
Beating the Random Assignment on Constraint
Satisfaction Problems of Bounded Degree
Boaz Barak1, Ankur Moitra2, Ryan O’Donnell3,
Prasad Raghavendra4, Oded Regev5, David Steurer6,
Luca Trevisan4, Aravindan Vijayaraghavan5, David Witmer3, and
John Wright3

1 Microsoft Research New England, USA
2 MIT Mathematics Department, USA
3 Department of Computer Science, Carnegie Mellon University, USA
4 UC Berkeley, Department of Electrical Engineering and Computer Sciences,

USA
5 Courant Institute of Mathematical Sciences, New York University, USA
6 Cornell University, USA

Abstract
We show that for any odd k and any instance = of the Max-kXOR constraint satisfaction problem,
there is an efficient algorithm that finds an assignment satisfying at least a 1

2 +Ω(1/
√
D) fraction

of =’s constraints, where D is a bound on the number of constraints that each variable occurs in.
This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and
Gutmann (2014), which gave a quantum algorithm to find an assignment satisfying a 1

2 +Ω(D−3/4)
fraction of the equations.

For arbitrary constraint satisfaction problems, we give a similar result for “triangle-free”
instances; i.e., an efficient algorithm that finds an assignment satisfying at least a µ+ Ω(1/

√
D)

fraction of constraints, where µ is the fraction that would be satisfied by a uniformly random
assignment.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases constraint satisfaction problems, bounded degree, advantage over random

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.110

1 Introduction

An instance of a Boolean constraint satisfaction problem (CSP) over n variables x1, . . . , xn
is a collection of constraints, each of which is some predicate P applied to a constant number
of the variables. The computational task is to find an assignment to the variables that
maximizes the number of satisfied predicates. In general the constraint predicates do not
need to be of the same “form”; however, it is common to study CSPs where this is the
case. Typical examples include: Max-kSAT, where each predicate is the OR of k variables
or their negations; Max-kXOR, where each predicate is the XOR of exactly k variables or
their negations; and Max-Cut, the special case of Max-2XOR in which each constraint is of
the form xi 6= xj . The case of Max-kXOR is particularly mathematically natural, as it is
equivalent to maximizing a homogenous degree-k multilinear polynomial over {±1}n.

Given a CSP instance, it is easy to compute the expected fraction µ of constraints satisfied
by a uniformly random assignment; e.g., in the case of Max-kXOR we always have µ = 1

2 .
Thus the question of algorithmic interest is to find an assignment that satisfies noticeably

© Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David Steurer,
Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John Wright;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Eds.: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 110–123

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.110
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B.Barak et al. 111

more than a µ fraction of constraints. Of course, sometimes this is simply not possible; e.g.,
for Max-Cut on the complete n-variable graph, at most a 1

2 +O(1/n) fraction of constraints
can be satisfied.1 However, even when all or almost all constraints can be satisfied, it may
still be algorithmically difficult to beat µ. For example, Håstad [7] famously proved that
for every ε > 0, given a Max-3XOR instance in which a 1− ε fraction of constraints can be
satisfied, it is NP-hard to find an assignment satisfying a 1

2 + ε fraction of the constraints.
Håstad showed similar “approximation resistance” results for Max-3Sat and several other
kinds of CSPs.

One possible reaction to these results is to consider subconstant ε. For example, Håstad
and Venkatesh [8] showed that for every Max-kXOR instance with m constraints, one can
efficiently find an assignment satisfying at least a 1

2 + Ω(1/
√
m) fraction of them.2 (Here,

and elsewhere in this introduction, the Ω(·) hides a dependence on k, typically exponential.)
Relatedly, Khot and Naor [9] give an efficient algorithm for Max-3XOR that satisfies a
1
2 + Ω(ε

√
(logn)/n) fraction of constraints whenever the optimum fraction is 1

2 + ε.
Another reaction to approximation resistance is to consider restricted instances. One

commonly studied restriction is to assume that each variable’s “degree” — i.e., the number of
constraints in which it occurs — is bounded by some D. Håstad [6] showed that such instances
are never approximation resistant. More precisely, he showed that for, say, Max-kXOR,
one can always efficiently find an assignment satisfying at least a µ + Ω(1/D) fraction of
constraints.3 Note that this advantage of Ω(1/D) cannot in general be improved, as the case
of Max-Cut on the complete graph shows.

One may also consider further structural restrictions on instances. One such restriction
is that the underlying constraint hypergraph be triangle-free (see Section 2 for a precise
definition). For example, Shearer [12] showed that for triangle-free graphs there is an efficient
algorithm for finding a cut of size at least m

2 + Ω(1) ·
∑
i

√
deg(i), where deg(i) is the degree

of the ith vertex. As
∑
i

√
deg(i) ≥

∑
i

deg(i)√
D

= 2m√
D

in m-edge degree-D bounded graphs,
this shows that for triangle-free Max-Cut one can efficiently satisfy at least a 1

2 + Ω(1/
√
D)

fraction of constraints. Related results have also been shown for degree-bounded instances of
Maximum Acyclic Subgraph [2], Min-Bisection [1] and Ordering k-CSPs [5, 10].

1.1 Recent developments and our work
In a recent surprising development, Farhi, Goldstone, and Gutmann [4] gave an efficient
quantum algorithm that, for Max-3XOR instances with degree bound D, finds an assignment
satisfying a 1

2 + Ω(D−3/4) fraction of the constraints. In addition, Farhi et al. show that if
the Max-3XOR instance is “triangle-free” then an efficient quantum algorithm can satisfy a
1
2 + Ω(1/

√
D) fraction of the constraints.

Farhi et al.’s result was perhaps the first example of a quantum algorithm providing a
better CSP approximation guarantee than that of the best known classical algorithm (namely
Håstad’s [6], for Max-3XOR). As such it attracted quite some attention.4 In this paper we

1 Another trivial example is the Max-2XOR instance with the two constraints x = y and x 6= y. For this
reason we always assume that our Max-kXOR instances do not contain a constraint and its negation.

2 In [8] this is stated as an approximation-ratio guarantee: if the optimum fraction is 1
2 + ε then

1
2 + Ω(ε/

√
m) is guaranteed. However inspecting their proof yields the absolute statement we have

made.
3 The previous footnote applies also to this result.
4 As evidenced by the long list of authors on this paper; see also http://www.scottaaronson.com/blog/

?p=2155.

APPROX/RANDOM’15

http://www.scottaaronson.com/blog/?p=2155
http://www.scottaaronson.com/blog/?p=2155

112 Beating the Random Assignment on CSPs of Bounded Degree

show that classical algorithms can match, and in fact outperform, Farhi et al.’s quantum
algorithm.

First result: Max-kXOR

We will present two results. The first result is about instances of Max-kXOR.

I Theorem 1. There is a constant c = exp(−O(k)) and a randomized algorithm running
in time poly(m,n, exp(k)) that, given an instance = of Max-kXOR with m constraints and
degree at most D, finds with high probability an assignment x ∈ {±1}n such that∣∣∣∣val=(x)− 1

2

∣∣∣∣ ≥ c√
D
. (1)

Here val=(x) denotes the fraction of constraints satisfied by x. In particular, for odd k, by
trying the assignment and its negation, the algorithm can output an x satisfying

val=(x) ≥ 1
2 + c√

D
. (2)

In Section 3 we give a simple, self-contained proof of Theorem 1 in the special case of
Max-3XOR. For higher k we obtain it from a more general result (Theorem 7) that gives
a constructive version of a theorem of Dinur, Friedgut, Kindler and O’Donnell [3]. This
result shows how to attain a significant deviation from the random assignment value for
multivariate low-degree polynomials with low influences. See Section 4.

We note that the deviation Ω(1/
√
D) in (1) is optimal. To see why, consider any D-

regular graph on n vertices, and construct a Max-2XOR instance = as follows. For every
edge (i, j) in the graph we randomly and independently include either the constraint xi = xj
or xi 6= xj . For every fixed x, the quantity val=(x) has distribution 1

mBinomial(m, 1
2), where

m = nD
2 . Hence a Chernoff-and-union-bound argument shows that with high probability

all 2n assignments will have |val=(x) − 1
2 | ≤ O(

√
n/m) = O(1/

√
D). This can easily be

extended to Max-kXOR for k > 2.

General CSPs

As noted earlier, the case of Max-Cut on the complete graph shows that for general CSPs,
and in particular for Max-2XOR, we cannot guarantee a positive advantage of Ω(1/

√
D)

as in (2). In fact, a positive advantage of Ω(1/D) is the best possible, showing that the
guarantee of Håstad [6] is tight in general.

A similar example can be shown for Max-2SAT: consider an instance with D2 variables
and imagine them placed on a D ×D grid. For any two variables in the same row add the
constraint x∨ y and for any two variables in the same column add the constraint x̄∨ ȳ. Then
each variable participates in O(D) clauses, and it can be verified that the best assignment
satisfies 3/4+O(1/D) fraction of the clauses. We do not know if the same holds for Max-3SAT
and we leave that as an open question.

Sometimes no advantage over random is possible. For instance, consider the following
instance with 8 clauses on 6 variables, in which any assignment satisfies exactly 1/2 of the
clauses:

{NAE(x1, x2, x3),
AE(y1, x2, x3),AE(x1, y2, x3),AE(x1, x2, y3),
NAE(x1, y2, y3),NAE(y1, x2, y3),NAE(y1, y2, x3),
AE(y1, y2, y3)} ,

where NAE denotes the “not all equal” constraint, and AE is the “all equal” constraint.

B.Barak et al. 113

Second result: triangle-free instances of general CSPs

Despite the above examples, our second result shows that it is possible to recover the optimal
advantage of 1/

√
D for triangle-free instances of any CSP:

I Theorem 2. There is a constant c = exp(−O(k)) and a randomized algorithm running
in time poly(m,n, exp(k)) time that, given a triangle-free, degree-D CSP instance = with m
arbitrary constraints, each of arity between 2 and k, finds with high probability an assignment
x ∈ {±1}n such that

val=(x) ≥ µ+ c√
D
.

Here µ is the fraction of constraints in = that would be satisfied in expectation by a random
assignment.

This theorem is proved in Section 5. For simplicity, we state our results as achieving
randomized algorithms and leave the question of derandomizing them (e.g., by replacing true
random bits with O(k)-wise independence or some other such distribution) to future work.

1.2 Overview of our techniques
All three algorithms that we present in this work follow the same broad outline, while the
details are different in each case. To produce an assignment that beats a random assignment,
the idea is to partition the variables in to two sets (F,G) with F standing for ‘Fixed’ and G
standing for ‘Greedy’ (in Section 4, these correspond to [n] \ U and U respectively). The
variables in F are assigned independent and uniform random bits and the variables in G
are assigned values greedily based on the values already assigned to F . We will refer to
constraints with exactly one variable from G as active constraints. The design of the greedy
assignments and their analysis is driven by two key objectives.
1. Obtain a significant advantage over the random assignment on active constraints.
2. Achieve a value that is at least as good as the random assignment on inactive constraints.

The simplest example is the algorithm for Max-3XOR that we present in Section 3. First,
we appeal to a decoupling trick due to Khot-Naor [9] to give an efficient approximation-
preserving reduction from an arbitrary instance = of Max-3XOR to a bipartite instance =̃.
Specifically, the instance =̃ will contain two sets of variables {yi}i∈[n] and {zi}i∈[n], with
every constraint having exactly one variable from {yi}i∈[n] and two variables from {zj}j∈[n].
Notice that if we set G = {yi}i∈[n], then objective (2) holds vacuously, i.e., every constraint in
=̃ is active. The former objective (1) is achieved as a direct consequence of anticoncentration
of low degree polynomials (see Fact 5). In the case of Max-kXOR, the second objective is
achieved by slightly modifying the greedy assignment: we flip each of the assignments for
the greedy variables with a small probability η (that corresponds to one of the extrema of
the degree-k Chebyshev polynomials of the first kind).

Our algorithm for triangle-free instances begins by picking (F,G) to be a random partition
of the variables. In this case, after fixing a random assignment to F , a natural greedy strategy
would proceed as follows: Assign each variable in G a value that satisfies the maximum the
number of its own active constraints.

In order to achieve objective (2), it is sufficient if for each inactive constraint its variables
are assigned independently and uniformly at random. Since the instance is triangle-free, for
every pair of variables xi, xj ∈ G the active constraints of xi and xj are over disjoint sets
of variables. This implies that the greedy assignments for variables within each inactive

APPROX/RANDOM’15

114 Beating the Random Assignment on CSPs of Bounded Degree

constraint are already independent. Unfortunately, the greedy assignment as defined above
could possibly be biased, and in general much worse than a random assignment on the inactive
constraints. We overcome this technical hurdle by using a modified greedy strategy defined
as follows. Assign −1 to all variables in G and then for each variable xi ∈ G, consider the
change in the number of active constraints satisfied if we flip xi from −1 to 1. The algorithm
will flip the value only if this number exceeds an appropriately chosen threshold θi. The
threshold θi is chosen so as to ensure that over all choices of values to F , the assignment to
xi is unbiased. Triangle-freeness implies that these assignments are independent within each
inactive constraint. Putting these ideas together, we obtain the algorithm for triangle-free
instances discussed in Section 5.

2 Preliminaries

Constraint satisfaction problems

We will be considering a somewhat general form of constraint satisfaction problems. An
instance for us will consist of n Boolean variables and m constraints. We call the variables
x1, . . . , xn, and we henceforth think of them as taking the Boolean values ±1. Each constraint
is a pair (P`, S`) (for ` ∈ [m]) where P` : {±1}r → {0, 1} is the predicate, and S` is the
scope, an ordered r-tuple of distinct coordinates from [n]. The associated constraint is that
P`(xS`) = 1, where we use the notation xS to denote variables x restricted to coordinates S.
We always assume (without loss of generality) that P` depends on all r coordinates. The
number r is called the arity of the constraint, and throughout this paper k will denote an
upper bound on the arity of all constraints. Typically we think of k as a small constant.

We are also interested in the special case of Max-kXOR. By this we mean the case when
all constraints are XORs of exactly k variables or their negations; in other words, when
every P` is of the form P`(x1, . . . , xk) = 1

2 ±
1
2x1x2 · · ·xk. When discussing Max-kXOR we

will also always make the assumption that all scopes are distinct as sets; i.e., we don’t have
the same constraint or its negation more than once.

Hypergraph structure

We will be particularly interested in the degree deg(i) of each variable xi in an instance. This
is simply the number of constraints in which xi participates; i.e., #{` : S` 3 i}. Throughout
this work, we let D denote an upper bound on the degree of all variables.

For our second theorem, we will need to define the notion of “triangle-freeness”.

I Definition 3. We say that an instance is triangle-free if the scopes of any two distinct
constraints intersect on at most one variable (“no overlapping constraints”) and, moreover,
there are no three distinct constraints any two of whose scopes intersect (“no hyper-triangles”),
see Figure 1.

Fourier representation

We recall that any Boolean function f : {±1}n → R can be represented by a multilinear
polynomial, or Fourier expansion,

f(x) =
∑
S⊂[n]

f̂(S)xS , where xS def=
∏
i∈S

xi.

B.Barak et al. 115

Figure 1 The two forbidden configurations for triangle-free instances.

For more details see, e.g., [11]; we recall here just a few facts we’ll need. First, E[f(x)] = f̂(∅).
(Here and throughout we use boldface for random variables; furthermore, unless otherwise
specified x refers to a uniformly random Boolean string.) Second, Parseval’s identity is
‖f‖2

2 = E[f(x)2] =
∑
S f̂(S)2, from which it follows that Var[f(x)] =

∑
S 6=∅ f̂(S)2. Third,

Infi[f] =
∑
S3i

f̂(S)2 = E[(∂if)(x)2],

where ∂if is the derivative of f with respect to the ith coordinate. This can be defined by the
factorization f(x) = xi · (∂if)(x′) + g(x′), where x′ = (x1, . . . , xi−1, xi+1, . . . , xn), or equival-
ently by ∂if(x′) = f(x′,+1)−f(x′,−1)

2 , where here (x′, b) denotes (x1, . . . , xi−1, b, xi+1, . . . , xn).
We record here a simple fact about these derivatives:

I Lemma 4. For any predicate P : {±1}r → {0, 1}, r ≥ 2, we have Var[(∂iP)(x)] ≥ Ω(2−r)
for all i.

Proof. The function ∂iP (x) takes values in {− 1
2 , 0,

1
2}. It cannot be constantly 0, since

we assume P depends on its ith input. It also cannot be constantly 1
2 , else we would

have P (x) = 1
2 + 1

2xi and so P would not depend on all r ≥ 2 coordinates. Similarly it
cannot be constantly − 1

2 . Thus ∂iP (x) is nonconstant, so its variance is Ω(2−r). J

Given an instance and an assignment x ∈ {±1}n, the number of constraints satisfied by
the assignment is simply

∑
` P`(xS`). This can be thought of as a multilinear polynomial

{±1}n → R of degree5 at most k. We would like to make two minor adjustments to it, for
simplicity. First, we will normalize it by a factor of 1

m so as to obtain the fraction of satisfied
constraints. Second, we will replace P` with P `, defined by

P ` = P` − E[P`] = P` − P̂`(∅).

In this way, P `(xS`) represents the advantage over a random assignment. Thus given an
instance, we define the associated polynomial P(x) by

P(x) = 1
m

m∑
`=1

P `(xS`).

This is a polynomial of degree at most k whose value on an assignment x represents the
advantage obtained over a random assignment in terms of the fraction of constraints satisfied.
In general, the algorithms in this paper are designed to find assignments x ∈ {±1}n with
P(x) ≥ Ω(1√

D
).

5 We have the usual unfortunate terminology clash; here we mean degree as a polynomial.

APPROX/RANDOM’15

116 Beating the Random Assignment on CSPs of Bounded Degree

Low-degree polynomials often achieve their expectation

Our proofs will frequently rely on the following fundamental fact from Fourier analysis, whose
proof depends on the well-known “hypercontractive inequality”. A proof of this fact appears
in, e.g., [11, Theorem 9.24].

I Fact 5. Let f : {±1}n → R be a multilinear polynomial of degree at most k. Then
P[f(x) ≥ E[f]] ≥ 1

4 exp(−2k). In particular, by applying this to f2, which has degree at most
2k, we get

P
[
|f(x)| ≥ ‖f‖2

]
≥ exp(−O(k))

which implies that

E
[
|f(x)|

]
≥ exp(−O(k)) · ‖f‖2 ≥ exp(−O(k)) · stddev[f(x)] .

3 A simple proof for Max-3XOR

We begin by proving Theorem 1 in the case of Max-3XOR, as the proof can be somewhat
streamlined in this case. Given an instance of Max-3XOR we have the corresponding
polynomial

P(x) =
∑
|S|=3

P̂(S)xS =
∑

i,j,k∈[n]

aijkxixjxk,

where P̂(S) ∈ {± 1
2m , 0} depending on whether the corresponding constraint exists in the

instance, and where we have introduced aijk = 1
6P̂({i, j, k}) for i, j, k ∈ [n] distinct. We

now use the trick of “decoupling” the first coordinate (cf. [9, Lem. 2.1]); i.e., our algorithm
will consider P̃(y, z) =

∑
i,j,k aijkyizjzk, where y1, . . . , yn, z1, . . . , zn are new variables. The

algorithm will ultimately produce a good assignment y, z ∈ {±1}n for P̃. Then it will define
an assignment x ∈ {±1}n by using one of three “randomized rounding” schemes:

w.p. 4
9 , xi =

{
yi w.p. 1

2

zi w.p. 1
2
∀i; w.p. 4

9 , xi =
{
yi w.p. 1

2

−zi w.p. 1
2
∀i; w.p. 1

9 , xi = −yi ∀i.

We have that

E[P(x)] = 4
9
∑
i,j,k

aijk(yi+zi2)(yj+zj
2)(yk+zk

2) + 4
9
∑
i,j,k

aijk(yi−zi2)(yj−zj2)(yk−zk2)

+ 1
9
∑
i,j,k

aijk(−yi)(−yj)(−yk)

= 1
9

∑
i,j,k

aijk(yizjzk + ziyjzk + zizjyk) = 1
3P̃(y, z). (3)

Thus in expectation, the algorithm obtains an assignment for P achieving at least 1
3 of what

it achieves for P̃.
Let us now write P̃(y, z) =

∑
i yiGi(z), where Gi(z) =

∑
j,k aijkzjzk. It suffices for the

algorithm to find an assignment for z such that
∑
i |Gi(z)| is large, as it can then achieve

this quantity by taking yi = sgn(Gi(z)). The algorithm simply chooses z ∈ {±1}n uniformly
at random. By Parseval we have E[Gi(z)2] =

∑
j<k(2aijk)2 = 1

9 Infi[P] for each i. Applying

B.Barak et al. 117

Fact 5 (with k = 2) we therefore get E[|Gi(z)|] ≥ Ω(1)·
√

Infi[P]. Since Infi[P] = deg(i)/4m2,
we conclude

E
[∑
i

|Gi(z)|
]
≥ Ω(1) ·

∑
i

√
deg(i)
m ≥ Ω(1) ·

∑
i

deg(i)
m
√
D

= Ω(1) · 1√
D
.

As
∑
i |Gi(z)| is bounded by 1/2, Markov’s inequality implies that the algorithm can with

high probability find a z achieving
∑
i |Gi(z)| ≥ Ω(1√

D
) after O(

√
D) trials of z. As stated,

the algorithm then chooses y appropriately to attain P̃(y, z) ≥ Ω(1√
D

), and finally gets 1
3 of

this value (in expectation) for P(x).

Derandomization

It is easy to efficiently derandomize the above algorithm. The main step is to recognize that
“(2, 4)-hypercontractivity” is all that’s needed for Fact 5 (perhaps with a worse constant);
thus it holds even when the random bits are merely 4-wise independent. This is well known,
but we could not find an explicit reference; hence we give the proof in the case when f is
homogeneous of degree 2 (the case that’s needed in the above algorithm). Without loss of
generality we may assume E[f(x)] = 0 and E[f(x)2] = 1. Then it’s a simple exercise to check
that E[f(x)4] ≤ 15, and this only requires the bits of x to be 4-wise independent. But now

P[f(x) ≥ 0] = E[1{f(x)≥0}] ≥ E[.13f(x) + .06f(x)2 − .002f(x)4] ≥ .06− .002 · 15 = .03

where we used the elementary fact 1{t≥0} ≥ .13t+ .06t2 − .002t4 for all t ∈ R. Thus indeed
the algorithm can find a z achieving

∑
i |Gi(z)| ≥ Ω(1√

D
) by enumerating all strings in a

4-wise independent set; it is well known this can be done in polynomial time. Following this,
the algorithm chooses string y deterministically. Finally, it is clear that each of the three
different randomized rounding schemes only requires 3-wise independence, and a deterministic
algorithm can simply try all three and choose the best one.

4 A general result for bounded-influence functions

One can obtain our Theorem 1 for higher odd k by generalizing the proof in the preceding
section. Constructing the appropriate “randomized rounding” scheme to decouple the first
variable becomes slightly more tricky, but one can obtain the identity analogous to (3) through
the use of Chebyshev polynomials. At this point the solution becomes very reminiscent of
the Dinur et al. [3] work. Hence in this section we will simply directly describe how one can
make [3] algorithmic.

The main goal of [3] was to understand the “Fourier tails” of bounded degree-k polynomials.
One of their key technical results was the following theorem, showing that if a degree-k
polynomial has all of its influences small, it must deviate significantly from its mean with
noticeable probability:

I Theorem 6. ([3, Theorem 3].) There is a universal constant C such that the following
holds. Suppose g : {±1}n → R is a polynomial of degree at most k and assume Var[g] = 1.
Let t ≥ 1 and suppose that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then

P[|g(x)| ≥ t] ≥ exp(−Ct2k2 log k).

In the context of Max-kXOR, this theorem already nearly proves our Theorem 1. The reason
is that in this context, the associated polynomial P(x) is given by

P(x) = 1
2m

m∑
`=1

b`
∏
j∈S`

xj , where b` ∈ {−1, 1}.

APPROX/RANDOM’15

118 Beating the Random Assignment on CSPs of Bounded Degree

Hence Var[P] = 1/4m and Infi[P] = deg(xi)/4m2 ≤ D/4m2. Taking g = 2
√
m · P and

t = exp(−O(k)) ·
√
m/D, Theorem 6 immediately implies that

P
[
|P(x)| ≥ exp(−O(k)) · 1√

D

]
≥ exp(−O(m/D)). (4)

This already shows the desired existential result, that there exists an assignment beating
the random assignment by exp(−O(k)) · 1√

D
. The only difficulty is that the low probability

bound in (4) does not imply we can find such an assignment efficiently.
However this difficulty really only arises because [3] had different goals. In their work, it

was essential to show that g achieves a slightly large value on a completely random input.6 By
contrast, we are at liberty to show g achieves a large value however we like — semi-randomly,
greedily — so long as our method is algorithmic. That is precisely what we do in this section
of the paper. Indeed, in order to “constructivize” [3], the only fundamental adjustment we
need to make is at the beginning of the proof of their Lemma 1.3: when they argue that
“P[|`(x)| ≥ t′] ≥ exp(−O(t′2)) for the degree-1 polynomial `(x)”, we can simply greedily
choose an assignment x with |`(x)| ≥ t′.

Our constructive version of Theorem 6 follows. It directly implies our Theorem 1, as
described above.

I Theorem 7. There is a universal constant C and a randomized algorithm such that the
following holds. Let g : {±1}n → R be a polynomial with degree at most k and Var[g] = 1 be
given. Let t ≥ 1 and suppose that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then with high probability
the algorithm outputs an assignment x with |g(x)| ≥ t. The running time of the algorithm is
poly(m,n, exp(k)), where m is the number of nonzero monomials in g.7

The algorithm AdvRand achieving Theorem 7 is given below. It is derived directly
from [3], and succeeds with probability that is inverse polynomial in n. The success probability
is then boosted by running the algorithm multiple times. We remark that η(k)

0 , η
(k)
1 , . . . , η

(k)
k

denote the k + 1 extrema in [−1, 1] of the kth Chebyshev polynomial of the first kind Tk(x),
and are given by η(k)

j = cos(jπ/k) for 0 ≤ j ≤ k. We now describe the algorithm below, for
completeness. In the rest of the section, we will assume without loss of generality that k is
odd (for even k, we just think of the polynomial as being of degree k + 1, with the degree
(k + 1) part being 0).

AdvRand: Algorithm for Advantage over Average for degree k polynomials
Input: a degree k-function g
Output: an assignment x
1. Let 1 ≤ s ≤ log2 k be a scale such that the mass (i.e., sum of squares of coefficients) of

the Fourier transform of g on levels between 2s−1 and 2s is at least 1/ log k.
2. For every i ∈ [n], put i in set U with probability 2−s. For every i /∈ U , set xi ∈ {−1, 1}

uniformly at random and let y be the assignment restricted to the variables in [n] \ U .
3. Let gy be the restriction obtained. For every j ∈ U , set xj = sign(ĝy({j})).
4. Pick r ∈ {0, 1, . . . , k} uniformly at random, and let η = η

(k)
r /2.

5. For each coordinate j ∈ U , flip xj independently at random with probability (1− η)/2.
6. Output x.

6 Also, their efforts were exclusively focused on the parameter k, with quantitative dependencies on t not
mattering. Our focus is essentially the opposite.

7 For simplicity in our algorithm, we assume that exact real arithmetic can be performed efficiently.

B.Barak et al. 119

We now give the analysis of the algorithm, following [3]. The second step of the algorithm
performs a random restriction, that ensures that gy has a lot of mass on the first-order
Fourier coefficients. The key lemma (that follows from the proof of Lemma 1.3 and Lemma
4.1 in [3]) shows that we can find an assignment that obtains a large value for a polynomial
with sufficient “smeared” mass on the first-order Fourier coefficients.

I Lemma 8. Suppose g : {±1}N → R has degree at most k, t ≥ 1, and
∑
i∈[N]|ĝ({i})| ≥

2t(k + 1). Then a randomized polynomial time algorithm outputs a distribution over assign-
ments x ∈ {−1, 1}N such that

P
x

[|g(x)| ≥ t] ≥ exp(−O(k)).

The algorithm proving Lemma 8 corresponds to Steps (3-6) of the Algorithm AdvRand.

Proof. We sketch the proof, highlighting the differences to Lemma 1.3 of [3]. First we observe
that by picking the assignment x∗i = sign(ĝ({i})), we can maximize the linear portion as∑

i∈[N]

ĝ({i})x∗i =
∑
i∈[N]

|ĝ({i})| ≥ 2t(k + 1).

From this point on, we follow the proof of Lemma 1.3 in [3] with their initial point x0 being
set to x∗. Let z ←η {±1}N be a random string generated by independently setting each
coordinate zj = −1 with probability (1− η)/2 (as in step 5 of the algorithm), and let

(Tηg)(x∗) = E
z←η{±1}n

[g(x∗ · z)].

Lemma 1.3 of [3], by considering (Tηg)(x∗) as a polynomial in η and using the extremal
properties of Chebyshev polynomials (Corollary 2.8 in [3]), shows that there exists η ∈
{η

(k)
0
2 ,

η
(k)
1
2 , . . . ,

η
(k)
k

2 } such that

E
z←η{±1}n

[
|g(x∗ · z)|

]
≥ 2t(k + 1) · 1

(2k + 2) = t. (5)

Consider g(x∗ · z) as a polynomial in z, with degree at most k. As in [3], we will now
use the hypercontractivity to give a lower bound on the probability (over random z) that
|g(x∗ · z)| exceeds the expectation. Note that our choice of η ∈ [− 1

2 ,
1
2] and hence the bias is

in the interval [1
4 ,

3
4]. Using Lemma 2.5 in [3] (the analogue of Fact 5 for biased measures), it

follows that

P
z

[
|g(x∗ · z)| ≥ t

]
≥ 1

4 exp(−2k).

Hence when x is picked according to D, with probability at least 1/(k + 1) the algorithm
chooses an η such that (5) holds, and then a random z succeeds with probability exp(−O(k)),
thereby giving the required success probability. J

We now sketch the proof of the constructive version of Theorem 3 in [3], highlighting why
algorithm AdvRand works.

Proof of Theorem 7. The scale s is chosen such that the Fourier coefficients of g of order
[2s−1, 2s] have mass at least 1/ log k. The algorithm picks set U randomly by choosing each
variable with probability 2−s, and gy is the restriction of g to the coordinates in U obtained
by setting the other variables randomly to y ∈ {−1, 1}[N]\U .

APPROX/RANDOM’15

120 Beating the Random Assignment on CSPs of Bounded Degree

Let γi =
∑
S∩U={i} ĝ(S)2. Fixing U and y, let the indices T = {i ∈ U : ĝy({i})2 ≤

(2e)2kγi}. The proof of Theorem 3 in [3] shows that a constant fraction of the first order
Fourier coefficients are large; in particular after Steps 1 and 2 of the algorithm,

P
U,y

[∑
i∈T

ĝy({i})2 ≥ 1
100 log k

]
≥ exp(−O(k)) . (6)

Further, for i ∈ T , we have |ĝy({i})| ≤ (2e)k√γi ≤ (2e)k
√
Infi(g). Hence, when the above

event in (6) is satisfied we have∑
i∈U
|ĝy({i})| ≥ 1

maxi∈T |ĝy({i})| ·
∑
i∈T

ĝy({i})2

≥ 1
(2e)k

√
maxi Infi(g)

· 1
100 log k ≥ 2t(k + 1).

Hence, applying Lemma 8 with gy we get that

P
x∈D

[
|g(x)| ≥ t

]
≥ exp(−O(k)), (7)

where D is the distribution over assignments x output by the algorithm. Repeating this
algorithm exp(O(k)) times, we get the required high probability of success. J

5 Triangle-free instances

In this section we present the proof of Theorem 2, which gives an efficient algorithm for beating
the random assignment in the case of arbitrary triangle-free CSPs (recall Definition 3). We
now restate Theorem 2 and give its proof. As in the proof of Theorem 7, we can easily move
from an expectation guarantee to a high probability guarantee by first applying Markov’s
inequality, and then repeating the algorithm exp(k) poly(n,m) times; hence we will prove
the expectation guarantee here.

I Theorem 9. There is a poly(m,n, exp(k))-time randomized algorithm with the following
guarantee. Let the input be a triangle-free instance over n Boolean variables, with m arbitrary
constraints each of arity between 2 and k. Assume that each variable participates in at
most D constraints. Let the associated polynomial be P(x). Then the algorithm outputs an
assignment x ∈ {±1}n with

E[P(x)] ≥ exp(−O(k)) ·
n∑
i=1

√
deg(i)
m

≥ exp(−O(k)) · 1√
D
.

Proof. Let (F,G) be a partition of [n], with F standing for “Fixed” and G standing for
“Greedy”. Eventually the algorithm will choose the partition randomly, but for now we treat
it as fixed. We will write the two parts of the algorithm’s random assignment x as (xF ,xG).
The bits xF will first be chosen independently and uniformly at random. Then the bits xG
will be chosen in a careful way which will make them uniformly random, but not completely
independent.

To make this more precise, define a constraint (P`, S`) to be active if its scope S` contains
exactly one coordinate from G. Let us partition these active constraints into groups

Nj = {` : (P`, S`) is active and S` 3 j}, j ∈ G.

B.Barak et al. 121

For each coordinate j ∈ G, we’ll define Aj ⊂ F to be the union of all active scopes involving j
(but excluding j itself); i.e.,

Aj =
⋃
{S` \ {j} : ` ∈ Nj}.

This set Aj may be empty. Our algorithm’s choice of xG will have the following property:

∀j ∈ G, the distribution of xj is uniformly random, and depends only on (xi : i ∈ Aj). (†)

From property (†) we may derive:

I Claim 9.1. For every inactive constraint (P`, S`), the random assignment bits xS` are
uniform and independent.

Proof of Claim. First consider the coordinates j ∈ S`∩G. By the property (†), each such xj
depends only on (xi : i ∈ Aj); further, these sets Aj are disjoint precisely because of the
“no hyper-triangles” part of triangle-freeness. Thus indeed the bits (xj : j ∈ S` ∩ G) are
uniform and mutually independent. The remaining coordinates S` ∩ F are also disjoint from
all these (Aj)j∈S`∩G, by the “no overlapping constraints” part of the triangle-free property.
Thus the remaining bits (xi : i ∈ S` ∩ F) are uniform, independent, and independent of the
bits (xj : j ∈ S` ∩G), completing the proof of the claim. J

An immediate corollary of the claim is that all inactive constraints, P ` contribute nothing, in
expectation, to E[P(x)]. Thus it suffices to consider the contribution of the active constraints.
Our main goal will be to show that the bits xG can be chosen in such a way that

∀j ∈ G E
[∑
`∈Nj

P `(xS`)
]
≥ exp(−O(k)) ·

√
|Nj | (8)

and hence

E[P(x)] ≥ 1
m
· exp(−O(k)) ·

∑
j∈G

√
|Nj |. (9)

Given (9) it will be easy to complete the proof of the theorem by choosing the partition
(F,G) randomly.

So towards showing (8), fix any j ∈ G. For each ` ∈ Nj we can write P `(xS`) =
xjQ`(xS`\{j}) +R`(xS`\{j}), where Q` = ∂jP ` = ∂jP`. Since the bits xi for i ∈ S` \ {j} ⊂ F
are chosen uniformly and independently, the expected contribution to (8) from the R`
polynomials is 0. Thus we just need to establish

E
[
xj ·

∑
`∈Nj

Q`

]
≥ exp(−O(k)) ·

√
|Nj |, where Q`

def= Q`(xS`\{j}). (10)

We now finally describe how the algorithm chooses the random bit xj . Naturally, we will
choose it to be +1 when

∑
`∈Nj Q` is “large” and −1 otherwise. Doing this satisfies the

second aspect of property (†), that xj should depend only on (xi : i ∈ Aj). To satisfy the
first aspect of property (†), that xj is equally likely ±1, we are essentially forced to define

xj = sgn
(∑
`∈Nj

Q` − θj
)
, (11)

where θj is defined to be a median of the random variable
∑
`∈Nj Q`.

(Actually, we have to be a little careful about this definition. For one thing, if the median
θj is sometimes achieved by the random variable, we would have to carefully define sgn(0)

APPROX/RANDOM’15

122 Beating the Random Assignment on CSPs of Bounded Degree

to be sometimes +1 and sometimes −1 so that xj is equally likely ±1. For another thing,
we are assuming here that the algorithm can efficiently compute the medians θj . We will
describe how to handle these issues in a technical remark after the proof.)

Having described the definition (11) of xj satisfying property (†), it remains to verify the
inequality (10). Notice that by the “no overlapping constraints” aspect of triangle-freeness,
the random variables Q` are actually mutually independent. Further, Lemma 4 implies that
each has variance Ω(2−k); hence the variance of Q

def=
∑
`∈Nj Q` is exp(−O(k)) · |Nj |. Thus

inequality (10) is equivalent to

E[sgn(Q− θj)Q] ≥ exp(−O(k)) · stddev[Q] = exp(−O(k)) · stddev[Q− θj].

Now

E[sgn(Q− θj)Q] = E[sgn(Q− θj)(Q− θj + θj)] = E[|Q− θj |] + E[xj · θj]. (12)

We have E[xj · θj] = 0 since E[xj] = 0. And as for E[|Q− θj |], it is indeed at least
exp(−O(k)) · stddev[Q] by Fact 5, since Q is a degree-(k − 1) function of uniform and
independent random bits. Thus we have finally established (8), and therefore (9).

To conclude, we analyze what happens when the algorithm initially chooses a uniformly
random partition (F ,G) of [n]. In light of (9), it suffices to show that for each i ∈ [n] we
have

E
[
1[i ∈ G] ·

√
|N i|

]
≥ exp(−O(k)) ·

√
deg(i). (13)

We have P[i ∈ G] = 1
2 ; conditioning on this event, let us consider the random variable |N i|;

i.e., the number of active constraints involving variable xi. A constraint scope S` containing i
becomes active if and only if all the other indices in S` go into F , an event that occurs with
probability 2−k+1 (at least). Furthermore, these events are independent across the scopes
containing i because of the “no overlapping constraints” property of triangle-freeness. Thus
(conditioned on i ∈ G), each random variable |N i| is the sum A1 + · · ·+ Adeg(i) independent
indicator random variables, each with expectation at least 2−k+1. Thus we indeed have
E[
√
|N i|] ≥ exp(−O(k))

√
deg(i) as needed to complete the proof of (13). This follows from

the well known fact that E[
√
Binomial(d, p)] ≥ Ω(min(

√
dp, dp)). (Alternatively, this follows

from the fact that A1 + · · ·+ Adi is at least its expectation di2−k+1 with probability at least
exp(−O(k)), by Fact 5. Here we would use that the Aj ’s are degree-(k − 1) functions of
independent random bits defining (F ,G)). The proof is complete. J

I Remark. Regarding the issue of algorithmically obtaining the medians in the above proof:
In fact, we claim it is unnecessary for the algorithm to compute the median θj of each Qj

precisely. Instead, our algorithm will (with high probability) compute a number θ̃j and a
probabilistic way of defining sgn(0) ∈ {±1} such that, when xj is defined to be sgn(Q− θ̃j),
we have |E[xj]| ≤ δ, where δ = 1/poly(m,n, exp(k)) is sufficiently small. First, let us briefly
say why this is sufficient. The above proof relied on E[xj] = 0 in two places. One place was
in the last term of (12), where we used E[xj · θj] = 0. Now in the approximate case, we’ll
have |E[xj · θ̃j]| ≤ δm, and by taking δ appropriately small this will contribute negligibly
to the overall theorem. The other place that E[xj] = 0 was used was in deducing from
Claim 9.1, that the inactive constraints contributed nothing to the algorithm’s expected
value. When we merely have |E[xj]| ≤ δ (but still have the independence used in the claim),
it’s easy to see from Fourier considerations that each inactive constraint still contributes
at most 2kδ to the overall expectation, and again this is negligible for the theorem as

B.Barak et al. 123

a whole if δ = 1/ poly(m,n, exp(k)) is sufficiently small. Finally, it is not hard to show
that the algorithm can compute an appropriate θ̃j and probabilistic definition of sgn(0) in
poly(m,n, exp(k)) time (with high probability), just by sampling to find a good approximate
median θ̃j and then also estimating P[Qj = θ̃j] to handle the definition of sgn(0).

Acknowledgments. We thank Scott Aaronson for bringing the paper of Farhi et al. [4]
to (some of) the authors’ attention. RO, DW, and JW were supported by NSF grants
CCF-0747250 and CCF-1116594. DW was also supported by the NSF Graduate Research
Fellowship Program under grant DGE-1252522; JW was also supported by a Simons Graduate
Fellowship. OR, DS, and AV acknowledge the support of the Simons Collaboration on
Algorithms and Geometry. OR was also supported by NSF grant CCF-1320188. DS was also
supported by a Sloan fellowship, a Microsoft Research Faculty Fellowship, and by the NSF.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

References
1 Noga Alon. On the edge-expansion of graphs. Combin. Probab. Comput., 6(2):145–152,

1997.
2 Bonnie Berger and Peter W. Shor. Approximation alogorithms for the maximum acyclic

subgraph problem. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’90, pages 236–243, Philadelphia, PA, USA, 1990. Society for Industrial
and Applied Mathematics.

3 Irit Dinur, Ehud Friedgut, Guy Kindler, and Ryan O’Donnell. On the Fourier tails of
bounded functions over the discrete cube. Israel J. Math., 160:389–412, 2007.

4 Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm applied to a bounded occurrence constraint problem, 2014. arXiv:1412.6062.

5 Venkatesan Guruswami and Yuan Zhou. Approximating bounded occurrence ordering csps.
In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 7408
of Lecture Notes in Computer Science, pages 158–169. Springer Berlin Heidelberg, 2012.

6 Johan Håstad. On bounded occurrence constraint satisfaction. Inform. Process. Lett.,
74(1-2):1–6, 2000.

7 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
8 Johan Håstad and S. Venkatesh. On the advantage over a random assignment. Random

Structures Algorithms, 25(2):117–149, 2004.
9 Subhash Khot and Assaf Naor. Linear equations modulo 2 and the L1 diameter of convex

bodies. SIAM J. Comput., 38(4):1448–1463, 2008.
10 Konstantin Makarychev. Local search is better than random assignment for bounded occur-

rence ordering k-csps. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, February 27 – March 2, 2013, Kiel, Germany, pages 139–147, 2013.

11 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
12 James B. Shearer. A note on bipartite subgraphs of triangle-free graphs. Random Structures

Algorithms, 3(2):223–226, 1992.

APPROX/RANDOM’15

	Introduction
	Recent developments and our work
	Overview of our techniques

	Preliminaries
	A simple proof for Max-3XOR
	A general result for bounded-influence functions
	Triangle-free instances

