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Abstract
A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair
of vertices in G is connected by at least one path in which no two edges are coloured the same.
The minimum number of colours required to rainbow colour G is called its rainbow connection
number. Chakraborty, Fischer, Matsliah and Yuster have shown that it is NP-hard to compute
the rainbow connection number of graphs [J. Comb. Optim., 2011]. Basavaraju, Chandran,
Rajendraprasad and Ramaswamy have reported an (r + 3)-factor approximation algorithm to
rainbow colour any graph of radius r [Graphs and Combinatorics, 2012]. In this article, we
use a result of Guruswami, Håstad and Sudan on the NP-hardness of colouring a 2-colourable
4-uniform hypergraph using constantly many colours [SIAM J. Comput., 2002] to show that for
every positive integer k, it is NP-hard to distinguish between graphs with rainbow connection
number 2k + 2 and 4k + 2. This, in turn, implies that there cannot exist a polynomial time
algorithm to rainbow colour graphs with less than twice the optimum number of colours, unless
P = NP.

The authors have earlier shown that the rainbow connection number problem remains NP-
hard even when restricted to the class of chordal graphs, though in this case a 4-factor approx-
imation algorithm is available [COCOON, 2012]. In this article, we improve upon the 4-factor
approximation algorithm to design a linear-time algorithm that can rainbow colour a chordal
graph G using at most 3/2 times the minimum number of colours if G is bridgeless and at most
5/2 times the minimum number of colours otherwise. Finally we show that the rainbow connec-
tion number of bridgeless chordal graphs cannot be polynomial-time approximated to a factor
less than 5/4, unless P = NP.
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1 Introduction

When a network (transport, communication, social, etc) is modelled as a graph, connectivity
gives a way of quantifying its robustness. Due to the diverse application scenarios and
manifold theoretical interests, many variants of the connectivity problem have been studied.
One typical case is when there are different possible types of connections (edges) between
nodes and additional restrictions on connectivity based on the types of edges that can be used
in a path. In this case we can model the network as an edge-coloured graph. One natural
restriction to impose on connectivity is that any two nodes should be connected by a path in
which no edge of the same type (colour) occurs more than once. This is precisely the property
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called rainbow connectivity. Such a restriction for the paths can arise, for instance, in routing
packets in a cellular network with transceivers that can operate in multiple frequency bands
or in routing secret messages between security agencies using different handshaking passwords
in different links [18, 5]. The problem was formalised in graph theoretic terms by Chartrand,
Johns, McKeon, and Zhang [10].

An edge colouring of a graph is a function from its edge set to the set of natural numbers.
A path in an edge coloured graph with no two edges sharing the same colour is called a
rainbow path. An edge coloured graph is said to be rainbow connected if every pair of vertices
is connected by at least one rainbow path. Such a colouring is called a rainbow colouring of
the graph. A rainbow colouring using minimum possible number of colours is called optimal.
The minimum number of colours required to rainbow colour a connected graph G is called its
rainbow connection number, denoted by rc(G). For example, the rainbow connection number
of a complete graph is 1, that of a path is its length, that of an even cycle is half its length,
and that of a tree is its number of edges. Note that disconnected graphs cannot be rainbow
coloured and hence their rainbow connection number is left undefined. Any connected graph
can be rainbow coloured by giving distinct colours to the edges of a spanning tree of the
graph. Hence the rainbow connection number of any connected graph is less than its number
of vertices. It is trivial to see that that rc(G) is at least the diameter of G. It is easy to see
that no two bridges in a graph can get the same colour under a rainbow colouring and hence
rc(G) is lower bounded by the number of bridges in the G.

While formalising the concept of rainbow colouring, Chartrand et al. also determined
the rainbow connection number for some special graphs [10]. Subsequently, there have been
various investigations towards finding good upper bounds for rainbow connection number in
terms of other graph parameters [4, 20, 6, 3] and for many special graph classes [19, 6, 2].
Behaviour of rainbow connection number in random graphs is also well studied [4, 15, 21, 13].
A basic introduction to the topic can be found in Chapter 11 of the book Chromatic Graph
Theory by Chartrand and Zhang [9] and a survey of most of the recent results in the area can
be found in the article by Li and Sun [18] and also in their monograph Rainbow Connection
of Graphs [17].

The first result showing the computational difficulty of the rainbow colouring problem
was due to Chakraborty, Fischer, Matsliah, and Yuster [5]. They showed that it is NP-hard
to compute the rainbow connection number of an arbitrary graph. In particular, it was
shown that the problem of deciding whether a graph can be rainbow coloured using 2 colours
is NP-complete. Later, Ananth, Nasre, and Sarpatwar [1] complemented the above result
and now we know that for every integer k ≥ 2, it is NP-complete to decide whether a given
graph can be rainbow coloured using k colours. To the best of our knowledge, hitherto no
results are reported on the hardness of approximation of rainbow connection number.

In this article we show that, for any positive integer k, it is NP-hard to distinguish
between graphs with rainbow connection number 2k + 2 and 4k + 2 (Corollary 3). This
precludes the possibility of having a polynomial time algorithm to rainbow colour graphs
using less than twice the optimum number of colours, unless P = NP (Corollary 4). The
proof is by a reduction from a hypergraph colouring problem. It was shown by Guruswami,
Håstad, and Sudan that, for any constant c, it is NP-hard to colour a 2-colourable 4-uniform
hypergraph with c colours [14]. It follows almost directly from their arguments that, for any
constant c ≥ 2, given a 4-uniform hypergraph H with chromatic number either 2 or more
than c, it is NP-complete to decide whether the chromatic number of H is 2. We reduce
this problem to a problem of determining whether a given bridgeless bipartite graph G with
rc(G) ∈ {2k + 2, 4k + 2} has rc(G) = 2k + 2 for any constant k ≤ (c − 1)/4 (Theorem 2).
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Currently, the best approximation guarantee for this problem on general graphs is given
by an O(nm)-time (r + 3)-factor approximation algorithm for rainbow colouring a graph
with radius r by Basavaraju et al. [3]. The gap between the algorithmic guarantee and
the hardness of approximation shown here invites a deeper investigation into the problem.
We are inclined towards believing that there might exist a polynomial-time constant-factor
approximation algorithm for this problem.

One large subclass of graphs for which a constant-factor approximation algorithm is
known to exist for the rainbow connection number problem is the class of chordal graphs.
Chandran et al. have shown that any bridgeless chordal graph can be rainbow coloured
using at most 3r colours, where r is the radius of the graph [6]. The proof given there is
constructive and can be easily extended to a polynomial-time algorithm which will colour any
chordal graph G with b bridges and radius r using at most 3r + b colours. Since max{r, b} is
a lower bound for rc(G), this immediately gives us a 4-factor approximation algorithm. We
modify this algorithm slightly using a technique used by Li and Dong in [12] to reuse bridge
colours and design a linear-time algorithm to rainbow colour chordal graphs (Algorithm 1).
We then do a careful analysis using distance properties of chordal graphs to show that
for any chordal graph G with diameter at least 3, the above algorithm rainbow colours G
using at most 5

2rc(G) colours. Further, it follows that if G is bridgeless, then this algorithm
uses at most 3

2rc(G) + 3 colours only (Corollary 6). This brings to table the question of
approximation hardness of the problem when restricted to chordal graphs.

We have shown, in an earlier work, that for every k ≥ 3, the problem of deciding whether
a given graph can be rainbow coloured using k colours remains NP-complete even when
restricted to the class of chordal graphs [7]. In this article we go further and show an
inapproximability result for the case. From the same hypergraph colouring problem that
we used for the previous reduction, we give a different and more involved reduction to show
that, for any positive integer k, given a bridgeless chordal graph G with rc(G) ∈ {4k, 5k},
it is NP-complete to decide whether rc(G) = 4k (Corollary 8). As before, this precludes
the possibility of having a polynomial-time algorithm to rainbow colour bridgeless chordal
graphs with less than 5/4 times the optimal number of colours (Corollary 9). This should
be contrasted with the case of split graphs, which are a proper subclass of chordal graphs.
We have shown in an earlier work that it is NP-hard to determine the rainbow connection
number of split graphs, but nevertheless designed a linear-time algorithm which will rainbow
colour any split graph G using at most rc(G) + 1 colours [7].

2 Preliminaries

First we recall some standard graph theoretic terminology that we will use in this article.
All graphs considered here are finite, simple and undirected. For a graph G, we use V (G)
and E(G) to denote its vertex set and edge set respectively. Let G be a connected graph.
The distance between two vertices u and v in G, denoted by dG(u, v) is the length of a
shortest path between them in G, where the length of a path is the number of edges in that
path. The eccentricity of a vertex v is eccG(v) := maxx∈V (G) dG(v, x). The diameter of G
is diam(G) := maxx∈V (G) eccG(x) and radius of G is radius(G) := minx∈V (G) eccG(x). A
vertex is called central in G if its eccentricity is equal to the radius of G. The boundary of
G with respect to a vertex x is {v ∈ V (G) : dG(x, v) = eccG(x)}. If G has a unique central
vertex x, then the boundary of G with respect to x will be referred to as just the boundary of
G. The distance of a vertex v from a subset S of V (G) is mins∈S dG(v, s). The neighbourhood
N(v) of a vertex v is the set of vertices adjacent to v but not including v. A bridge in a
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connected graph G is an edge of G whose deletion disconnects G. A connected graph is
called bridgeless if it has no bridges. A graph is called chordal, if it has no induced cycle of
length greater than 3. A graph is called a split graph, if its vertex set can be partitioned into
a clique and an independent set. It is easy to see that split graphs form a subclass of chordal
graphs.

Next we define hypergraphs and their colouring. A hypergraph H is a tuple (V,E), where
V is a finite set and E is a collection of subsets of V . Elements of V and E are called vertices
and (hyper)edges respectively. A vertex of H is called isolated if its not part of any edge of
H. The hypergraph H is called r-uniform if |e| = r for every e ∈ E. Given a hypergraph
H(V,E) and a colouring c : V → N, an edge is called k-coloured if it contains vertices of k
different colours. An edge is called monochromatic if it is 1-coloured. The colouring c is
called proper if no edge in E is monochromatic under c. The minimum number of colours
required to properly colour H is called its chromatic number and is denoted by χ(H).

In the two approximation hardness results that we prove in this article, we make use of
the following deep result of Guruswami, Håstad, and Sudan [14].

I Theorem 1 (Guruswami, Håstad, Sudan). For every constant c ≥ 2, given a 4-uniform
hypergraph H with either χ(H) = 2 or χ(H) > c, it is NP-complete to decide whether
χ(H) = 2.

Theorem 1 is not explicitly stated as above in their work, but it will follow easily from
Corollary 4.3 in [14]. Corollary 4.3 in [14] is a result about a problem called 4-set splitting
which easily translates into the 4-uniform hypergraph colouring problem as noted in the
proof of Theorem 4.4 there.

Given a minimisation problem P , an (α, β)-approximation algorithm for P is an algorithm
whose output on every instance I to P is a solution of P for I with cost at most αx + β,
where x denotes the cost of an optimum solution of P for I. If α and β are independent of the
instance I, then the (α, β)-approximation algorithm is called a constant factor approximation
algorithm for P . An (α, 0)-approximation algorithm will also be referred to as an α-factor
algorithm.

Throughout this article, the shorthand [n] denotes the set {1, . . . , n}. The cardinality of
a set S is denoted by |S|.

3 General graphs: Hardness of approximation

I Theorem 2. For every positive integer k, the first problem below (P1) is polynomial-time
reducible to the second (P2).
P1. Given a 4-uniform hypergraph H with either χ(H) = 2 or χ(H) ≥ 4k+ 2, decide whether

χ(H) = 2.
P2. Given a bipartite bridgeless graph G with rc(G) ∈ {2k + 2, 4k + 2}, decide whether

rc(G) = 2k + 2.

Proof. Let k be arbitrary and H = (VH , EH) be the 4-uniform hypergraph given as an
instance of P1. Since isolated vertices do not affect the chromatic number of a hypergraph,
we can safely assume that H does not contain an isolated vertex. We construct a bridgeless
graph G from H as follows.

First we construct a graph G′0 with V (G′0) = {x} ∪ VH ∪ EH and E(G′0) = E1 ∪ E2
where E1 = {{x, v} : v ∈ VH} and E2 = {{v, e} : v ∈ VH , e ∈ EH , v ∈ e in H}. From G′0 we
construct G0 by replacing each edge {v, e} in E2 with a new k-length path between v and e.
Let G1, . . . , G4k+2 be copies of G0. We obtain our desired graph G by identifying the vertex
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x as common in every Gi, i ∈ [4k + 2]. It is easy to see that G is bipartite, bridgeless and
has radius k + 1 with x as the unique central vertex. The (4k + 2)|VH | neighbours of x in G
are the vertices corresponding to the vertices of H and their collection is denoted by VVH

.
Similarly the (4k + 2)|EH | vertices in G at distance k + 1 from x (the boundary vertices of
G) are those corresponding to the hyperedges of H and their collection is denoted by VEH

.
It is evident that the construction of G from H takes time at most polynomial in size of H.

We prove the theorem by establishing the following two claims. The converses of both
the claims are also true since the converse of one is the contrapositive of the other.

Claim 2.1. If χ(H) = 2 then rc(G) = 2k + 2.

Claim 2.2. If χ(H) ≥ 4k + 2 then rc(G) = 4k + 2.

Since the diameter of G is 2k+2 we see that rc(G) ≥ 2k+2 always. Hence to prove Claim
2.1 it suffices to show that rc(G) ≤ 2k + 2 whenever χ(H) = 2. Let cH : VH → {a, b} be a
proper 2-colouring of H. For each vertex v ∈ VVH

consider the subtree Tv of G formed by all
the (k + 1)-length paths starting with the edge {x, v} and reaching some vertex e ∈ VEH

.
We remark that, in this case, e will correspond to a hyperedge of H which contains v. If
cH(v) = a (b) then colour every edge of Tv at a distance j from x in Tv with colour aj
(bj) for each j ∈ {0, . . . , k}. Note that all the subtrees considered above are pairwise edge-
disjoint and hence every edge gets a unique colour. We argue that the above edge-colouring
obtained for G is a rainbow colouring. First observe that since cH is a proper colouring
of H, every vertex u in G is part of a (2k + 2)-cycle Cu of G containing x and with edge
colours a0, . . . , ak, bk, . . . , b0 in that order starting from an edge incident on x. Given any
two vertices u, v ∈ V (G), it is not difficult to see that at least one of the four possible walks
from u to v along Cu, x and Cv contains a rainbow path. Hence Claim 2.1.

In order to prove Claim 2.2, we first show the easy fact that G can always be rainbow
coloured using 4k + 2 colours. Let H ′ be a hyperedge-maximal sub-hypergraph of H which
can be properly 2-coloured. Let VEH′ be the set of (4k + 2)|E(H ′)| vertices in VEH

⊂ V (G)
which correspond to the hyperedges in H ′. Let G′ be the induced subgraph of G consisting
of the vertices on all the (k + 1)-length paths from x to VEH′ . The maximality of H ′ ensures
every vertex v of H is part of some hyperedge in H ′. Hence VVH

⊂ V (G′) and we can
rainbow colour G′ using the 2k + 2 colours from {a0, . . . , ak, b0, . . . , bk} as we did while
showing Claim 2.1. Now contract entire G′ in G to a single vertex y to obtain a minor G′′ of
G. The graph G′′ consists of the vertex y and separate sets of 4 edge-disjoint k-length paths
from y to each vertex in VEH

\ VEH′ . It is easy to edge-colour G′′ using the 2k colours from
{c1, . . . , ck, d1, . . . , dk} so that every vertex u of G′′ is part of a 2k-cycle of G′′ containing y
and with edge colours c1, . . . , ck, dk, . . . , d1 in that order starting from an edge incident on
y. This makes G′′ rainbow connected as earlier. Now we can combine the above rainbow
colourings of G′ and G′′ in the obvious manner to obtain a rainbow colouring of G using
4k + 2 colours.

Finally we show that if χ(H) > 4k+ 1 then rc(G) > 4k+ 1. For the sake of contradiction,
assume that χ(H) > 4k + 1 and rc(G) ≤ 4k + 1. Let cG be a rainbow colouring of G using
rc(G) colours. From cG we obtain (4k + 2) different vertex colourings {c1

H , . . . , c
4k+2
H } of H

as follows. For a vertex v of H and i ∈ [4k + 2], let vi be the vertex in Gi corresponding
to v. Then set ciH(v) = cG({x, vi}). Since every one of the colourings thus obtained uses
at most 4k + 1 colours and χ(H) > 4k + 1, none of these colourings is proper. That is, for
each i ∈ [4k + 2], there exists a hyperedge ei ∈ E(H) which is monochromatic under ciH .
Among them, by pigeonhole principle, there exist two hyperedges es and et, s, t ∈ [4k + 2]
and s 6= t, such that csH(vs) = ctH(vt),∀(vs, vt) ∈ es × et. Let Vs (Vt) be the set of four
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vertices in Gs (Gt) corresponding to the vertices of H belonging to the edge es (et) and let
fs (ft) be the vertex in Gs (Gt) corresponding to the hyperedge es (et). We see that every
edge in {{x, v} : v ∈ Vs ∪ Vt} gets the same colour under cG. Hence none of the 16 shortest
paths between fs and ft in G is rainbow coloured under cG. Any other path between fs
and ft is of length at least 4k + 2 and since cG uses at most 4k + 1 colours it is not rainbow
coloured. This contradicts the fact that cG was a rainbow colouring of G. J

Since Problem P1 is known to be NP-hard (Theorem 1), so is Problem P2. Further,
it is easy to see that problem P2 is in NP. Hence the following corollary and hardness of
approximation.

I Corollary 3. For every positive integer k, given a bipartite bridgeless graph G with rc(G) ∈
{2k + 2, 4k + 2}, it is NP-complete to decide whether rc(G) = 2k + 2.

I Corollary 4. For any α, β ∈ R with α > 0 there does not exist a polynomial time (2−α, β)
approximation algorithm for determining the rainbow connection number of graphs unless
P = NP.

Proof. Suppose for some α > 0, there exists a polynomial time (2 − α, β) approximation
algorithm A to determine the rainbow connection number of graphs. Choose a positive integer
k large enough so that (2 + β)/(2k + 2) < α. If the input graph G to A has rc(G) at most
2k+ 2, then A will certify that rc(G) ≤ (2−α)(2k+ 2) +β < (2− 2+β

2k+2 )(2k+ 2) +β = 4k+ 2.
This contradicts Corollary 3. J

4 Chordal graphs: An approximation algorithm and inapproximability

I Theorem 5. For every connected chordal graph G with b bridges and radius r, Algorithm 1
(ColourChordalGraph) returns a rainbow colouring of G using at most 3r+max{0, b−3}
colours in linear time.

Proof. Let Bi be the number of edges between Vi−1 and Vi which are bridges of G. First
we argue that ∀i ∈ [r], and ∀v ∈ Vi, if N(v) ∩ Vi−1 = {u} and N(v) ∩ Vi = ∅, then the edge
e = {v, u} is a bridge in G. Otherwise, a smallest cycle C containing the edge e has vertices
from Vi−1 and Vi+1 and hence should have a length at least 4. The cycle C does not have any
chords since it is a smallest cycle containing e. This contradicts the fact that G is chordal.
Hence for each i, bi counts the number of bridges of G between Vi−1 and Vi and thus the
number of colours used in round i is at most max{3, Bi}. Hence in total, Algorithm 1 uses
at most

∑r
i=1 max{3, Bi} ≤ 3r + max{0, b− 3} colours.

Next we show that cG makes G rainbow connected. For each i ∈ [r], let ki = max{3, Bi}
and Ki = {ci,1, . . . , ci,ki

}. In cG, every bridge in G between Vi and Vi−1 gets a distinct
colour from Ki. Every vertex v ∈ Vi which is not an end point of a bridge from Vi−1 to
Vi is contained in a 2- or 3-length path starting from Vi−1 touching v and going back to
Vi−1 which is coloured (ci,1, ci,2) or (ci,1, ci,3, ci,2), respectively. Hence for any two vertices
u, v ∈ Vi, there exist rainbow paths Pu from u to Vi−1 and Pv from v to Vi−1 such that the
colours assigned by cG to Pu and Pv form disjoint subsets of Ki. Since this is true for each
i ∈ [r], for any two distinct vertices u, v ∈ V (G), there exist two rainbow paths Pu from u to
x and Pv from v to x such that the set of colours assigned to Pu and Pv by cG are disjoint
till the first common vertex in these two paths. Hence Pu ∪ Pv contains a u–v rainbow path.

Finally we show that Algorithm 1 runs in O(m) time where m is the number of edges in
the input graph. Chepoi and Dragan have designed an algorithm which finds a central vertex
of a chordal graph in O(m) time [11]. Hence the initialisation steps in Algorithm 1 runs in
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Algorithm 1: ColourChordalGraph
Data: G(V,E), a connected chordal graph
Result: A rainbow colouring cG of G

Initialisation:
x ← a central vertex of G
r ← radius of G
Vi ← {v ∈ V (G) : dG(v, x) = i} for each i ∈ [r]
bi ← 0 for each i ∈ [r] // bi counts the number of Vi−1 to Vi bridges in G.

for i = 1 to r do
cG({v, v′}) = ci,3, ∀v, v′ ∈ Vi and {v, v′} ∈ E(G)
foreach v ∈ Vi such that |N(v) ∩ Vi−1| ≥ 2 do

Let {u1, . . . , ut} = N(v) ∩ Vi−1
cG({v, u1}) = ci,1
cG({v, us}) = ci,2,∀s ∈ {2, . . . , t}

end
foreach v ∈ Vi such that |N(v) ∩ Vi−1| = 1 do

Let u be the single vertex in N(v) ∩ Vi−1
if N(v) ∩ Vi = ∅ then

bi = bi + 1 // {v, u} is a bridge in G

cG({v, u}) = ci,bi

else if ∃v′ ∈ N(v) ∩ Vi and ∃u′ ∈ N(v′) ∩ Vi−1 such that cG(v′, u′) = ci,1 then
cG({v, u}) = ci,2

else
cG({v, u}) = ci,1

end
end

end

return cG

linear time. Each for-loop visits each vertex in G at most once. If we flag every vertex v ∈ Vi
when it gets a ci,1-coloured edge to Vi−1, the algorithm, when it visits a vertex, needs to
examine only its neighbours and incident edges. Hence the total running time in O(m). J

Chang and Nemhauser have shown that the radius r and diameter d of any chordal graph
are constrained by the inequality r ≤ d/2 + 1 [8]. Hence we get the following corollary to
Theorem 5.

I Corollary 6. If G is a connected chordal graph with diameter at least 3, then Algorithm 1
returns a rainbow colouring of G using at most 5

2rc(G) colours. If G is bridgeless then
Algorithm 1 uses only 3

2rc(G) + 3 colours.

Proof. Let G be a chordal graph with b bridges, diameter d ≥ 3 and radius r. Let a(G) be
the number of colours used by Algorithm 1 in rainbow colouring G. Then by Theorem 5 and
the bound by Chang and Nemhauser, we have

a(G) ≤ 3
2d+ 3 + max{0, b− 3} = 3

2d+ max{3, b} (1)
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Since d, b ≤ rc(G) (easy observations) and d ≥ 3 (by assumption), we get a(G) ≤ 3
2rc(G) +

rc(G) = 5
2rc(G). Further if G is bridgeless then a(G) ≤ 3

2rc(G) + 3. J

I Remark. The requirement that diam(G) ≥ 3 in Corollary 6 is a consequence of the generality
of Algorithm 1 and not due to any inherent difficulty in the problem. If diam(G) = 1, then
G is a clique and hence a colouring which gives every edge of G the same colour is a rainbow
colouring. Li, Li, and Liu have shown that any graph G with diameter 2 has rc(G) ≤ 5 if it
is bridgeless, and rc(G) ≤ b+ 2 if it has b bridges [16].

In the context of the above approximation algorithm, we now state and prove the
inapproximability result on chordal graphs.

I Theorem 7. For every positive integer k, the first problem below (P1) is polynomial-time
reducible to the second (P2).
P1. Given a 4-uniform hypergraph H with either χ(H) = 2 or χ(H) ≥ 5k, decide whether

χ(H) = 2.
P2. Given a bridgeless chordal graph G with rc(G) ∈ {4k, 5k}, decide whether rc(G) = 4k.

Proof. Let k be arbitrary and H = (VH , EH) be the 4-uniform hypergraph given as an
instance of P1. Since isolated vertices do not affect the chromatic number of a hypergraph,
we can safely assume that H does not contain an isolated vertex. We construct a bridgeless
chordal graph G from H as follows.

First we construct a graph GH with V (GH) = {x}∪VH ∪EH and E(GH) = E1∪E2∪E3
where E1 = {{x, v} : v ∈ VH}, E2 = {{v, e} : v ∈ VH , e ∈ EH , v ∈ e in H}, and E3 =
{{v, v′} : v, v′ ∈ VH}. The graph GH is easily verified to be bridgeless and chordal. In
fact, it is a split graph with VH as the clique and {x} ∪ EH as the independent set. Now
we construct a graph G1 by taking (5k)k + 1 copies of GH and identifying x as common
in every copy. The common vertex x is relabelled as x0. The vertex x0 will serve as the
unique central vertex for G1 and all the Gi, i ∈ {2, . . . , k}, to be constructed next. Once
we have Gi for some i < k, we construct Gi+1 by joining to every vertex e in the boundary
of Gi, another copy of GH identifying x ∈ V (GH) with e. Note that the boundary of Gi
is the set of vertices at distance of radius(Gi) = 2i from x0, which in our case, turns out
to be all the vertices corresponding to some hyperedge of H in a copy of GH added in the
i-th step. The graph G = Gk constructed this way is our desired graph. Since a graph
obtained from two bridgeless chordal graphs by identifying a single vertex as common to
both is bridgeless and chordal, we see that G is a bridgeless chordal graph as desired. G has
diameter 4k and radius 2k with x0 as the unique central vertex. If h = |EH |, then G has(
(5k)k + 1

) (
1 + h+ · · ·+ hk−1) copies of GH and hence the construction of G takes only a

time polynomial in the size of H.
We prove the theorem by establishing the following two claims. The converses of both

the claims are also true since the converse of one is the contrapositive of the other.

Claim 7.1. If χ(H) = 2 then rc(G) = 4k.

Claim 7.2. If χ(H) ≥ 5k then rc(G) = 5k.

Since the diameter of G is 4k, it follows that rc(G) ≥ 4k always. Hence to prove Claim 7.1
it suffices to show that rc(G) ≤ 4k whenever χ(H) = 2. We define an edge-colouring cG of G
based on a red-blue colouring cH of H by describing the colours assigned to the edges of each
copy of GH in G. Let GiH be a copy of GH added at the i-the level, that is, x ∈ GiH is at a
distance 2i−2 from x0 in G. Recall that E(GiH) = E1∪E2∪E3, where E1 = {{x, v} : v ∈ VH},
E2 = {{v, e} : v ∈ VH , e ∈ EH , v ∈ e in H}, and E3 = {{v, v′} : v, v′ ∈ VH}. An edge
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{x, v} ∈ E1 is given colour ai (ci) if the vertex corresponding to v in H is coloured red
(blue) in cH . An edge {v, e} ∈ E2, v ∈ VH is given colour bi (di) if the vertex corresponding
to v in H is coloured red (blue) in cH . This ensures that every vertex in GiH is part of
a 4-cycle of GiH containing x ∈ V (GiH) and with edge colours ai, bi, di, ci in that order
starting from an edge incident on x. Colours on the edges in E3 do not matter to us and
hence we can give them any colour that is already used. This colouring cG of G thus
uses 4k colours and has the property that if u and v are two distinct vertices of G with
{dG(u, x0), dG(v, x0)} ⊂ {2i − 1, 2i}, i ∈ [k], then there exist two vertices u′ and v′ (not
necessarily distinct) with dG(u′, x0) = dG(v′, x0) = 2i− 2 and rainbow paths Pu from u to
u′ and Pv from v to v′ such that the colours used in Pu and Pv form two disjoint subsets of
{ai, bi, ci, di}. It is easy to see that this property ensures that cG is a rainbow colouring of G.

If we give G as an input graph to Algorithm 1, then the colouring returned by it will use
3 colours at all odd levels and 2 colours at all even levels. Hence the total number of colours
used is 5k which means rc(G) ≤ 5k. Hence to prove Claim 7.2 we only need to show that if
χ(H) ≥ 5k, then rc(G) ≥ 5k. Assume, for the sake of contradiction, that cG is a rainbow
colouring of G using less than 5k colours. Every copy G′H of GH in G then induces a vertex
colouring of c′H of H as c′H(v) = cG({x, v}), {x, v} ∈ E(G′H) for every v ∈ VH . Since c′H uses
less than 5k colours and χ(H) ≥ 5k, there exists a hyperedge e ∈ EH that is monochromatic
under c′H , which means that the second edge in all the 2-length paths from e to x in G′H
is of the same colour. Let us call such a vertex e a trapped vertex of G and the common
colour on the second edge of all the 2-length paths from e to x the blocking colour of e. Since
every copy of GH in G has at least one trapped vertex we get (5k)k + 1 disjoint sequences of
the form (t1, . . . , tk) such that t1 is a trapped vertex in G1, and ti, i ≥ 2 is a trapped vertex
in a copy of GH attached to ti−1. Since we have (5k)k + 1 such disjoint sequences there
exists at least 2 sequences (t1, . . . , tk) and (s1, . . . , sk) which induce the same sequence of
blocking colours. Hence in any rainbow path P between tk and sk, if dP (ti, ti−1) = 2, then
dP (si, si−1) ≥ 3 and vice versa. Hence the length of P is at least 5k and so P cannot be a
rainbow path in a colouring which uses less than 5k colours. This contradiction proves Claim
7.2. J

Since Problem P1 is known to be NP-hard (Theorem 1), so is Problem P2. Further,
it is easy to see that problem P2 is in NP. Hence the following corollary and hardness of
approximation.

I Corollary 8. For every positive integer k, given a bridgeless chordal graph G with rc(G) ∈
{4k, 5k}, it is NP-complete to decide whether rc(G) = 4k.

I Corollary 9. For any α, β ∈ R with α > 0, there does not exist a polynomial time (5/4−α, β)
approximation algorithm for determining the rainbow connection number of chordal graphs
unless P = NP.

Proof. Suppose for some α > 0, there exists a polynomial time (5/4− α, β) approximation
algorithm A to determine the rainbow connection number of chordal graphs. Choose a
positive integer k > β/4α. If the input chordal graph G to A has rc(G) at most 4k, then
A will certify that rc(G) ≤ (5/4 − α)4k + β = 5k − (4αk − β) < 5k. This contradicts
Corollary 8. J
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