
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 281–285

http://www.floc-conference.org/ICLP-home.html

HIGHER-ORDER LOGIC LEARNING AND λPROGOL

NIELS PAHLAVI 1

1 Department of Computing, Imperial College London
180 Queen’s Gate, London, United Kingdom
E-mail address: niels.pahlavi@imperial.ac.uk

URL: http://www.doc.ic.ac.uk/~namdp05/

Abstract. We present our research produced about Higher-order Logic Learning (HOLL),
which consists of adapting First-order Logic Learning (FOLL), like Inductive Logic Pro-
gramming (ILP), within a Higher-order Logic (HOL) context. We describe a first working
implementation of λProgol, a HOLL system adapting the ILP system Progol and the HOL
formalism λProlog. We compare λProgol and Progol on the learning of recursive theories
showing that HOLL can, in these cases, outperform FOLL.

Introduction, Problem Description and Background

Much of logic-based Machine Learning research is based on First-order Logic (FOL) and
Prolog, including Inductive Logic Programming (ILP). As such, learning higher-order theo-
ries is not possible for such a system, and even some first-order tasks are not handled well,
like “learning first-order recursive theories” which “is a difficult learning task” in a normal
ILP setting [Mal03]. Yet, [Far08] describes HOL as “a natural extension of first-order logic
(FOL) which is simple, elegant, highly expressive, and practical” and recommends its use
as an “attractive alternative to first-order logic”. HOL, which allows for quantification over
predicates and functions, is intrinsically more expressive than FOL, would give sounder log-
ical foundations, and “has generally been under-exploited” [Llo03] in logic-based Machine
Learning. According to [Llo03], “the logic programming community needs to make greater
use of the power of higher-order features and the related type systems and the use of HOL
in Computational Logic is illustrated: functional languages, like Haskell98; Higher-order
programming introduced with λProlog [Mil98]; integrated functional logic programming
languages like Curry or Escher; or the higher-order logic interactive theorem proving envi-
ronment “HOL”. It is also used in IBAL and for Deep Transfer Learning.

The use of HOL in ILP would allow to consider the learning of higher-order predicates;
but it would also make the learning of first-order learning theories sounder, more natural and
more intuitive through the use of higher-order predicates in background knowledge. More
generally, the expressivity of HOL would make it possible to represent mathematical proper-
ties like symmetry, reflexivity or transitivity, which would allow to handle equational reason-
ing and functions within a logic-based framework. We could also represent such properties
in the following fashion (in the case of symmetry) : R@X@Y ⇐ [sym@R,R@Y@X], and,

Key words and phrases: Inductive Logic Programming, Progol, Higher-order Logic, Higher-order Logic
Learning, λProlog.

c© N. Pahlavi
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.281

282 N. PAHLAVI

abduce for example that the move of the bishop in chess is symmetric: sym@bishop move.
About the use of probability in a logic-based setting, [Ng08] advocates for probability to
be captured directly in the theory itself, which can be done naturally and directly with
HOL, as opposed to almost all approaches having a clear separation between the logical
statements and the probabilities.

λProlog [Mil98] is a higher-order logic programming language handling scoping over
names and procedures, the use of lambda terms as data structures and higher-order pro-
gramming. It is based on Higher-order Horn Clauses (HOHC) (introduced in [Nad90] where
a theorem proving procedure for HOHC based on Huet’s unification algorithm in typed
λ-calculus [Hue75] is also outlined), which are “a generalization of Horn clauses to a higher-
order logic” obtained “by supplanting first-order terms with the terms of a typed λ-calculus
and by permitting quantification over function and predicate symbols”.

1. Goal of the Research and Overview of the existing Literature

The goal of my PhD research is, therefore, to develop Higher-order Logic Learning
(HOLL), which consists of generalizing logic-based Machine Learning, and particularly ILP,
from the first-order to the higher-order context. We have already made a first working
implementation of λProgol, a HOLL system adapting the ILP system Progol and the HOL
formalism λProlog. We decided to choose Higher-order Horn Clauses (HOHC) [Nad90] as
a HOL formalism, since it is one of the logical foundations of λProlog. As a ILP system,
we chose to adapt Progol [Mug95], which is a popular and efficient implementation.

We also want to determine whether HOLL can outperform First-order Logic Learning
(FOLL), assessing how the power of expressivity of HOL can be used to improve significantly
the learning capacity and efficiency of FOLL, and study the trade-off that there may be
between learnability and searching costs (the use of Henkin semantics as in [Wol94], seems
to alleviate these and maintain the structure of the search space). ILP seems to be rather
intuitively adaptable to a HOL formalism and we aim at developing a theory of HOLL as
well.

There have been attempts to use HOL for logic-based Machine Learning such as by
Harao starting in [Har90], Feng and Muggleton, and Furukawa and Goebel [Fur96]. They
provide different higher-order extensions of least general generalization to handle higher-
order terms in a normal ILP setting, whereas we use λProlog, a HOL framework, as a
logical foundation to extend first-order ILP to a higher-order context. The main similar
work is [Llo03] by Lloyd and Ng, where higher-order machine learning is also developed. It
details a learning system, called ALKEMY . A main difference is that Lloyd’s approach is
not based on Logic Programming and therefore on ILP. According to Flach, “it is almost a
rational reconstruction of what ILP could have been, had it used Escher-style HOL rather
than Prolog”; whereas we intend, through the use of higher-order Horn clauses to keep the
Horn clauses foundations of LP and ILP and to extend it.

2. Current Status of the Research and Preliminary Results

λProgol, a λProlog adaptation of the popular and efficient ILP system Progol was in-
troduced in [Pah09a] and [Pah09b] along with its algorithm adapting closely and intuitively
Progol and Mode-Directed Inverse Entailment. A first working implementation of λProgol
has since been made, tested, is described in [Pah10] and is available at [Pah]. Our first

HIGHER-ORDER LOGIC LEARNING AND λPROGOL 283

Figure 1: Left: Comparison between Progol and λProgol on the Ancestor example. Right:
Part (around one third) of the Romanov dynasty tree used in the experiments

choice of implementation was based on λProlog but revealed to be too inconvenient and
inefficient to use; instead the current implementation is in Prolog, which is more convenient
and more efficient; a requirement is the use of a λProlog interpreter, which was implemented
using a depth-first approach.

Initial promising results have been obtained so far about learning recursive theories.
In order to stress the difference in the learnability of a given problem between HOLL
and FOLL, and to ensure fairness and soundness, standard λProgol was compared against
standard Progol, whose algorithms are almost the same.

One of the results (used in [Mal03]) consists of learning the predicate ancestor given
a genealogical tree defined by facts for the predicates parent and married as background
knowledge and positive and negative examples of the predicate ancestor; for λProgol, the
higher-order predicate trans, which “given a predicate of two arguments, constructs its
transitive closure” is added to the background knowledge. The genealogical tree used for
this experiment is described in Fig.1 and contains 119 members over 11 relations of the
Romanov Russian dynasty.

To compare the two systems, we created files containing positive and negative exam-
ples of ancestor. These files contain an equal number of positive and negative examples
generated randomly. We then compared the respective predicative accuracy of Progol and

284 N. PAHLAVI

λProgol on these examples by doing a leave-one-out cross-validation. The results of this
experiment are shown in Fig.1.

For Progol, which has to learn the definition recursively, the larger the input and the
smaller the number of examples, the smaller the probability to learn the definition correctly.
Hence the difficulty to learn and the observation that the accuracy seems to decrease with
the number of examples. On the other hand, λProgol learns the correct definition in all
the cases, which is ancestor@X@Y⇐ [trans@parent@X@Y]. This definition is non recursive
and can be learned from any given positive example. On this example consisting of learning
a recursive definition from large data with few examples, we have showed that HOLL can
outperform FOLL. This result along with similar others are available at [Pah].

3. Expected Achievements and Open Issues

We intend to continue the tests and comparisons of λProgol against already existing
ILP systems to determine how HOLL may outperform FOLL as it was shown above. We
aim to present theoretical results for HOLL. ILP theory seems to be rather intuitively
adaptable within a HOL framework. For λProgol, we will have to prove that higher-order
inverse entailment is possible and to generalize correctness and complexity results for the
Progol Bottom Clause and Search algorithms. In [Wol94], a model-theoretic semantics
for HOHC is provided. We also want to investigate tasks and discoveries not learnable
by first-order ILP. It could be of interest to look at HOL theorem provers, or integrated
functional logic programming languages and Mathematical Discovery. Further objectives
may be to investigate abduction within λProgol, active learning, introduce Probability and
adapt Probabilistic Logic Learning (that I have studied during my MSc, [Mug06b] and
[Mug06a]) within HOL, look at applications such as Bioinformatics, where ILP has been
successfully applied, and consider other logics within λProlog.

Acknowledgement

I mostly wish to thank my supervisor Stephen Muggleton and Imperial College London
for allowing me to pursue my PhD in great conditions. I am also grateful to NICTA for
having given me the opportunity to visit their Canberra Research Laboratory for a month
and thoroughly interact and discuss my work with Kee Siong Ng, John Lloyd and Scott
Sanner.

References

[Far08] W. Farmer. The seven virtues of simple type theory. J. Applied Logic, 2008.
[Fur96] K. Furukawa, M. Imai, and R. Goebel. Hyper least general generalization and its application to

higher-order concept learning. Tech. report, Keio University, 1996.
[Har90] M. Harao. Analogical reasoning based on higher-order unification. In ALT. 1990.
[Hue75] G. Huet. A unification algorithm for typed λcalculus. Theor. Comp. Sci., 1975.
[Llo03] J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
[Mal03] D. Malerba. Learning recursive theories in the normal ILP setting. Fundam. Inform., 57(1):39–77,

2003.
[Mil98] Dale Miller. λProlog: An Introduction to the Language and its Logic. 1998.
[Mug95] S.H. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

URL http://www.doc.ic.ac.uk/\~shm/Papers/InvEnt.pdf

HIGHER-ORDER LOGIC LEARNING AND λPROGOL 285

[Mug06a] S.H. Muggleton and N. Pahlavi. The Complexity of Translating BLPs to RMMs. In Proceedings

of the 16th International Conference on Inductive Logic Programming. Springer-Verlag, 2006.
[Mug06b] S.H. Muggleton and N. Pahlavi. Stochastic Logic Programs: A Tutorial. In L. Getoor and

B. Taskar (eds.), Statistical Relational Learning. MIT Press, 2006.
[Nad90] G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 1990.
[Ng08] K. S. Ng, J. W. Lloyd, and W. T. B. Uther. Probabilistic modelling, inference and learning using

logical theories. Ann. Math. Artif. Intell., 54(1-3):159–205, 2008.
[Pah] N. Pahlavi. λProgol Homepage. http://www.doc.ic.ac.uk/˜namdp05/.
[Pah09a] N. Pahlavi and S. Muggleton. Higher-order Logic Learning. 19th International Conference on

Inductive Logic Programming. 2009. (Poster).
[Pah09b] N. Pahlavi and S. Muggleton. Higher-order Logic Learning and λProgol. IJCAI09 Workshop on

Abductive and Inductive Knowledge Development. 2009.
[Pah10] N. Pahlavi and S. Muggleton. Can HOLL outperform FOLL? In Proceedings of the 20th Interna-

tional Conference on Inductive Logic Programming. 2010. To Appear.
[Wol94] D. A. Wolfram. A semantics for λProlog. Theor. Comp. Sci., pp. 277–289, 1994.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

