative
algorithms are either not rigorous or are completely impractical for such large graphs.
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1 Introduction

Let G be a connected undirected multi-graph with vertex set V and edge set E. We define
Rel(p), the all-terminal reliability polynomial of G, to be the probability that the graph
remains connected when edges are removed independently with probability p. This function
is a polynomial which can be factored as

Rel(p) =
m∑
i=0

Ni(1− p)ipm−i

where Ni is the number of connected subgraphs of G with i edges. This polynomial has
various physical applications, for example determining the reliability of a computer network
or power grid.
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Exactly computing the reliability polynomial is known to be #P-complete [20]. The
best-known algorithm at this time is due to [3]; it runs in 2n time and 2n space, or 3n time
and polynomial space. While this is a great theoretical achievement, and works well on small
graphs (n ≈ 40), it is completely impractical for larger graphs.

In this paper, we give an algorithm targeting sparse graphs (graphs with average degree
α = O(1)), running in polynomial space and exponential time, to estimate the reliability
polynomial coefficients Nt to some relative error ε. When α is a small constant, the algorithm
may be significantly faster than [3]. When α ≤ 11, this algorithm runs faster than the
exponential-space variant of [3], plus our algorithm is polynomial-space; in fact, our algorithm
is the fastest known method in this regime. When α ≤ 45, it runs faster than the polynomial-
space variant of [3]. Furthermore, our algorithm can be easily parallelized — absolutely no
communication or memory is required between different processing elements.

Furthermore, in practice this algorithm seems to scale much better than the theoretical
guarantees would imply. We have conducted extensive experiments on relatively large graphs,
up to hundreds of vertices. The algorithm can achieve a 10% error rate on all coefficients
after a minutes’ run-time. This put real-world networks within reach. By contrast, the
existing algorithms such as [3] simply cannot be run on such large graphs — these algorithms
will use more space or time than exists on any computer.

1.1 Background

A variety of approaches have been proposed to estimate the reliability polynomial, or fragments
of it, for a graph. Some algorithms seek to compute Rel(p0) for a fixed probability p0, such
as [10] or [16]. The problem of estimating Rel(p0) is related to the problem of estimating
the reliability polynomial coefficients Ni, but they are not equivalent especially in terms of
evaluating the relative error. For example, Karger’s algorithm [16] gives a fully-polynomial
relative approximation scheme (fpras) for the problem of estimating 1− Rel(p0).

Other algorithms, for example [19], [20] can estimate Nt in polynomial time, but only for
a narrow range of value of t, such as t = O(1) or t = m− n−O(1). [5] gives an algorithm
to transform a given dense graph G into a relatively sparse graph G′, with only O(n logn)
edges, which has approximately the same reliability. There is no known polynomial-time
algorithm to estimate arbitrary coefficients.

Many heuristic algorithms have been studied to approximate the all-terminal reliability.
For example, [4] discusses an algorithm based on Monte-Carlo-Markov-Chain sampling of
connected subgraphs. For the special case of directed acyclic graphs, [18] describes an
algorithm based on Monte-Carlo sampling for the closely related problem of estimating
s − t connectivity. Algorithms based on sequential importance sampling are described in
[2],[14],[8]. While these approximations can be effective in practice, typically they do not have
rigorous complexity bounds. This can be especially problematic for estimation algorithms: if
the algorithm is run for too few iterations, then it may produce a wrong estimate despite
outwardly appearing to run successfully.

1.2 The Tutte polynomial

The reliability polynomial is a special case of the Tutte polynomial, a very powerful graph
invariant. While the reliability polynomial counts only the connected subgraphs of G, the
Tutte polynomial also encodes information about the decomposition of G into its connected
components.
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In [3], Bjorklund et al. gave an algorithm running in 2n time and space, or time 3n
and polynomial space, to exactly compute all the Tutte polynomial coefficients. The
Tutte polynomial can be specialized to compute the reliability polynomial, and in fact the
algorithm of [3] provides the fastest algorithm, in general, for computing the reliability
polynomial. Under appropriate complexity-theoretic assumptions, the Tutte polynomial
cannot be computed in time exp(o(n)) [9], or even approximated in polynomial-time [12]. (It
is possible that the reliability polynomial may be a tractable special-case, though).

For classes of sparse graphs, alternative algorithms may be still faster. For example,
the algorithm of Bjorklund et al. itself can be specialized for graphs of maximum degree
∆; on such a graph, the algorithm has running time exp((2∆+1 − 1)1/(∆+1)n+ o(1)). Other
algorithms have been proposed to regular graphs (such as [7]) or bounded-degree graphs
(such as [11]), although these appear to be dominated by the algorithm of [3].

The algorithm of Bjorklund et al. represents a breakthrough from the theoretical point of
view, in reality is impractical graphs of even moderate size. For example, experiments in [3]
describe a computation time of four days to solve a graph with 22 vertices.

1.3 Our contribution

In this paper, we will propose a new algorithm to estimate the reliability polynomial
coefficients Nt for graphs whose average degree α is smal. The running time of this algorithm
will have the form (χα+oα(1))n/ε2, where ε is the desired relative error and χα is a parameter
depending on α. The space required by the algorithm is polynomial in all parameters. This
algorithm has a number of advantages over the existing ones, both from a theoretical and a
practical point of view.

First, the theory: for small α, the algorithm may be significantly faster than Bjorklund
et al. or any other known algorithm. As we will see, this algorithm will be faster than any
known algorithm for α ≤ 11. At this point, the algorithm of Bjorklund et al. becomes faster,
although the latter requires exponential space. Our algorithm will be faster than any known
polynomial-space algorithm for α ≤ 45.1 Note that we are considering the most general class
of sparse graphs, while other algorithms of [3], [7], [11] were specialized to more restrictive
classes of sparse graphs (most prominently, bounded-degree).

Second, in practice this algorithm seems to scale much better than the theoretical
guarantees would imply. We have conducted extensive experiments on medium-scale graphs,
up to hundreds of vertices. The algorithm can achieve a 10% error rate on all coefficients after
a minutes’ run-time. This puts real-world networks within reach, whereas the alternative
exponential-time algorithms would never finish their computations on such large graphs.

There is a synergy between the theoretical analysis and the practical performance. Certain
key parameters must be tuned accurately for our algorithm to guarantee good performance.
These parameters are difficult to set empirically, and if they are set incorrectly, the algorithm
can appear to run perfectly well but nevertheless return inaccurate results. By setting these
parameters in accordance with the worst-case analysis, we tend to achieve results that are
accurate in practice. This is despite the fact that the worst-case analysis, for such large
graphs, is not directly relevant to practical computations.

1 This is likely a conservative estimate of the worst-case behavior of our algorithm; an accurate estimate
would require solving some open problems in extremal graph theory.
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2 General approach

The algorithm we propose is based on sequential-importance sampling (SIS). Three SIS
approaches were proposed in [2],[14],[8]. Experimental evidence showed that these algorithms
could give quite effective estimates, at least in certain parameter ranges.

The SIS algorithms can be divided into two types. The first, which we refer to as
top-down, start by removing edges from the initial graph G and counting the connectivity of
the resulting subgraph. The second, which we refer to as bottom-up, start from a spanning
tree of G and add edges. On any particular graph, the top-down algorithms tend to have
better relative variance when the t is large; the bottom-up algorithms tend to have better
relative variance when t is small. (Recall Nt is the coefficient of interest.)

There is a natural strategy to combine the strengths of these algorithms: for any given
graph G and any desired coefficient Nt, run all three algorithms in parallel and select the one
which gives the best estimate. Unfortunately, there is not any generic method to determine
which statistic has lowest variance, and in fact exponentially many samples may be required
to calculate a sample variance accurately. Thus, exponential time might be incurred in simply
accumulating enough statistical information in order to select the appropriate algorithm.

In this paper, we compute upper bounds on the precision of the three algorithms. These
upper bounds play two roles. First, they allow us to find upper bounds on the running time
required to achieve any desired level ε of relative accuracy. The main probabilistic tool we
use in this paper is to estimate the relative variance of the estimate

rv(F ) = E[F 2]/E[F ]2.

As a consequence of the Chebyshev inequality, one achieves the desired precision with
high probability after extracting Θ(rv(F )/ε2) independent samples. Hence, if we can bound
the relative variance of any of the SIS algorithms as (χ+o(1))n, this implies that the running
time of the resulting hybrid algorithm will also be (χ + o(1))n/ε2. We will see that for a
fixed value of the average degree α, we can achieve good bounds on χα.

The second, less-obvious function of these upper bounds, is that they allow us to create a
hybrid algorithm, which computes the upper bounds and publishes the statistic with smallest
upper-bound on precision. That is, for any fixed graph G, these bounds give us a sensible
strategy on which coefficients to estimate with the top-down algorithm and which coefficients
to estimate with a bottom-up algorithm.

In practice, these SIS algorithms can be far more accurate than the worst-case analysis
would predict. We will examine some examples of this in Section 5. Thus, we can evaluate
this hybrid algorithm empirically, and we see that it can give useful estimates for graphs
of moderate size (hundreds of vertices), while the exact exponential-time algorithms are
impractical for tens of vertices.

Once we estimate Nt, we can automatically estimate Rel(p) for any fixed value of p. For,
if we estimate N̂t up to relative error ε for all t, we may then estimate

R̂el(p) =
∑
i

N̂ip
i(1− p)m−i (1)

and we note that all the summands in (1) are positive.
Despite the advantages of our algorithm, we note that it is ultimately much more

specialized than that of Bjorklund et al., for three reasons. First, we only estimate the
coefficients instead of computing them exactly, and we do so probabilistically instead of
deterministically. Second, this algorithm applies only to the reliability polynomial, which is
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a special case of the Tutte polynomial. Third, the complexity of our algorithm is exponential
in the number of edges, and hence for dense graphs it is slower.

2.1 Notation

We are given an connected undirected graph G, which may have multiple edges or self-loops.
We will use m,n to refer to the number of edges and vertices in the graph G. Our algorithm
seeks to estimate Nt, and t is always the index of the coefficient we are interested in. The
average degree α is given by α = 2m/n. Note that as G is connected, we must have
α ≥ 2− 2/n.

In this paper, we will only be concerned with the case that α is a small constant. Hence,
we will assume throughout that α ≤ Cn, where C is some large fixed constant. Together
with the restriction that α ≥ 1, this implies that any asymptotics in m can be reduced to
equivalent asymptotics in n. We will make this assumption m = Θ(n) throughout this paper.

We let K = m− n+ 1 and let k = t− n+ 1. Note that spanning trees of G have n− 1
edges, and so k counts the distance of t from its maximal value K. This is particularly
useful for algorithms which add edges to spanning trees. We let κ(G) denote the number of
(labelled) spanning trees of G. Note that using the Kirchoff formula, κ(G) can be computed
in polynomial time.

We will frequently use the entropy function in estimating binomial coefficients. To simplify
the notation in these estimates we define l(x) = x ln x. By Stirling’s formula, for any c ∈ [0, 1]
we have

exp(n(−l(1− c)− l(c))− o(1)) ≤
(
n

cn

)
≤ exp(n(−l(1− c)− l(c)) + o(1)) (2)

We will always use the notation β = t/n. Note that β ∈ [1− 1/n, α/2].

2.2 The Kruskal-Katona Theorem

We will frequently need to lower-bound Nt in terms of κ(G). A key technical tool to do so
comes from the Krusal-Katona Theorem [17]. This is a basic combinatorial principle which
gives bounds on the number of objects in a family of sets which is upward-closed. Graph
connectivity has this property, as if a graph H is connected and H ′ ⊇ H then H ′ must be
connected as well. We will use a simplified version of this pricniple, which is slightly less
accurate than the full Kruskal-Katona bound but it adequate for our purposes.2

I Theorem 1 ([17]). Let m′ be the unique integer such that(
m′

K

)
≤ κ(G) <

(
m′ + 1
K

)
.

Then for all t ≥ n− 1 we have

Nt ≥
(

m′

m− t

)
.

2 We contrast our use of the Kruskal-Katona Theorem to that of [1]. [1] uses this bound, or variants of it,
to estimate Nt itself. We use this bound to estimate the error committed by our SIS algorithms, but
these algorithms do not themselves refer to the Kruskal-Katona bounds in any way.

APPROX/RANDOM’15
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We can explain the intuition behind this result. If we completely ignore graph connectivity,
then there are exactly

(
m
m−t

)
subgraphs with t edges. Thus, the Kruskal-Katona Theorem

states that the number of connected subgraphs and the number of subgraphs have a similar
behavior as a function of t.

We will use throughout the notation

γ′ = m′/n

Note that K ≤ m′ ≤ m, so that γ ∈ [α/2− 1− 1/n, α/2].

3 The basic algorithms

We begin by describing two very simple statistics to estimate Nt. These statistics are accurate
for different ranges of the parameter t. We then discuss how to select the best statistic for a
given value of t.

3.1 Top-down algorithm bounds
Let us first consider a top-down estimate, which starts with the original graph and removes
edges until it reaches a disconnected graph. Two such algorithms are discussed in [2], [15],
which use a variety of heuristics to select which edge to remove. These heuristics are somewhat
difficult to analyze, although they are very useful in practice, so for this paper we will consider
a simplified algorithm. The following algorithm, which we refer to as TOPDOWN, has
strictly larger relative variance compared to [2], [15]:
1. Select uniformly at random a subgraph H ⊆ G with t edges.
2. Check if H is connected.
3. If H is connected estimate N̂t =

(
m
t

)
; otherwise estimate N̂t = 0.

Note that this algorithm is not really a “top-down” algorithm any more, since we could
produce H by adding edges as well as removing edges.

The statistic produced by TOPDOWN is clearly an unbiased estimator for Nt.

I Proposition 2. Define

fT = l(α/2)− l(β)− l(γ) + l(β + γ − α/2)

Then TOPDOWN has relative variance exp(n(fT + o(1))).

Proof. TOPDOWN is a Bernoulli random variable with probability Nt/
(
m
t

)
, so it has

relative variance (m
t )
Nt

. By Theorem 1, this is at most (m
t )

( m′
m−t)

. Recalling that t = βn,m =

alphan/2,m′ = γn, e apply Stirling’s formula (2). (We note here that m = Θ(n), so all
asymptotic terms can be reduced to o(n)). This gives the estimate:

rvT ≤ exp(n(fT + o(1)))

J

We note one key difference between this algorithm, based on estimating the reliability
coefficients, and similar algorithms such as [21] which seek to compute the coefficients exactly.
In this case, we are doing a Monte-Carlo estimation of the number of connected subgraphs,
so our algorithm is more efficient when the subgraphs are numerous. Enumerative algorithms,
by contrast, must explore each subgraph individually, and so they are more efficient when
the subgraphs are few.
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3.2 Bottom-up, no edge weighting
The bottom-up algorithm is based on starting with a random spanning tree and adding
edges to it. This type of algorithm is discussed in [8], [14]. In Section 4, we will consider
more sophisticated variants which use add edges with a non-uniform probability. However,
as a warm-up exercise, we consider the following simple algorithm which we refer to as
BOTTOMUP:
1. Choose a spanning tree T uniformly at random from G. (This can be done efficiently as

described in e.g. [22])
2. Choose k = t − n + 1 edges uniformly at random from G − T , and add these edges to

obtain a connected subgraph H ⊆ G.
3. Estimate N̂t = κ(G)(K

k )
κ(H)

Recall that κ(G) can be computed in polynomial time, so this is a polynomial-time algorithm.

I Proposition 3. Define

fB = −l(β − 1)− l(1− α/2 + γ) + l(β − α/2 + γ)

Then algorithm BOTTOMUP is an unbiased estimator with relative variance at most
exp(n(fB + o(1))).

Proof. Let H be a connected subgraph of G with t edges. Then BOTTOMUP selects H
with probability pH = κ(H)

κ(G)(K
k ) . Integrating over all such H, we see that the expected value

of N̂t is given by

E[N̂t] =
∑
H

pH
κ(G)

(
K
k

)
κ(H) =

∑
H

1 = Nt

as desired.
Next, we can estimate

E[N̂t
2
] =

∑
H

pH

(κ(G)
(
K
k

)
κ(H)

)2
= Ntκ(G)

(
K

k

)
EH [1/κ(H)] ≤ Ntκ(G)

(
K

k

)
Hence, the relative variance is given by

rv ≤
Ntκ(G)

(
K
k

)
N2
t

≤
m
(
m′

K

)(
K
k

)(
m′

m−t
)

Applying Stirling’s formula (2), and recalling m = Θ(n), shows that this is at most
exp(n(fB + o(1))), as desired. J

3.3 Hybrid algorithm
Now define the hybrid algorithm which, for any graph G and any desired coefficient t,
computes fT and fB. If fT < fB, then this algorithm outputs TOPDOWN; otherwise it
outputs BOTTOMUP. By Propositions 2, 3, this hybrid algorithm satisfies

rv ≤ exp(nmin(fT , fB) + o(n))

Let us examine how to bound the quantity min(fT , fB) as a function of β, γ. For any
fixed γ, fT is an decreasing function of β and fB is a increasing function of β, reaching

APPROX/RANDOM’15
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extreme values fT = 0 at β = α/2 and fB = 0 at β = 1. Hence the maximum value of
min(fT , fB) occurs at the point where fT = fB .

We seek to maximize fB subject to fT = fB . In general, there is no closed form solution.
However, for any given value of α we can numerically optimize this as follows. Given any
value of γ, there is a unique value β such that fT = fB, which can be found to arbitrary
accuracy via bisection. This essentially reduces the search to a single variable γ. One can
verify that the resulting function fT is unimodal in γ, and hence the maximum value of γ
can be found again by a golden-section search strategy. This allows us to find a value β∗, γ∗
maximizing min(fT , fB) to an arbitrary accuracy. The resulting value χα is the worst-case
for the running time, as a function of α. That is, when α is constant and n→∞, we have
rv = exp(nχα + o(n)) for graphs with average degree ≤ α.

The following table shows bounds on χα for various values of α. Note that unlike
algorithms which restrict to regular or bounded-degree graphs, there is no restriction on the
integrality of α.

α χα α χα

3 1.32 15 2.34
4 1.51 20 2.55
6 1.76 25 2.72
8 1.93 30 2.87
10 2.08 35 2.99

For α ≤ 8, this algorithm is strictly faster than [3]; for α ≤ 35 this algorithm is faster
than the polynomial-space variant of Bjorklund et al. We will improve this still further in
the next section.

4 Bottom-up, edge weighting

We consider a variant of the bottom-up algorithm in which a weighting function is used to
select the edges to add to the spanning tree, as described in [14]. Again without concerning
ourselves with polynomial efficiency, we summarize this algorithm as
1. Select a spanning tree T uniformly at random
2. For i = 1, . . . , k, repeat the following:

3. Randomly select an edge ei to add to T . We use the probability distribution Pi (which
is conditioned on e1, . . . , ei−1, T ) to select the edge ei, and this probability distribution
Pi is given by

Pi(e′) ∝ κ(T ∪ e1 · · · ∪ ei−1 ∪ e′)−ρ

4. Estimate
N̂t = κ(G)P1(e1)P2(e2) . . . Pk(ek)

k!κ(H)

This is a generalization of the algorithm of [14], in that we allow a weighting factor
ρ ∈ [0, 1]. (In the algorithm of [14], ρ = 1). Note that for ρ = 0, there is a uniform
distribution on the new edge ei, and so this reduces to the unweighted bottom-up algorithm
of Section 3.2.

Experimental evidence in [14] suggested that this algorithm had better variance for
estimating Nt for small values of t. In this section, we examine this algorithm rigorously and
show an upper bound which is better than that of Section 3.2.
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For any connected subgraph H ⊆ G, we define the notations for this section:

λH(e) = κ(H ∪ e)/κ(H)

SH =
∑

e∈G−H
λH(e)−ρ

and we define
Hi = T ∪ e1 ∪ · · · ∪ ei−1

where T is the spanning tree selected at step (1) of this algorithm. Thus, we have Pi(e) =
λHi(e)/SHi for i = 1, . . . , k.

We first show that this is an unbiased estimator. Any T, e1, . . . , ek is selected with
probability p = 1

κ(G)P1(e1)P2(e2) . . . Pk(ek). Integrating over T, e1, . . . , ek, we compute the
expected value:

E[N̂t] =
∑

T,e1,...,ek

p× 1
κ(H)k!p

=
∑
H

∑
T⊆H

e1,...,ek∈H−T

1
k!κ(H)

=
∑
H

1
k!κ(H)κ(H)k! = Nt

so the statistic is unbiased. Next, the mean square is given by

E[N̂t
2
] =

∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk
λH1(e1)ρ . . . λHk

(ek)ρ

=
∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk

(κ(H2)
κ(H1)

)ρ(κ(H3)
κ(H2)

)ρ · · · ( κ(H)
κ(Hk)

)ρ
=
∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk
κ(H)ρ

To interpret this quantity, consider the following random process. We select a connected
subgraph H with t edges, uniformly at random among all such subgraphs. Next, we
select a random spanning tree T of H and a random permutation of the remaining edges
e1, . . . , ek ∈ H − T . We then output the random variable R given by

R = SH1 . . . SHk

k!κ(H)1−ρ .

We see now that E[N̂t
2
] ≤ Ntκ(G)E[R], and hence the relative variance of the weighted

bottom-up estimate is given by

rv ≤ Ntκ(G)E[R]
N2
t

≤ κ(G)E[R](
m′

m−t
)

Thus, it suffices to estimate E[R]. We will in fact show an upper bound on R. We begin
with a simple estimate. For any graph H, we have λH(e) ≥ 1. Thus SHi

≤ K − i. Noting
that ρ ≤ 1 and that κ(H) ≥ 1, we have R ≤

(
K
k

)
. This simple estimate leads to the same

bound as in Section 3.2.
Lemma 4 improves on this estimate as follows:

APPROX/RANDOM’15
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I Lemma 4. Let ρ ∈ [0, 1].
Define the function

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx.
Then, for any connected subgraph H ⊆ G with βn edges, we have R ≤ exp(n(fB2 +o(1))),

for

fB2 = max
φ∈[0,α/2−β]

−(1− ρ)
(
l(γ)− l(α/2− 1)− l(1− α/2 + γ)− l(1 + φ) + l(φ)

)
− l(β − 1) + l

(
α/2− 1−Aρ(φ)

)
− l
(
α/2− β −Aρ(φ)

)
Proof. See Appendix B. J

This then implies that the relative variance of the bottom-up algorithm is bounded by
rv = exp((fB2 + o(1))n). Note that to compute fB2 itself requires a numerical maximization
over φ ∈ [0, α/2− β].

As before, for any given α we seek β∗, γ∗ so that the resulting upper bound min(fT , fB2) is
maximized. This expression is too complicated for us to solve in closed form, or even to prove
that all relevant functions have the appropriate smoothness to allow a rigorous numerical
analysis. However, for any fixed ρ ∈ [0, 1] we can approximately solve this numerically. Using
off-the-shelf numerical libraries, we optimize fB2 subject to fT = fB2. We can furthermore
set ρ to minimize the resulting fB2.

For any average degree α, we select an optimal parameter ρ∗. The following table shows
various values of α as well as the corresponding ρ∗ and χα:

α ρ∗ χα α ρ∗ χα

3 0.71 1.26 12 0.84 2.01
4 0.74 1.41 15 0.85 2.15
6 0.79 1.62 20 0.87 2.34
8 0.81 1.78 30 0.89 2.64
10 0.83 1.90 40 0.90 2.87
11 0.83 1.96 45 0.91 2.97

For α ≤ 11, this algorithm is strictly faster than [3]; for α ≤ 45 this algorithm is faster
than the polynomial-space variant of [3].

5 Practical Performance

One key advantage of this algorithm is that it can be used on real-world graphs up to
hundreds of vertices. In this case, the worst-case analysis would indicate exponentially low
accuracy. However, in practice the accuracy may be much better than this.

For our first test case, we generated Erdős-Renyi graphs of average degree 10 and ran the
algorithm as specified in Appendix A. (Qualitatively similar results are seen for other edge
densities). We tabulate the estimated relative error as well as the running time of a single
iteration. For the most part, implementing this algorithm requires only slight modifications
to the codes of [14],[15]; see these for more details. Figure 1 lists the estimated relative error
of this algorithm.

The relative variance is clearly growing exponentially with n, but the rate of growth
(about 1.05n) is much slower than the bound of 1.89n as indicated in the worst-case analysis.
Hence for graphs of moderate size n ≈ 200 this algorithm remains quite practical.
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Figure 1 Relative error for Erdős-Renyi graphs. Note logarithmic vertical scale.
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Figure 2 Relative error for Barabasi-Albert graphs. Note logarithmic vertical scale.

A similar result was seen for Barabasi-Albert random graphs, again of average degree 10,
as shown in Figure 2.

The relative variance is significantly higher in this case, but the rate of increase remains
slowly exponential, about 1.075n.

The running times of these algorithms are relatively modest, and growing at a rate of
about n1.5, as indicated in Figure 3.

Recall that to achieve a relative error ε, we must repeat this algorithm for a number of
samples T = rv× ε−2. In order to achieve a relative error of say 10% on the Erdős-Renyi
graph with n = 150, we would need to run for approximately 200000 iterations; this would
entail a running time of about 300 seconds. (And furthermore this work could be completely
parallelized). Hence this algorithm provides a quite practical method for estimating graph
reliability on medium-scale graphs.

By way of comparison, [13] implemented an optimized version of an algorithm to exactly
compute the Tutte polynomial. This program requires days of computations for graphs with
only ∼ 20 vertices and ∼ 100 edges.
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Figure 3 Running time for a single sample on an Erdős-Renyi graph.

5.1 Possible further improvements
The parameters (specifically, the choice of β) suggested by our worst-case analysis are not
optimal for these sample graphs. By choosing parameters better, we could reduce the error
by orders of magnitude. There seem to be three main reasons these bounds are not tight
in practice. First, the top-down algorithm of [15] is much more accurate than the simple
top-down algorithm we analyze in this paper.

Second, our estimate for the accuracy of the bottom-up algorithm is too conservative.
The bottom-up error should be discounted by a factor of E[1/κ(H)], where H is the subgraph
chosen by the bottom-up algorithm. In the worst case, the expected value of this term
might be very large if some subgraphs H have many spanning trees and some have few. In
practice, all the subgraphs H tend to have about the same number of spanning trees, and so
E[1/κ(H)] is small.

Third, our method of setting the parameter ρ depends on estimating κ(H ∪ e1 · · · ∪ ei)
where H is a subgraph of G and ei are edges in G−H. It is currently an open problem in
graph theory to determine tight bounds in this case. We are forced to use an upper bound
for κ(H ∪ e1 · · · ∪ ei) which is much larger than necessary. This causes us to set ρ to an
excessively large value.

6 Conclusion

We have shown exponential bounds on the relative variance of three SIS algorithms for
estimating the graph reliability polynomial. These bounds are simple computable functions
of G. By choosing the algorithm which minimizes the upper bound, we define a hybrid
algorithm with worst-case relative variance O(χnα). Hence with O(χnα/ε2) work, one can,
with high probability, estimate the graph reliability polynomial to relative error ε. Although
this is exponential, we believe it is the fastest known algorithm for estimating the graph
reliability polynomial when the average degree α is small.

Note that this bound on relative variance depended on bounding the number of spanning
trees of certain sparse graphs. As this is an open problem in graph theory, the bounds we
use are far from tight. It is likely that the true behavior of this algorithm is much better
than the indicated values of χα.
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In practice, these SIS algorithms tend to exhibit exponential relative variance on real-
world graphs [14], [15]; however, the errors increase much slower than the worst-case analysis
predicts. Hence, on many medium-scale graphs (n ≈ 200) these algorithms can give a quite
practical approach to estimate the graph reliability. In these cases exact, exponential-time
algorithms such as [3] are absolutely infeasible.

Acknowledgments. Thanks to Isabel Beichl and Aravind Srinivasan for helpful comments
and revisions.
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A Full algorithm

For completeness, we include a pseudo-code of the entire hybrid algorithm. Suppose we are
given a graph G, and wish to estimate Nt up to relative error ε.
1. Compute α = m/n and β = t/n.
2. Using the Kirchoff formula, compute the number of spanning trees κ(G). Find m′ such

that
(
m′

m−n
)

= κ(G) and let γ = m′/n.
3. Compute the bound on the top-down algorithm fT .
4. Find the critical h∗ for r(h, α, β, γ). Use this to obtain the bottom-up bound fB2.
5. If fT < fB2, draw the following statistic F1 for T = exp(n(fT + c))/ε2 iterations:

6. Select a subgraph H ⊆ G uniformly at random among subgraphs with t edges.
7. Check if H is connected
8. If H is connected set F1 =

(
m
t

)
else set F1 = 0.

9. Else if fB2 ≤ fT , draw the following statistic F2 for T = exp(n(fB2 + c))/ε2 iterations:
10. Select a spanning tree H uniformly at random
11. Successively select edges e1, . . . , ek to add to H. At stage i, select edge ei with

probability Pi given by

Pi(e′) ∝ 1/κ(H ∪ e1 · · · ∪ ei−1 ∪ e′)ρ
∗

12. Estimate
F2 = κ(G)P1(e1)P2(e2) . . . Pk(ek)

k!κ(H)
13. Average the T samples of the appropriate statistic and output this sample mean.

This algorithm estimates Nt within relative error ε with probability at least 3/4 for n
sufficiently large; furthermore, the worst-case running time of this algorithm is (χα+o(1))n/ε2.

In practice, we use the algorithm of [2],[15] for the top-down estimation instead of the
indicated steps (5) — (8). It is almost as fast as the simple Monte Carlo top-down estimation,
and it is as least as accurate (in the worst-case) while being much more accurate in practice.

B Proof of Lemma 4

The heart of Lemma 4 is to show an upper bound on the quantity SH =
∑
e∈G−H λH(e)−ρ.

We begin with two elementary propositions concerning the number of spanning trees in
various subgraphs.

I Proposition 5. For any graph H and edges e1, . . . , ei /∈ H, we have

κ(H ∪ e1 · · · ∪ ei) ≤ κ(H)
(
n− 1 + i

n− 1

)
Proof. Any spanning tree T of H ∪ e1 · · · ∪ ei may be formed as follows: choose a spanning
tree T ′ of H, add the edges e1, . . . , ei, and extract a spanning tree T of T ′ ∪ e1 ∪ · · · ∪ ei. J
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We note that Proposition 5 can be improved exponentially. However, the formulas are
quite complicated and the improvement is slight, so we elect to take this simple estimate.
As discussed in [6], the state of research is very poor for estimating κ(H ∪ e1 · · · ∪ ei), even
when H is itself a spanning tree. Preliminary results for small graphs seem to indicate that
the true upper bound is much smaller than κ(H)

(
n−1+i
n−1

)
. If so, this would lead to much

better bounds on the behavior of our algorithm.

I Proposition 6. For any graph H and edges e1, . . . , ei /∈ H, we have

κ(H ∪ e1 · · · ∪ ei) ≤ λH(e1) · · ·λH(ei)

Proof. It suffices to show that λH∪e′(e) ≤ λH(e) for any H, e, e′ ∈ G −H. We recall the
Kirchoff matrix-tree theorem used to count the number of spanning trees of a graph. Let AG
be the adjacency matrix of G, and let D be a diagonal matrix whose ith entry is the degree
of vertex vi. The Kirchoff formula states that κ(G) = det(D −AG)11, the minor of D −AG
obtained by removing the first row and column.

When we update H by adding edge e′, we must update λH to the new λH∪e′ . For any
edge e = 〈i, j〉 we define δe to be the column vector is +1 in coordinate i, is −1 in coordinate
j, and is zero elsewhere. Observe that when edge e′ is added to G, the matrix L changes by
δe′δ

T
e′ :

LH∪e′ = LH + δe′δ
T
e′ .

Now let us examine how to update λ:

λH∪e′(e) = κ(H ∪ e ∪ e′)/κ(H ∪ e′)
= det(LH∪e∪e′)/ det(LH∪e′)
= det(LH + δeδ

T
e′ + δeδ

T
e )/det(LH + δe′δ

T
e )

= det
(
I + (LH + δe′δ

T
e′)−1δeδ

T
e

)
= 1 + δTe (LH + δe′δ

T
e′)−1δe

= 1 + δTe
(
L−1
H −

uuT

1− δTe u
)
δe where u = L−1

H δe′

= 1 + δTe L
−1
H δe −

(δTe u)2

1− δTe u

= λH(e)− (δTe u)2

λH(e′) ≤ λH(e)

J

I Proposition 7. Suppose H ⊆ G is a subgraph with t edges. Suppose s ∈ Z+ satisfies
κ(H)

(
n−1+s
n−1

)
< κ(G). Then s ≤ m− t.

Proof. Suppose that s > m− t, then we would have:

κ(G)
κ(H)

(
n−1+s
n−1

) < κ(G)
κ(H)

(
n−1+m−t

n−1
)

≤
κ(H)

(
n−1+(m−t)

n−1
)

κ(H)
(
n−1+m−t

n−1
) by Proposition 5

≤ 1

contradicting our hypothesis on s. J
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We can combine Propositions 5 and 6 to bound SH for subgraphs H ⊆ G:

I Lemma 8. Let H ⊆ G be a connected subgraph with t = n− 1 + k edges. Suppose s ∈ Z+
satisfies κ(H)

(
n−1+s
n−1

)
< κ(G). Define

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx
Then we have ∑

e∈G−H
λH(e)−ρ ≤ K + 1− k − nAρ(s/n)

Proof. Observe that by Proposition 7, we have s ≤ m− t.
Let e1, . . . , em−t enumerate the edges of G − H sorted by decreasing order of λH , so

that λH(e1) ≥ λH(e2) ≥ · · · ≥ λH(em−t). To simplify the notation, write λi = λH(ei). By
Propositions 5, 6, for any i ≤ m− t, we have that

κ(G) = κ(H ∪ e1 · · · ∪ ei ∪ ei+1 ∪ · · · ∪ em−t)

≤ κ(H ∪ ei+1 · · · ∪ em−t)
(
n− 1 + i

n− 1

)
≤ κ(H)λi+1 . . . λm−t

(
n− 1 + i

n− 1

)
Define λm−t+1 = 1. Then ~λ satisfies the following system of constraints for i = 1, . . . ,m−t:

λi . . . λm−t ≥
κ(G)

κ(H)
(
n−2+i
n−1

) (Constraint Ci)

λi ≥ λi+1

Hence, it suffices to maximize on S′ =
∑m−t
i=1 λ−ρi subject to these constraints. By compact-

ness, such a maximum exists.
We first claim that in any such maximum, ~λ must satisfy λi > λi+1 for i = 1, . . . , s

strictly. Suppose that we have a block of equalities of the form λi = · · · = λk, where i ≤ s is
minimal and k is maximal. We assume for simplicity that i > 1 (the case in which i = 1 is
essentially identical.) Let η = λi = · · · = λk.

There are two ways in which k could be maximal. First, it might be that k = m− t+ 1.
In this case, we have λi = · · · = λm−t = 1. But then constraint Ci states that

1 ≥ κ(G)
κ(H)

(
n−2+i
n−1

)
which implies that

κ(G) ≤ κ(H)(
n−2+i
n−1

) ≤ κ(H)(
n−2+s
n−1

)
which contradicts the definition of s.

The other case is that we have λk > λk+1 for k ≤ m− t. We claim that in this case, it
must be that constraints Ci+1, . . . , Ck are slack. For, suppose that constraint Cj is tight for
some j in the range i + 1, . . . , k. Collecting all the terms other than λj−1, λj , λj+1 into a
single constant c gives us the constraints:(

n− 2 + (j − 1)
n− 1

)
η2 ≥ c (Cj−1)



D.G. Harris and F. Sullivan 339

(
n− 2 + j

n− 1

)
η = c (Cj)(

n− 2 + j + 1
n− 1

)
≥ c (Cj+1)

(Note that constraint (Cj) is an equality.)
From constraint Cj−1, we can eliminate η to obtain that

c ≥
(
n−2+j
n−1

)2(
n−2+(j−1)

n−1
)

and, substituting this into constraint Cj+1 we obtain:(
n−2+(j+1)

n−1
)(
n−2+(j−1)

n−1
)(

n−2+j
n−1

)2 ≥ 1

which reduces to
(j + n− 1)(j − 1)
j(j + n− 2) ≥ 1

which is a contradiction.
We have shown that if λi = · · · = λk then constraints Ci+1, . . . , Ck must be slack. Now

divide λk by δ and multiply λi by δ for some δ > 1. For δ sufficiently small, this does
not change the sorted order of λ1, . . . , λm−t. Furthermore, this only affects the constraints
Ci+1, . . . , Ck, which are slack, and thus for δ sufficiently small all constraints remain satisfied.
As λi = λk this modification increases S′, which is a contradiction.

We have thus shown that λi > λi+1 for i = 1, . . . , s.
We next claim that all of the constraints C1, . . . , Cs are tight. For, if Ci was slack for

some i ≥ 2, then we could multiply λi−1 by δ and divide λi by δ for sufficiently small δ > 1.
As λi−2 > λi−1 > λi > λi+1, for δ sufficiently small this does not affect the sorted order of
~λ, preserves all constraints, and increases S′. (For i = 1, simply divide λi by δ.)

We have now shown that when S′ is maximized then all constraints C1, . . . , Cs must be
tight. Dividing constraint Ci by Ci+1 yields λi = n+i−1

i for i = 1, . . . , s− 1. We also must
have λi ≥ 1 for i = s, . . . ,m− t, so we have

SH ≤ S′ ≤ (m− t− s+ 1) +
s−1∑
j=1

(n+ j − 1
n

)−ρ

≤ (K − k − s+ 1) +
∫ s

j=0
( j

n+ j
)ρdj

= (K − k − s+ 1) + n

∫ s/n

x=0
( x

1 + x
)ρdx setting x = j/n

= K + 1− k − nAρ(s/n).

J

I Corollary 9. Suppose S satisfies κ(H)
(
n−1+s
n−1

)
< κ(G). Let H ⊆ G be a subgraph of G

and T a spanning tree of H and e1, . . . , ek enumerate the edges of H − T (in any order).
Then for i = 1, . . . , k we have

ST∪e1···∪ei−1 ≤ K + 1− i− nAρ(s/n)
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Proof. By Lemma 8 we have SHi ≤ K + 1 − i − nAρ(si/n) where si is maximal such
that κ(Hi)

(
n−1+si

n−1
)
< κ(G). Observe that κ(Hi) ≤ κ(H) and so si ≥ s. Thus SHi

≤
K + 1− i− nAρ(s/n) as claimed. J

We now pass to the limit, bounding the asymptotic growth of R.

I Lemma 10. Let ρ ∈ [0, 1].
Define the function

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx.
Then, for any connected subgraph H ⊆ G with βn edges, we have R ≤ exp(n(r + o(1))),

for

r = max
φ∈[0,α/2−β]

−(1− ρ)
(
l(γ)− l(α/2− 1)− l(1− α/2 + γ)− l(1 + φ) + l(φ)

)
− l(β − 1) + l

(
α/2− 1−Aρ(φ)

)
− l
(
α/2− β −Aρ(φ)

)
Proof. Let h = ln(κ(H))/n. Let s be maximal such that κ(H)

(
n−1+s
n−1

)
< κ(G), and let

φ = s/n. By Corollary 9, we have SHi ≤ K − i − nAρ(φ) for i = 1, . . . , k. Also, by
Proposition 7, we have s ≤ m− t and so φ ≤ α/2− β.

So

lnR ≤ ln(K − nA(φ)) + · · ·+ ln(K − k − nA(φ))− (ρ− 1) ln κ(H)− ln(k!)

We have that s is maximal such that
(
n−1+s
n−1

)
< κ(G)/κ(H). Hence

(
n−1+s
n−1

)
is within a

factor of n of κ(G)/κ(H), so that

ln κ(G)/κ(H)− lnn ≤ ln
(
n− 1 + s

n− 1

)
We apply Stirling’s formula (2), and divide by n to get that

l(φ+ 1)− l(φ) ≥ ln κ(G)/κ(H)
n

− o(1)

Now note that, by definition of m′ and γ, we have that

κ(G) ≥
(
m′

K

)
= exp(n(l(γ)− l(α/2− 1)− l(1− α/2 + γ))− o(1))

Thus it follows that

l(φ+ 1)− l(φ) ≥ l(γ)− l(α/2− 1)− l(1− α/2 + γ)− h− o(1)

Now we have:

lnR ≤ ln(K + 1− nA(φ)) + · · ·+ ln(K + 1− k − nA(φ))− (1− ρ) ln κ(H)− ln(k!)

≤ ln
(
K + 1− nA(φ+ o(1))

k

)
− (1− ρ)h+ o(n)

≤ ln
(
K − nA(φ) + o(n)

k

)
− (1− ρ)

(
l(φ+ 1)− l(φ)− l(γ) + l(α/2− 1) + l(1− α/2− γ)

)
+ o(n)

≤ r + o(n) as φ ∈ [0, α/2− β]

J
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