
MySQL Router 2.1

Abstract

MySQL Router is part of InnoDB cluster, and is lightweight middleware that provides transparent routing between
your application and back-end MySQL Servers. It can be used for a wide variety of use cases, such as providing
high availability and scalability by effectively routing database traffic to appropriate back-end MySQL Servers. The
pluggable architecture also enables developers to extend MySQL Router for custom use cases. For additional details
about how MySQL Router is part of InnoDB cluster, see InnoDB Cluster.

MySQL Router 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to MySQL Router
8.0, and read the MySQL Router 8.0 documentation.

For notes detailing the changes in each release, see the MySQL Router Release Notes.

If you have not yet installed MySQL Router, download it from the download site.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Router, see MySQL Router Commercial License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Router, see MySQL Router Community License Information
User Manual for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Document generated on: 2018-10-19 (revision: 59552)

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql-router/en/
https://dev.mysql.com/downloads/router
http://forums.mysql.com
http://lists.mysql.com
http://downloads.mysql.com/docs/licenses/mysql-router-2.1-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-router-2.1-gpl-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-router-2.1-gpl-en.pdf

iii

Table of Contents
Preface and Legal Notices .. v
1 General Information ... 1

1.1 Routing for MySQL InnoDB cluster .. 1
1.2 Cluster Metadata and State .. 3
1.3 Connection Routing .. 4
1.4 Application Considerations .. 4
1.5 What's New in MySQL Router 2.1 ... 6

2 Installing MySQL Router .. 9
2.1 Installing MySQL Router on Linux ... 9
2.2 Installing MySQL Router on macOS .. 11
2.3 Installing MySQL Router on Windows .. 11
2.4 Installing MySQL Router from Source Code ... 12

2.4.1 Prerequisites .. 13
2.4.2 Compiling the Source Code ... 14
2.4.3 Installing from Source Code ... 16
2.4.4 Testing the Installation ... 17

3 Deploying MySQL Router .. 19
3.1 Bootstrapping ... 20
3.2 Trying out MySQL Router in a Sandbox .. 22
3.3 Basic Connection Routing ... 25

4 Configuration ... 27
4.1 Configuration File Syntax .. 27
4.2 Configuration File Locations .. 29
4.3 Configuration Options ... 31

4.3.1 MySQL Router Command Line Programs ... 31
4.3.2 Configuration File Options .. 43
4.3.3 Configuration File Example ... 54

5 MySQL Router Application ... 57
5.1 Starting MySQL Router ... 57
5.2 Using the Logging Feature .. 58

A MySQL Router Frequently Asked Questions ... 61

iv

v

Preface and Legal Notices
This is the MySQL Router manual. This document covers MySQL Router.

Licensing information. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL Router, see MySQL Router Commercial License Information User
Manual for licensing information, including licensing information relating to third-party software that may
be included in this Commercial release. If you are using a Community release of MySQL Router, see
MySQL Router Community License Information User Manual for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Legal Notices
Copyright © 2006, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its

http://downloads.mysql.com/docs/licenses/mysql-router-2.1-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-router-2.1-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-router-2.1-gpl-en.pdf

Documentation Accessibility

vi

affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Chapter 1 General Information

Table of Contents
1.1 Routing for MySQL InnoDB cluster ... 1
1.2 Cluster Metadata and State .. 3
1.3 Connection Routing .. 4
1.4 Application Considerations .. 4
1.5 What's New in MySQL Router 2.1 ... 6

The MySQL Router is a building block for high availability (HA) solutions. Router simplifies application
development by intelligently routing connections to MySQL servers for increased performance and
reliability.

Router uses a configuration file to define how routing is performed, and can be configured to enable
several applications to use a single router.

MySQL Router 8 fully supports MySQL 5.7 and MySQL 8, and it replaces the MySQL Router 2.x series. If
you currently use Router 2.0 or 2.1 then we recommend upgrading your installation to MySQL Router 8.

1.1 Routing for MySQL InnoDB cluster

MySQL Router is part of InnoDB cluster, and is lightweight middleware that provides transparent routing
between your application and MySQL server instances which make up an InnoDB cluster. It can be
used for a wide variety of use cases, such as providing high availability and scalability by effectively
routing database traffic to appropriate back-end MySQL Servers. The pluggable architecture also enables
developers to extend MySQL Router for custom use cases.

For additional details about InnoDB cluster, see InnoDB Cluster.

Introduction

For client applications to handle failover, they need to be aware of the InnoDB cluster's topology and know
the role of each MySQL instance - whether it is primary or secondary. While it is possible for applications to
implement that logic, MySQL Router provides this functionality for you. MySQL Router includes the InnoDB
cluster metadata cache plugin, which enables MySQL Router to automatically configure itself based on the
cluster's topology. This process is referred to as bootstrapping.

When boostrapped against an InnoDB cluster, MySQL Router acts as a proxy to the multiple MySQL
instances which make up the cluster. MySQL Router maps application client requests to one of the
instances in the cluster. Different ports are provided for different purposes, such as read-write or read-
only sessions, using either MySQL protocol or X Protocol. If the cluster changes, for example due to a fail
over, MySQL Router automatically handles changes to the roles of servers. Client applications continue to
use the same MySQL Router port, while the destination server instance in the InnoDB cluster might have
changed. All of this leads to a highly available MySQL database which is easy to configure.

Deploying Router with MySQL InnoDB cluster

The recommended deployment model for MySQL Router is bootstrapped against an InnoDB cluster, with
Router running on the same host as the application.

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html

Bootstrapping and InnoDB cluster Modes

2

Tip

Using a bootstrapped MySQL Router against an InnoDB cluster is the only
recommended way of configuring Group Replication and MySQL Router.

The steps for deploying Router with an InnoDB cluster after the cluster is configured are:

1. Install MySQL Router.

For details, see the Installation section.

2. Bootstrap for an InnoDB cluster, and test.

Router can be automatically configured by calling it with --bootstrap. During bootstrap, Router
connects to the cluster, fetches its metadata, and configures itself for use. For details, see Chapter 3,
Deploying MySQL Router.

3. Set up Router for automatic startup.

To make Router automatically start when the host reboots, you need to configure your system to
start Router. This process is similar to how the MySQL server is configured to start automatically. For
additional details, see Section 5.1, “Starting MySQL Router”.

For example, after creating a MySQL InnoDB cluster, you might configure Router using:

shell> mysqlrouter --bootstrap localhost:3310 --directory /opt/myrouter --user snoopy

This example bootstraps MySQL Router to an existing InnoDB cluster where:

• localhost:3310 is the PRIMARY with a metadata server

• Creates a self-contained installation with all generated directories and files at /opt/myrouter/

• Only the host's system user named snoopy will have access to /opt/myrouter/*

• Files and directories are generated under /opt/myrouter/ including start.sh, stop.sh, log/, and
a fully functional MySQL Router configuration file named mysqlrouter.conf.

See the --bootstrap and related configuration options for information to modify how the bootstrap
process is configured. For example, passing in --conf-use-sockets enables Unix domain socket
connections instead of the TCP/IP connections which are enabled by default.

Bootstrapping and InnoDB cluster Modes

InnoDB clusters can run in a single-primary mode where one server instance is writeable, or a multi-
primary mode where multiple servers are writeable. When bootstrapping, the ports and sockets configured
by MySQL Router are affected by the mode which the cluster is running in. You can check the mode which
a cluster is running in by group_replication_single_primary_mode MySQL server configuration
option.

Note

This document refers to default bootstrapping behavior. Other MySQL Router
configuration options might affect this behavior, and generated configuration values
can be modified after bootstrapping.

• With group_replication_single_primary_mode=ON (the default): Both Read-Write (primary) and Read-
Only (secondary) ports are configured.

http://dev.mysql.com/doc/refman/5.7/en/group-replication-options.html#sysvar_group_replication_single_primary_mode

Cluster Metadata and State

3

• With group_replication_single_primary_mode=OFF: Only Read-Write (primary) ports are configured.

For example:

With group_replication_single_primary_mode=ON, all connections to ports 6446 and 64460 go to the single
primary, and all connections to ports 6447 and 64470 go to the secondaries using the round-robin mode
schedule.

shell> mysqlrouter --bootstrap localhost:3310

Classic MySQL protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:64460
- Read/Only Connections: localhost:64470

With group_replication_single_primary_mode=OFF, all connections to ports 6446 and 64460 go to the
primaries using the round-robin mode schedule.

shell> mysqlrouter --bootstrap localhost:3310

Classic MySQL protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:6446

X protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:64460

1.2 Cluster Metadata and State

MySQL Router works by sitting in between applications and MySQL servers. Applications connect to
Router normally as if they were connecting to an ordinary MySQL server. Whenever an application
connects to Router, Router chooses a suitable MySQL server from the pool of candidates that it knows
about, and then connects to it. From that moment on, Router forwards all network traffic between the
application and MySQL, including responses coming back from it.

MySQL Router keeps a cached list of the online MySQL servers, or the topology and state of the
configured InnoDB cluster. Initially, the list is loaded from Router's configuration file when Router is
started. This list was generated with InnoDB cluster servers when Router was bootstrapped using the --
bootstrap option.

To keep the cache updated, the metadata cache component keeps an open connection to one of the
InnoDB cluster servers that contains metadata. It does so by querying the metadata database and live
state information from MySQL's performance schema. The cluster metadata is changed whenever the
InnoDB cluster is modified, such as adding or removing a MySQL server using the MySQL Shell, and the
performance_schema tables are updated in real-time by the MySQL server's Group Replication plugin
whenever a cluster state change is detected. For example, if one of the MySQL servers had an unexpected
shutdown.

When Router detects that a connected MySQL server shuts down, for example because the metadata
cache has lost its connection and can not connect again, it attempts to connect to a different MySQL server
to fetch metadata and InnoDB cluster state from the new MySQL server.

Application connections to a MySQL server that shuts down are automatically closed. They must then
reconnect to Router, which redirects them to an online MySQL server.

Connection Routing

4

1.3 Connection Routing

Connection routing enables redirection of MySQL connections to an available MySQL server. MySQL
packets are routed in their entirety without inspection. For an example deployment using basic connection
routing, see Section 3.3, “Basic Connection Routing”.

This means you can set up your application to connect to MySQL Router, and retry the connection if the
current MySQL server fails as Router then selects a new MySQL server to redirect the connection to. This
is also called simple redirect connection routing because it requires the application to retry the connection.
That is, if a connection from MySQL Router to the MySQL server is interrupted, the application encounters
a connection failure. However, a new connection attempt triggers Router to find and connect to another
MySQL server.

Routed servers and routing strategies are defined in a configuration file. For example, the following section
tells the router to listen for connections on port 7002 of the localhost, and then redirect those connections
to any of the servers in the list named by the destinations option, including servers running on the
localhost listening on ports 3306, 3307, and 3308. Finally, we use the mode option to tell the router to
allow both readers and writers. For more information about the available modes, see the section entitled,
Configuration File Setup below.

[routing:simple_redirect]
bind_port = 7002
mode = read-write
destinations = localhost:3306,localhost:3307,localhost:3308

Notice that the section is entitled, routing:simple_redirect. The first part, routing is called the
section name and is used internally to determine which plugin to load. The last part is an option's section
key (name) you can optionally provide should you want to set up more than one routing strategy.

When a server is no longer reachable, MySQL Router moves to the next server destination in the list, and
halts redirection if the list is exhausted because this is the default mode schedule when the mode option is
set to read-write.

1.4 Application Considerations

Using Router does not require specific libraries or interfaces. Aside from managing the MySQL Router
instance, your application is written as if Router was a typical MySQL instance.

The only difference when using MySQL Router is how you make connections to the MySQL server.
Applications using a single connection made at startup that do not test for connection errors must be
updated. This is because MySQL Router redirects connections when the connection is attempted and does
not read packets or perform an analysis. Thus, if a server fails, Router returns the connection error to the
application.

For these reasons, the application should be written to test for connection errors and, if encountered, retry
the connection. If this technique or one similar is employed in your application then using MySQL Router
will not require any extra effort.

The following gives you a better idea of why you may want to use the router, and a look into how it is used
from an application.

Scenarios

There are several possible scenarios for MySQL Router, such as the following:

Workflow with MySQL Router

5

• As a developer, I want my application to connect to a service so it gets a connection to, by default, the
current primary of a group replication cluster.

• As an administrator, I want to set up multiple services so MySQL Router listens on a different port for
each highly available replica set.

• As an administrator, I want to be able to run a connection routing service on port 3306 so it is more
transparent to a user or application.

• As an administrator, I want to configure a mode for each connection routing service so I can specify
whether a primary or secondary is returned.

Workflow with MySQL Router

The workflow for using MySQL Router is as follows:

1. MySQL Client or Connector connects to MySQL Router to, for example, port 6446.

2. Router checks for an available MySQL server.

3. Router opens a connection to a suitable MySQL server.

4. Router forwards packets back and forth, between the application and the MySQL server

5. Router disconnects the application if the connected MySQL server fails. The application can then retry
connecting to Router, and Router then chooses a different and available MySQL server.

Connections using MySQL Router

An application connects to MySQL Router, and Router connects the application to an available MySQL
server.

This example demonstrates that a connection transparently connects to one of the InnoDB cluster
instances. Because this example uses a sandboxed InnoDB cluster where all instances run on the same
host, we check the port status variable to see which MySQL instance is connected.

Make a connection to MySQL Router using the MySQL client, for example:

shell> mysql -u root -h 127.0.0.1 -P 6446 -p

These port numbers depend on your configuration, but compare ports in this example:

mysql> select @@port;
+--------+
| @@port |
+--------+
| 3310 |
+--------+
1 row in set (0.00 sec)

To summarize, the client (application) connected to port 6446 but is connected to a MySQL instance on
port 3310.

Recommendations

The following are recommendations for using MySQL Router.

What's New in MySQL Router 2.1

6

• Install and run MySQL Router on the same host as the application. For a list of reasons, see Chapter 3,
Deploying MySQL Router.

• Bind Router to localhost using bind_port = 127.0.0.1:<port> in the configuration file.
Alternatively on Linux, disable TCP connections (see --conf-skip-tcp) and limit this to only using
UNIX socket connections (see --conf-use-sockets).

1.5 What's New in MySQL Router 2.1

This section summarizes many of the new features added to MySQL Router 2.1, in relation to MySQL
Router 2.0.

MySQL Router is part of InnoDB cluster, which is also new with this MySQL Router release.

Features

• Bootstrapping support was added. For details about bootstrapping, see Deploying with Bootstrapping.

• A metadata cache plugin was added. It is the information repository of the managed MySQL topology
information that MySQL Router uses to route the MySQL server clients to the appropriate location. For
additional information, see Section 1.2, “Cluster Metadata and State”.

• Keyring key management was added to securely manage passwords, and is used to secure the MySQL
users that fetch metadata. For additional information, see documentation for the master_key_path
and keyring_path configuration options.

Command Line Options

• Bootstrapping: --bootstrap, --bootstrap-socket (2.1.4+), --conf-base-port, --conf-
bind-address, --conf-use-sockets, --conf-skip-tcp, --directory, --force-password-
validation (2.1.4+), --password-retries (2.1.4+), --force, and --name

• SSL: --ssl-mode, --ssl-ca, --ssl-capath, --ssl-cipher, --ssl-crl, --ssl-crlpath, and
--tls-version.

Configuration File Options

• protocol: the protocol configuration option was added to support the X Protocol. Setting protocol to
x enables the X Protocol for connections, otherwise the default classic protocol is used.

• master_key_path and keyring_path: paths to files that store passwords using the new keyring
management feature.

Package and Build Related Changes

• Windows: downloads now require Visual C++ Redistributable for Visual Studio 2015, when before the
2013 version was required.

Additional Changes

• Help output (mysqlrouter --help) now includes the current default folder locations for the system, and
usage examples.

• MySQL Fabric support was removed.

Additional Changes

7

• The default configuration file was renamed from mysqlrouter.ini to mysqlrouter.conf. For
backward compatability, Router still looks for the .ini variant in each directory.

8

9

Chapter 2 Installing MySQL Router

Table of Contents
2.1 Installing MySQL Router on Linux ... 9
2.2 Installing MySQL Router on macOS .. 11
2.3 Installing MySQL Router on Windows .. 11
2.4 Installing MySQL Router from Source Code ... 12

2.4.1 Prerequisites .. 13
2.4.2 Compiling the Source Code ... 14
2.4.3 Installing from Source Code ... 16
2.4.4 Testing the Installation ... 17

This chapter describes how to obtain and install MySQL Router. Downloads are available from the
download site.

2.1 Installing MySQL Router on Linux

There are binary distributions of MySQL Router available for several variants of Linux, including Fedora,
Oracle Linux, Red Hat, and Ubuntu.

Installation options include:

• Official MySQL Yum or APT repository packages: These binaries are built by the MySQL Release
team. For additional information about installing these, see the quick guides for installing them using
Yum or APT.

• Download official MySQL packages: Downloads are available at https://dev.mysql.com/downloads/
router. Download and install using your preferred package manager.

• Download the source code and compile yourself: The source code is available at https://
dev.mysql.com/downloads/router as a tar.gz or RPM package. Alternatively, the source code is also
available on GitHub.

For information about compiling MySQL Router, see Installing MySQL Router from Source Code.

The procedure for installing on Linux depends on your Linux distribution.

Installing MySQL Router using an official DEB or RPM package creates a local system user and group
named "mysqlrouter" on the host that MySQL Router runs as by default. For additional information, see the
system user's configuration option.

Installing DEB packages

On Ubuntu, and other systems that use the Debian package scheme, you can either download and
install .deb packages or use the APT package manager.

Using the APT Package Manager

1. Install the MySQL APT repository as described in the MySQL APT Repository documentation. For
example:

https://dev.mysql.com/downloads/router
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://github.com/mysql/mysql-router
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

Installing RPM packages

10

Note

Download the APT configuration package from here.

shell> sudo dpkg -i mysql-apt-config_0.8.8-1_all.deb

Enable the "MySQL Tools & Connectors" on the configuration screen.

2. Update your APT repository:

shell> sudo apt-get update

3. Install MySQL Router. For example:

shell> sudo apt-get install mysql-router

Manually Installing a Package

You can also download the .deb package and install it from the command line similarly to

shell> sudo dpkg -i package.deb

package.deb is the MySQL Router package name; for example, mysql-router-version-1ubu1604-
amd64.deb, where version is the MySQL Router version number.

Installing RPM packages

On RPM-based systems, you can either download and install RPM packages or use the Yum package
manager.

Using the Yum Package Manager

• First, install the MySQL Yum repository as described in the MySQL Yum Repository documentation. For
example:

Note

Download the Yum configuration package from here.

shell> sudo rpm -Uvh mysql57-community-release-el7-11.noarch.rpm

• Next, install MySQL Router. For example:

shell> sudo yum install mysql-router

Manually Installing an RPM Package

shell> sudo rpm -i package.rpm

package.rpm is the MySQL Router package name; for example, mysql-router-version-
el7.x86_64.rpm, where version is the MySQL Router version number.

https://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/yum/

Uninstalling

11

Uninstalling

The procedure for uninstalling MySQL Router on Linux depends on the package you are using.

Uninstalling DEB packages

To uninstall a Debian package, use this command:

shell> sudo dpkg -r mysql-router

This command does not remove the configuration files. To also remove them and the data directory, use:

shell> sudo dpkg --purge mysql-router

Note

Alternatively, use apt-get remove mysql-router or apt-get purge
mysql-router.

Uninstalling RPM packages

To uninstall an RPM package, use this command:

shell> sudo rpm -e mysql-router

Note

Similarly, use yum remove mysql-router.

This command does not remove the configuration files.

What Is Not Removed

When not purging, the uninstallation process does not remove your configuration files. On Debian systems,
this might include files such as:

/etc/init.d/mysqlrouter
/etc/mysqlrouter/mysqlrouter.conf
/etc/apparmor.d/usr.sbin.mysqlrouter

2.2 Installing MySQL Router on macOS

Download the DMG archive from https://dev.mysql.com/downloads/router/, and execute it to install MySQL
Router.

Alternatively, download, unpack, and manually install the compressed .tar.gz file.

2.3 Installing MySQL Router on Windows

MySQL Router for Windows can be installed using the MySQL Installer that installs and updates all MySQL
products on Windows, or by downloading the ZIP Archive.

https://dev.mysql.com/downloads/router/

Windows Prerequisites

12

Windows Prerequisites

For the Community version of MySQL Router: The Visual C++ Redistributable for Visual Studio 2015
(available at the Microsoft Download Center) is required. Install it before installing MySQL Router on
Windows.

Installing Using MySQL Installer

The general MySQL Installer download is available at https://dev.mysql.com/downloads/windows/installer/.
The MySQL Installer application can install, upgrade, and manage most MySQL products, including
MySQL Router. MySQL Installer also includes an option to bootstrap MySQL Router with a MySQL InnoDB
cluster.

Recommended Approach

Managing all of your MySQL products, including MySQL Router, with MySQL Installer is the recommended
approach. It handles all requirements, prerequisites, configuration procedures, and upgrades.

When executing MySQL Installer, you may choose MySQL Router as one of the products to install or
upgrade.

MySQL Router is typically installed in C:\%PROGRAMFILES%\MySQL\MySQL Router 2.1, where
%PROGRAMFILES% is the default directory for programs for your locale. The %PROGRAMFILES% directory is
defined as C:\Program Files\ on most systems.

For information about installing and starting Router as a Windows service, see Section 5.1, “Starting
MySQL Router”.

Installing the ZIP Archive

The ZIP Archive download is available at https://dev.mysql.com/downloads/router/.

Unlike installing with MySQL Installer, unpacking the MySQL Router ZIP archive does not check for
dependencies on your system, such as the required VC++ 2015 runtime. When installing MySQL Router
using the ZIP archive, download and install Visual C++ Redistributable for Visual Studio 2015 before using
MySQL Router.

After installing the prerequisites, unzip the ZIP Archive and execute bin/mysqlrouter.exe as you
normally would.

For information about installing and using MySQL Router as a Windows service, see Section 5.1, “Starting
MySQL Router”.

2.4 Installing MySQL Router from Source Code

The MySQL Router is written using the C++11 standard. As such, you must compile the code before you
can install it. Compilation is typical of most C++ applications, as demonstrated below.

The CMake program provides control over how you configure a MySQL Router source distribution.
Typically, you do this using options on the CMake command line. For information about options supported
by CMake, run either of these commands in the top-level MySQL Router source directory:

shell> cmake . -LH

http://www.microsoft.com/en-us/download/default.aspx
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
http://dev.mysql.com/doc/refman/5.7/en/mysql-installer.html
https://dev.mysql.com/downloads/router/
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Linux and macOS

13

shell> ccmake .

The default CMake installation prefixes are used. It is different for each platform, but for most Unix-
like platforms it is "/usr/local". It is possible to alter the installation path with the CMake variable
"CMAKE_INSTALL_PREFIX". For example:

shell> mkdir build && cd build
shell> cmake .. -DINSTALL_LAYOUT=STANDALONE -DCMAKE_INSTALL_PREFIX=/opt/mysql/router2.1

Notice we use the -DINSTALL_LAYOUT=STANDALONE option to use the same installation layout as used
for .tar.gz and .zip packages. This is the recommended setting for building the source.

Note

The CMake options are not documented here, but they are similar to the MySQL
Server CMake options. For additional (related) information, see MySQL Source-
Configuration Options.

Download and unpack the source files, and then follow the steps specific to your platform.

Linux and macOS

shell> tar xzf mysql-router-2.1.5-src.tar.gz
shell> cd mysql-router-2.1.5-src

Once this is complete, you need to configure and compile MySQL Router using cmake. Our examples use
the default installation location of /usr/local.

Note

Installing MySQL Router generates a file named install_manifest.txt that
lists all files (with paths) installed on the system. This file is useful for uninstalling
MySQL Router.

However, there are prerequisites for compiling the MySQL Router source code.

2.4.1 Prerequisites

The following components and libraries are required to compile MySQL Router on Linux:

• An operating system with a compiler that supports C++11.

Example systems that include this support are Ubuntu 14.04 and later, Oracle Linux 7, and macOS
10.10 and later.

Note

Enterprise Linux 6: compilation works but requires the Software Collection Library
1.2. For Oracle Linux, see Docs and Downloads. For RedHat and CentOS, see
Docs and Downloads.

• MySQL Server 5.5 or higher client libraries and header files. For example, on Ubuntu this is the
libmysqlclient-dev package.

• Code development tools including gcc, make, and assorted utilities for C++ 11 including GCC 4.8 and
later, glibc 2.17 and later, and clang 3.3 and later

http://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html
http://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html
https://docs.oracle.com/cd/E37670_01/E59096/E59096.pdf
http://public-yum.oracle.com/repo/OracleLinux/OL6/SoftwareCollections12/x86_64/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/3/html-single/User_Guide/index.html#sect-Red_Hat_Developer_Toolset-About
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-3/

Compiling the Source Code

14

• CMake 2.8.9 or later.

• Protobuf 3.0

Note

If your MySQL Server installation does not include the header files and compiled
client libraries, then you may need to download the MySQL Server source code.

2.4.2 Compiling the Source Code

To compile the source code, you should create a folder to contain the compiled binaries and executables,
run cmake to create the make file, then compile the code. The following demonstrates the steps needed on
a Ubuntu machine. Other platforms are similar.

Note

For some platforms, such as Oracle Enterprise Linux 6, you may also need to install
the devtoolset software collection.

If you get an error stating that the MySQL libraries cannot be found, then check the listed paths. If the client
libraries or the include folder does not exist, you may need to reference a compiled copy of the MySQL
Server source code by using the -DWITH_MYSQL=<path to server code> option. More specifically,
the compiler needs to be able to find the MySQL client libraries and include files. If libmysqlclient is
stored elsewhere, then -DMySQL_CLIENT_LIB=/path/to/libmysqlclient.so can also be used. A
compiled server source code tree will have these files. So too will most installations of the MySQL server.

For example, on Debian and RPM-based platforms, you would need the packages which contain the
libraries and the development (include) files. If you installed MySQL from a platform-specific repository, you
would need to install the mysql-community-libs and mysql-community-devel packages.

Note

If you change anything and need to recompile from scratch, be sure to delete the
CMakeCache.txt file before running the cmake command.

Begin by running the cmake command to create the makefile. The following commands are run from the
root of the MySQL Router source code tree. You should see similar results with the appropriate paths for
your system.

shell> mkdir build
shell> cd build
shell> cmake .. -DWITH_MYSQL=<path to binaries and libraries>
-- The C compiler identification is GNU 4.9.2
-- The CXX compiler identification is GNU 4.9.2
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Loading internal repository
-- Installation layout set to DEFAULT
-- Adding MySQL Harness from /home/cbell/source/git/mysql-router-2.0.2/mysql_harness
-- Harness will install plugins in lib/mysqlrouter
-- MySQL Harness CPU Descriptor is x86_64

Compiling the Source Code

15

-- MySQL Harness OS Descriptor is linux
-- MySQL Harness Compiler Descriptor is gnu-3
-- MySQL Harness Runtime Descriptor is *
-- Found Doxygen: /usr/bin/doxygen (found version "1.8.9.1")
-- Performing Test COMPILER_SUPPORTS_CXX11
-- Performing Test COMPILER_SUPPORTS_CXX11 - Success
-- Performing Test COMPILER_SUPPORTS_CXX0X
-- Performing Test COMPILER_SUPPORTS_CXX0X - Success
-- Looking for include file pthread.h
-- Looking for include file pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Performing Test support_11
-- Performing Test support_11 - Success
-- Performing Test support_0x
-- Performing Test support_0x - Success
-- Found MySQL Libraries 5.6.27; using <path to server code>/lib/libmysqlclient.so
-- Loading module 'router'
-- Loading module 'routing'
-- Configuring done
-- Generating done
-- Build files have been written to: <path to router code>/build

Next, compile the code. For this we only need the make command as shown. Again, you should see similar
results on your system.

shell> make
Scanning dependencies of target harness-archive
[2%] Building CXX object harness/harness/CMakeFiles/harness-archive.dir/src/loader.cc.o
[5%] Building CXX object harness/harness/CMakeFiles/harness-archive.dir/src/utilities.cc.o
[8%] Building CXX object harness/harness/CMakeFiles/harness-archive.dir/src/config_parser.cc.o
[11%] Building CXX object harness/harness/CMakeFiles/harness-archive.dir/src/designator.cc.o
[14%] Building CXX object harness/harness/CMakeFiles/harness-archive.dir/src/filesystem-posix.cc.o
Linking CXX static library libmysqlharness.a
[14%] Built target harness-archive
Scanning dependencies of target harness-library
[17%] Building CXX object harness/harness/CMakeFiles/harness-library.dir/src/loader.cc.o
[20%] Building CXX object harness/harness/CMakeFiles/harness-library.dir/src/utilities.cc.o
[22%] Building CXX object harness/harness/CMakeFiles/harness-library.dir/src/config_parser.cc.o
[25%] Building CXX object harness/harness/CMakeFiles/harness-library.dir/src/designator.cc.o
[28%] Building CXX object harness/harness/CMakeFiles/harness-library.dir/src/filesystem-posix.cc.o
Linking CXX shared library libmysqlharness.so
[28%] Built target harness-library
Scanning dependencies of target logger
[31%] Building CXX object harness/plugins/logger/CMakeFiles/logger.dir/logger.cc.o
Linking CXX shared library ../../../stage/lib/mysqlrouter/logger.so
[31%] Built target logger
Scanning dependencies of target keepalive
[34%] Building CXX object harness/plugins/keepalive/CMakeFiles/keepalive.dir/src/keepalive.cc.o
Linking CXX shared library ../../../stage/lib/mysqlrouter/keepalive.so
[34%] Built target keepalive
Scanning dependencies of target router_lib
[37%] Building CXX object src/router/src/CMakeFiles/router_lib.dir/router_app.cc.o
[40%] Building CXX object src/router/src/CMakeFiles/router_lib.dir/arg_handler.cc.o
[42%] Building CXX object src/router/src/CMakeFiles/router_lib.dir/utils.cc.o
[45%] Building CXX object src/router/src/CMakeFiles/router_lib.dir/datatypes.cc.o
[48%] Building CXX object src/router/src/CMakeFiles/router_lib.dir/plugin_config.cc.o
Linking CXX shared library ../../../stage/lib/libmysqlrouter.so
[48%] Built target router_lib
Scanning dependencies of target mysqlrouter
[51%] Building CXX object src/router/src/CMakeFiles/mysqlrouter.dir/main.cc.o

Installing from Source Code

16

Linking CXX executable ../../../stage/bin/mysqlrouter
[51%] Built target mysqlrouter
Scanning dependencies of target routing
[77%] Building CXX object src/routing/CMakeFiles/routing.dir/src/routing_plugin.cc.o
[80%] Building CXX object src/routing/CMakeFiles/routing.dir/src/plugin_config.cc.o
[82%] Building CXX object src/routing/CMakeFiles/routing.dir/src/mysql_routing.cc.o
[85%] Building CXX object src/routing/CMakeFiles/routing.dir/src/utils.cc.o
[88%] Building CXX object src/routing/CMakeFiles/routing.dir/src/destination.cc.o
[94%] Building CXX object src/routing/CMakeFiles/routing.dir/src/dest_first_available.cc.o
[97%] Building CXX object src/routing/CMakeFiles/routing.dir/src/uri.cc.o
[100%] Building CXX object src/routing/CMakeFiles/routing.dir/src/routing.cc.o
Linking CXX shared library ../../stage/lib/mysqlrouter/routing.so
[100%] Built target routing

2.4.3 Installing from Source Code

Once the source code is compiled, you can install the MySQL Router on your system with the following
command. Note that you may need elevated privileges (e.g. sudo) to install.

shell> sudo make install
[14%] Built target harness-archive
[28%] Built target harness-library
[31%] Built target logger
[34%] Built target keepalive
[48%] Built target router_lib
[51%] Built target mysqlrouter
[100%] Built target routing
Install the project...
-- Install configuration: ""
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/loader.h
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/filesystem.h
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/plugin.h
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/config_parser.h
-- Installing: /usr/local/lib/libmysqlharness.a
-- Installing: /usr/local/lib/libmysqlharness.so.0
-- Up-to-date: /usr/local/lib/libmysqlharness.so
-- Set runtime path of "/usr/local/lib/libmysqlharness.so.0" to "$ORIGIN/../lib"
-- Installing: /usr/local/lib/mysqlrouter/keepalive.so
-- Set runtime path of "/usr/local/lib/mysqlrouter/keepalive.so" to "$ORIGIN"
-- Installing: /usr/local/lib/mysqlrouter/logger.so
-- Set runtime path of "/usr/local/lib/mysqlrouter/logger.so" to "$ORIGIN"
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/logger.h
-- Up-to-date: /usr/local/share/doc/mysqlrouter/README.txt
-- Up-to-date: /usr/local/share/doc/mysqlrouter/License.txt
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/plugin_config.h
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/utils.h
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/datatypes.h
-- Installing: //var
-- Installing: //var/local
-- Installing: //var/local/mysqlrouter
-- Installing: //var/local/mysqlrouter/log
-- Installing: //var
-- Installing: //var/local
-- Installing: //var/local/mysqlrouter
-- Installing: //var/local/mysqlrouter/run
-- Installing: /usr/local/etc
-- Installing: /usr/local/etc/mysqlrouter
-- Installing: /usr/local/bin/mysqlrouter
-- Set runtime path of "/usr/local/bin/mysqlrouter" to "$ORIGIN/../lib"
-- Installing: /usr/local/lib/libmysqlrouter.so.1
-- Up-to-date: /usr/local/lib/libmysqlrouter.so
-- Set runtime path of "/usr/local/lib/libmysqlrouter.so.1" to "$ORIGIN/../lib"
-- Installing: /usr/local/lib/mysqlrouter/routing.so
-- Set runtime path of "/usr/local/lib/mysqlrouter/routing.so" to "$ORIGIN"
-- Up-to-date: /usr/local/include/mysql/mysqlrouter/routing.h

Testing the Installation

17

2.4.4 Testing the Installation

You can ensure the installation succeeded by running the following command. You should see a similar
output on your system. An example of setting the Router for simple routing is available at Section 3.2,
“Trying out MySQL Router in a Sandbox”

Note

Our example assumes that mysqlrouter is in the system's PATH. In this case,
PATH includes /usr/local/bin.

shell> mysqlrouter --help

MySQL Router v2.1.5 on Linux (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Start MySQL Router.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/etc/mysqlrouter/mysqlrouter.conf)
 /home/philip/.mysqlrouter.conf

...

Note

Use the mysqlrouter --version command to check the version.

18

19

Chapter 3 Deploying MySQL Router

Table of Contents
3.1 Bootstrapping ... 20
3.2 Trying out MySQL Router in a Sandbox .. 22
3.3 Basic Connection Routing ... 25

Performance Recommendations

For best performance, MySQL Router is typically installed on the same host as the application that uses it.
Possible reasons include:

• To allow local UNIX domain socket connections to the application, instead of TCP/IP.

Note

Unix domain sockets can function with applications connecting to MySQL Router,
but not for MySQL Router connecting to a MySQL Server.

• To decrease network latency.

• To allow MySQL Router to connect to MySQL without requiring extra accounts for the Router's host,
for MySQL accounts that are created specifically for application hosts, such as myapp@198.51.100.45
instead of a value like myapp@%.

• Typically application servers are easiest to scale.

You can run several instances of MySQL Router on your network, and do not need to isolate the router to
a single machine or even a single Router instance. This is because MySQL Router has no affinity for any
particular server or host.

Bootstrapping

20

Figure 3.1 Example MySQL Router Deployment

3.1 Bootstrapping

Here is a brief example to demonstrate how MySQL Router can be deployed using bootstrapping. For
additional information, see --bootstrap and the other bootstrap options.

Note

Bootstrapping was added in MySQL Router 2.1.

This example creates a standalone MySQL Router instance using the --directory option, enables
sockets, and assumes that an InnoDB cluster named clusterFriend already exists:

shell> mysqlrouter --bootstrap root@localhost:3310 --directory /tmp/myrouter --conf-use-sockets

Please enter MySQL password for root:

Bootstrapping MySQL Router instance at /tmp/myrouter...
MySQL Router has now been configured for the InnoDB cluster 'clusterFriend'.

The following connection information can be used to connect to the cluster.

Classic MySQL protocol connections to cluster 'clusterFriend':
- Read/Write Connections: localhost:6446
- Read/Write Connections: /tmp/myrouter/mysql.sock
- Read/Only Connections: localhost:6447
- Read/Only Connections: /tmp/myrouter/mysqlro.sock

Bootstrapping

21

X protocol connections to cluster 'clusterFriend':
- Read/Write Connections: localhost:64460
- Read/Write Connections: /tmp/myrouter/mysqlx.sock
- Read/Only Connections: localhost:64470
- Read/Only Connections: /tmp/myrouter/mysqlxro.sock

shell> cd /tmp/myrouter
shell> ./start.sh

PID 29294 written to /tmp/myrouter/mysqlrouter.pid

A generated MySQL Router directory looks similar to:

shell> ls -l | awk '{print $9}'

data
log
mysql.sock
mysqlro.sock
mysqlrouter.conf
mysqlrouter.key
mysqlrouter.pid
mysqlx.sock
mysqlxro.sock
run
start.sh
stop.sh

A generated MySQL Router configuration file will look similar to:

File automatically generated during MySQL Router bootstrap
[DEFAULT]
logging_folder=/tmp/myrouter/log
runtime_folder=/tmp/myrouter/run
data_folder=/tmp/myrouter/data
keyring_path=/tmp/myrouter/data/keyring
master_key_path=/tmp/myrouter/mysqlrouter.key

[logger]
level = INFO

[metadata_cache:clusterFriend]
router_id=1
bootstrap_server_addresses=mysql://localhost:3310,mysql://localhost:3320,mysql://localhost:3330
user=mysql_router1_jy95yozko3k2
metadata_cluster=clusterFriend
ttl=300

[routing:clusterFriend_default_rw]
bind_address=0.0.0.0
bind_port=6446
socket=/tmp/myrouter/mysql.sock
destinations=metadata-cache://clusterFriend/default?role=PRIMARY
mode=read-write
protocol=classic

[routing:clusterFriend_default_ro]
bind_address=0.0.0.0
bind_port=6447
socket=/tmp/myrouter/mysqlro.sock
destinations=metadata-cache://clusterFriend/default?role=SECONDARY
mode=read-only
protocol=classic

[routing:clusterFriend_default_x_rw]

Trying out MySQL Router in a Sandbox

22

bind_address=0.0.0.0
bind_port=64460
socket=/tmp/myrouter/mysqlx.sock
destinations=metadata-cache://clusterFriend/default?role=PRIMARY
mode=read-write
protocol=x

[routing:clusterFriend_default_x_ro]
bind_address=0.0.0.0
bind_port=64470
socket=/tmp/myrouter/mysqlxro.sock
destinations=metadata-cache://clusterFriend/default?role=SECONDARY
mode=read-only
protocol=x

In this example, MySQL Router configured four ports and four sockets. Ports are added by default, and
sockets were added by passing in --conf-use-sockets. The related command line options:

• --conf-use-sockets: Optionally enable UNIX domain sockets for all four connection types, as
demonstrated in the example.

• --conf-skip-tcp: Optionally disable TCP ports, an option to pass in with --conf-use-sockets if
you only want sockets.

• --conf-base-port: Optionally change the range of ports rather than using the default ports. This sets
the port for classic read-write (PRIMARY) connections, and defaults to 6446.

• --conf-bind-address: Optionally change the bind_address value for each route.

shell> mysql -u root -h 127.0.0.1 -P 6446 -p

...

mysql> select @@port;
+--------+
| @@port |
+--------+
| 3310 |
+--------+
1 row in set (0.00 sec)

For additional examples, see Set Up a MySQL Server Sandbox and Sandbox Deployment of InnoDB
Cluster.

3.2 Trying out MySQL Router in a Sandbox
Test a MySQL Router installation by setting up a Router sandbox with InnoDB cluster. In this case, Router
acts as an intermediate node redirecting client connections to a list of servers. If one server fails, clients
are redirected to the next available server in the list.

Set Up a MySQL Server Sandbox

Begin by starting three MySQL Servers. You can do this in a variety of ways, including:

• Using the MySQL Shell AdminAPI interface that InnoDB cluster provides. This is the recommended and
simplest approach, and is documented in this section. For additional information, see InnoDB Cluster.

• By installing three MySQL Server instances on three different hosts, or on the same host.

• Using the mysql-test-run.pl script that is part of the MySQL Test Suite framework. For additional
information, see The MySQL Test Suite.

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-test-suite.html

Set Up a MySQL Server Sandbox

23

• Using the mysqlcloneserver MySQL Utility.

The following example uses the AdminAPI method to set up our cluster sandbox. This is a brief overview,
so see Sandbox Deployment of InnoDB Cluster in the InnoDB cluster manual for additional details. The
following assumes you have a current version of MySQL Shell, MySQL Server, and MySQL Router
installed.

Deploy a Sandbox cluster

This example uses MySQL Shell AdminAPI to set up a InnoDB cluster with three MySQL instances
(one primary and two secondaries), and a bootstrapped standalone MySQL Router with a generate
configuration file. Output was shortened using "...".

shell> mysqlsh

mysql-js> dba.deploySandboxInstance(3310)
 ...
mysql-js> dba.deploySandboxInstance(3320)
 ...
mysql-js> dba.deploySandboxInstance(3330)
 ...

mysql-js> \connect root@localhost:3310
 ...

mysql-js> cluster = dba.createCluster("myCluster")
 ...

mysql-js> cluster.addInstance("root@localhost:3320")
 ...
mysql-js> cluster.addInstance("root@localhost:3330")
 ...

mysql-js> cluster.status()
{
 "clusterName": "myCluster",
 "defaultReplicaSet": {
 "name": "default",
 "primary": "localhost:3310",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "localhost:3310": {
 "address": "localhost:3310",
 "mode": "R/W",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 },
 "localhost:3320": {
 "address": "localhost:3320",
 "mode": "R/O",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 },
 "localhost:3330": {
 "address": "localhost:3330",
 "mode": "R/O",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 }
 }

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html

Set Up the Router

24

 }
}

Set Up the Router

Next, set up MySQL Router to redirect to these MySQL instances. We'll use bootstrapping (using --
bootstrap), and create a self-contained MySQL Router installation using --directory. This will also
use the metadata cache plugin to securely store the credentials.

shell> mysqlrouter --bootstrap root@localhost:3310 --directory /opt/myrouter

Please enter MySQL password for root:

Bootstrapping MySQL Router instance at /opt/myrouter...
MySQL Router has now been configured for the InnoDB cluster 'myCluster'.

The following connection information can be used to connect to the cluster.

Classic MySQL protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'myCluster':
- Read/Write Connections: localhost:64460
- Read/Only Connections: localhost:64470

shell> cd /opt/myrouter

shell> ./start.sh

PID 28817 written to /opt/myrouter/mysqlrouter.pid

MySQL Router is now configured and running, and is using the myCluster cluster that we set up earlier.

Testing the Router

Now connect to router as you would any other MySQL Server, for example using the standard mysql
client:

Note

Using the option --conf-use-sockets during MySQL Router bootstrap also
configures Unix domain socket connections.

shell> mysql -u root -h 127.0.0.1 -P 6446 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3310 |
+--------+

shell> mysql -u root -h 127.0.0.1 -P 6447 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3320 |
+--------+

Basic Connection Routing

25

As demonstrated, we connected to MySQL Router on port 6446 but see we are connected to port 3310
(our PRIMARY). It also shows how connecting to one of the secondaries on port 6447 shows a connection
to one of the secondary MySQL instances, in this case on port 3320.

Now test failover by first killing the primary MySQL instance (port 3310) that we connected to above.

shell> mysqlsh --uri root@127.0.0.1:6446

mysql-js> dba.killSandboxInstance(3310)

mysql-js> dba.killSandboxInstance(3310)
The MySQL sandbox instance on this host in
/Users/philip/mysql-sandboxes/3310 will be killed

Killing MySQL instance...

Instance localhost:3310 successfully killed.

You can continue using MySQL Shell to check the connection but let us use the same mysql client
example we did above:

shell> mysql -u root -h 127.0.0.1 -P 6446 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3320 |
+--------+

shell> mysql -u root -h 127.0.0.1 -P 6447 -p
mysql> SELECT @@port;

+--------+
| @@port |
+--------+
| 3330 |
+--------+

As shown, despite connecting to the same ports (6446 for the primary and 6447 for a secondary), the
underlying ports changed. Our new primary server changed from port 3310 to 3320 while our secondary
changed from 3320 to 3330.

We have now demonstrated MySQL Router performing simple redirects to a list of primary and secondary
MySQL instances.

3.3 Basic Connection Routing

The Connection Routing plugin performs connection-based routing, meaning it forwards packets to the
server without inspecting them. This is a simplistic approach that provides high throughput. For additional
general information about connection routing, see Section 1.3, “Connection Routing”.

A simple connection-based routing setup is shown below. These and additional options are documented
under Section 4.3.2, “Configuration File Options”.

[logger]
level = INFO

[routing:read_only]

Basic Connection Routing

26

bind_address = localhost
bind_port = 7001
destinations = foo.example.org:3306,bar.example.org:3306,baz.example.org:3306
mode = read-only

[routing:read_write]
bind_address = localhost
bind_port = 7002
destinations = foo.example.org:3306,bar.example.org:3306
mode = read-write

Here we use connection routing to round-robin MySQL connections to three MySQL servers on port
7001, as the read-only mode causes round-robin behavior. This example also configures the read-write
mode for two of the servers using port 7002. The read-write mode defaults to the first-available strategy,
as described in the mode option's documentation. The number of MySQL instances assigned to each
destinations is up to you, as this is only an example. Router does not inspect the packets and does not
restrict connections based on assigned mode, so it is up the the application to determine where to send
read and write requests, so either port 7001 or 7002 in our example.

Assuming all three MySQL instances are running, next start MySQL Router by passing in the configuration
file:

shell> ./bin/mysqlrouter -config=/etc/mysqlrouter-config.conf

Now MySQL Router is listening to port's 7001 and 7002, and will send requests to the appropriate MySQL
instance. For example:

shell> ./bin/mysql --user=root --port 7001 --protocol=TCP

That will first connect to foo.example.org, and then bar.example.org next, then baz.example.org, and the
fourth call goes back to foo.example.org. Instead, we configured port 7002 behavior differently:

shell> ./bin/mysql --user=root --port 7002 --protocol=TCP

That will first connect to foo.example.org, and additional requests will continue connecting to
foo.example.org until there is a failure, at which point bar.example.org is used. For additional information
about this behavior, see documentation for the mode option.

27

Chapter 4 Configuration

Table of Contents
4.1 Configuration File Syntax .. 27
4.2 Configuration File Locations .. 29
4.3 Configuration Options ... 31

4.3.1 MySQL Router Command Line Programs ... 31
4.3.2 Configuration File Options .. 43
4.3.3 Configuration File Example ... 54

MySQL Router is configured using a required configuration file, additional optional configuration files, and
some options are also available from the command line.

Bootstrapping is the preferred and common approach to generating a MySQL Router configuration. For
additional information, see --bootstrap. This also means that editing the configuration file becomes
optional with bootstrapping because the generated mysqlrouter.conf is fully functional.

4.1 Configuration File Syntax

The format of the configuration file resembles the traditional INI file format with sections and options but
with a few additional extensions.

Note

Both forward slashes and backslashes are supported. Backslashes are
unconditionally copied, as they do not escape characters.

Comments

The configuration file can contain comment lines. Comment lines start with a hash (#) or semicolon (;) and
continue to the end of the line. Trailing comments are not supported.

Sections

Each configuration file consists of a list of configuration sections where each section contains a sequence
of configuration options. Each configuration option has a name and a value. For example:

[section name]
option = value
option = value
option = value

[section name:optional section key]

option = value
option = value
option = value

A configuration file section header starts with an opening bracket ([) and ends with a closing bracket (]).
There can be leading and trailing space characters on the line, which are ignored, but no space inside the
section brackets.

Default Section

28

The section header inside the brackets consists of a section name and an optional section key that is
separated from the section header with a colon (:). The combination of section name and section key is
unique for a configuration.

The section names and section keys consist of a sequence of one or more letters, digits, or underscores
(_). No other characters are allowed in the section name or section key.

A section is similar to a namespace. For example, the user option's meaning depends on its associated
section. A user in the [DEFAULT] section refers to the system user that MySQL Router is run as,
which is also controlled by the --user command line option. Unrelated to that is defining user in the
[metadata_cache] section, which refers to the MySQL user that accesses a MySQL server's metadata.

Default Section

The special section name DEFAULT (any case) is used for default values for options. Options not found in a
section are looked up in the default section. The default section does not accept a section key.

Options

After a section's start header, there can be a sequence of zero or more option lines where each option line
is of the form:

name = value

Any leading or trailing blank characters on the option name or option value are removed before being
handled. Option names are case-insensitive. Trailing comments are not supported, so in this example the
option mode is given the value "read-only # Read only mode" and will therefore generate an error when
starting the router.

[routing:round-robin]
Trailing comments are not supported so the following is incorrect
mode = read-only # Read only mode

Variable Interpolation

Option values support (variable interpolation) using an option name given within braces { and }.
Interpolation is done on retrieval of the option value and not when it is read from the configuration file. If a
variable is not defined then no substitutions are done and the option value is read literally.

Consider this sample configuration file:

[DEFAULT]
prefix = /usr/

[sample]
bin = {prefix}bin/{name}
lib = {prefix}lib/{name}
name = magic
directory = C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afb23}

Here the value of bin is "/usr/bin/magic", the value of lib is "/usr/lib/magic", and the value of
directory is "C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afb23}" because a variable named
"{3a339172-6898-11e6-8540-9f7b235afb23}" is not defined.

Predefined variables

29

Predefined variables

MySQL Router defines predefined variables that are available to the configuration file. Variables use
braces, such as {program}, for the program predefined variable.

Table 4.1 Predefined variables

Name Description

program Name of the program, normally mysqlrouter

origin Path to directory where binary is located

logging_folder Path to folder for log files

plugin_folder Path to folder for plugins

runtime_folder Path to folder for runtime data

config_folder Path to folder for configuration files

4.2 Configuration File Locations
MySQL Router scans for the default configuration files at startup, and optionally loads user-defined
configuration files at runtime from the command line.

Default Configuration File Locations

By default, MySQL Router scans specific locations for its configuration files, depending on the platform and
how MySQL Router was set up.

You can alter the default locations at compile time by using the -DROUTER_CONFIGDIR=<path> option.
You could also edit cmake/settings.cmake to change the default locations before compiling MySQL
Router, thus adding new locations or exceptions for specific platforms.

Execute mysqlrouter --help to see the default configuration file locations (and their availability) on
your system. For example:

shell> mysqlrouter --help

MySQL Router v2.1.5 on macOS v10.12 (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Start MySQL Router.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/usr/local/mysql-router/mysqlrouter.conf)
 /Users/philip/.mysqlrouter.conf
Plugins Path:
 /usr/local/lib/mysqlrouter
Default Log Directory:
 /usr/local/mysql-router
Default Persistent Data Directory:
 /usr/local/mysql-router/data
Default Runtime State Directory:
 /usr/local/mysql-router/run

Usage: mysqlrouter [-v|--version] [-h|--help]

User-Defined and Extra Configuration Files

30

...

Important

The default configuration file is not loaded if a user-defined configuration file is
passed in with the --config option.

On Linux, by default MySQL Router scans the following locations, although these locations are system
dependent:

1. /etc/mysqlrouter/mysqlrouter.conf

Note

Unlike MySQL server, the backward compatible path "/etc/
mysqlrouter.conf" is not supported.

2. $HOME/.mysqlrouter.conf

Note

For backward compatibility, MySQL Router also looks for the .ini variant in each
directory. In doing so, Router looks in the initial directory for the .conf version, then
checks for a .ini version, and then repeats the process in the next directory which is
typically the user's home directory on the system.

User-Defined and Extra Configuration Files

Two command line options help control these configuration file locations:

• --config (or -c): Read the base configuration from this file, and not use or scan the default file paths.

Common use: when generating a standalone MySQL Router installation with the --directory
bootstrap option, the generated start.sh passes this option to the generated mysqlrouter.conf
inside that directory.

• --extra-config (or -a): Read this additional configuration file after the configuration files are read
from either the default locations, or from files specified using the --config option.

For example:

shell> mysqlrouter -c /custom/path/to/router.conf -a /another/config.conf

Multiple extra configuration options can be passed in and the files are loaded in the order they are entered,
with --config options being loaded before the --extra-config options. For example:

shell> mysqlrouter --extra-config a.conf --config b.conf --extra-config c.conf

In the above example, b.conf is loaded first, and then a.conf and c.conf, in that order. In addition, the
default configuration file, such as /etc/mysqlrouter/mysqlrouter.conf, is not loaded because --
config was used.

Each loaded configuration file overrides configuration settings from the previously read configuration files.

Default Configuration File Locations (Linux)

The following lists default file location for the router to read configuration files on popular Linux platforms.

Default Configuration File Locations (Windows)

31

Note

Execute mysqlrouter --help to see the default configuration file locations (and
their availability) on your system.

• Default system-wide installation under /usr/local : /usr/local/etc/mysqlrouter.conf

• RPM and Debian : /etc/mysqlrouter/mysqlrouter.conf

• On all systems, a bootstrapped standalone installation using --directory adds mysqlrouter.conf
into the directory defined by --directory.

Default Configuration File Locations (Windows)

Default file locations that MySQL Router searches for configuration files on Windows.

Note

Execute mysqlrouter.exe --help to see the default configuration file locations
(and their availability) on your system.

• Default system-wide installation under C:\ProgramData\MySQL\MySQL Router : C:\ProgramData
\MySQL\MySQL Router\mysqlrouter.conf

• In addition: C:\Users\username\AppData\Roaming\mysqlrouter.conf where username is
replaced with your system's user.

• In addition to mysqlrouter.conf, for backwards compatibility the system also looks for mysqlrouter.ini

• With --directory: a bootstrapped standalone installation using --directory adds
mysqlrouter.conf into the directory defined by --directory.

4.3 Configuration Options

Configuration file options and command line options serve different purposes, and they are documented in
separate locations.

When bootstrapping, the generated configuration and files depend on which bootstrap options are
passed into mysqlrouter. For example, passing in --conf-use-sockets enables socket connections
by defining socket for each route in the generated configuration file. Or, --directory adds all
generated files and subdirectories to a single directory and adjusts the generated configuration file values
accordingly.

4.3.1 MySQL Router Command Line Programs

This section describes the MySQL Router command. The mysqlrouter command is used for all tasks,
including bootstrapping and running MySQL Router.

4.3.1.1 mysqlrouter — Command Line Options

• mysqlrouter Option Summaries

• mysqlrouter Option Descriptions

MySQL Router accepts command line options that are passed into mysqlrouter to affect its behavior, or
to bootstrap router.

MySQL Router Command Line Programs

32

When starting Router, you can optionally use --config to pass in the main configuration file's location
(otherwise the default location is used) and --extra-config for an additional configuration file.

Bootstrapping command line options affect the generated files and directories that are used when starting
MySQL Router.

mysqlrouter Option Summaries

Table 4.2 General Options

Format Description

--config Read configuration options from the provided file.

--extra-config Read this file after configuration files are read from either default
locations or from files specified by the --config option.

--help Display help text and exit.

--user Run mysqlrouter as the user having the defined user name or
numeric user id.

--version Display version information and exit.

Table 4.3 Bootstrapping options

Format Description Introduced

--bootstrap Bootstrap and configure Router for operation with a
MySQL InnoDB cluster.

--bootstrap-socket Connect to the MySQL metadata server through a Unix
domain socket, used in conjunction with --bootstrap.

2.1.4

--conf-base-port Base port to use for listening Router ports.

--conf-bind-address IP address of the interface to which router's listening
sockets should bind.

--conf-skip-tcp Whether to disable binding of a TCP port for incoming
connections.

--conf-use-sockets Whether to use Unix domain sockets.

--directory Creates a self-contained directory for a new instance of
the Router.

--force Force reconfiguration of a possibly existing instance of the
router.

--force-password-validation When creating a user account automatically, do not skip
the validate_password mechanism.

2.1.4

--name Gives a symbolic name for the router instance.

--password-retries The number of retries to use for generating the Router's
user password.

2.1.4

Table 4.4 SSL Options

Format Description

--ssl-ca Path to SSL Certificate Authority file to verify server's certificate
against.

--ssl-capath Directory that contains trusted SSL Certificate Authority certificate
files

MySQL Router Command Line Programs

33

Format Description

--ssl-cipher A colon-separated list of SSL ciphers to allow, if SSL is enabled.

--ssl-crl Path to SSL CRL file to use when verifying server certificate.

--ssl-crlpath Path to directory containing SSL CRL files to use when verifying
server certificate.

--ssl-mode SSL connection mode for use during bootstrap and normal
operation, when connecting to the metadata server. Analogous to --
ssl-mode in the mysql client.

--tls-version Comma-separated list of TLS versions to request, if SSL is
enabled.

Table 4.5 Windows Services Options

Format Description

--clear-all-credentials Clear all stored credentials

--install-service On Windows, install MySQL Router as a service named
MySQLRouter, and set it to automatically start when Windows
restarts.

--install-service-manual On Windows, install MySQL Router as a service named
MySQLRouter, that can be manually started.

--remove-credentials-section Remove a section's credentials

--remove-service Remove MySQL Router as a Windows service.

--service Start MySQL Router as a Windows service.

--update-credentials-section Update a section's credentials

mysqlrouter Option Descriptions

• --version, -v

Property Value

Command-Line Format --version , -v

Displays the version number and related information of the application, and exits. For example:

shell> mysqlrouter --version

MySQL Router v2.1.5 on Linux (64-bit) (GPL community edition)

• --help, -h

Property Value

Command-Line Format --help , -h

Display help and informative information, and exit.

The --help option has an added benefit. Along with the explanation of each of the options, the --help
option also displays the paths used to find the configuration file, and also several default paths. The
following excerpt of the --help output shows an example from a Ubuntu 16.04 machine:

MySQL Router Command Line Programs

34

shell> mysqlrouter --help

MySQL Router v2.1.5 on Linux (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Start MySQL Router.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/etc/mysqlrouter/mysqlrouter.conf)
 /home/philip/.mysqlrouter.conf
Plugin Path:
 /usr/lib/x86_64-linux-gnu/mysqlrouter
Default Log Directory:
 /var/log/mysqlrouter
Default Persistent Data Directory:
 /var/lib/mysqlrouter
Default Runtime State Directory:
 /run/mysqlrouter

Usage: mysqlrouter [-v|--version] [-h|--help]
...

The configuration section shows the order for the paths that may be used for reading the configuration
file. In this case, only the second file is accessible.

• --bootstrap URI, -B URI

Property Value

Command-Line Format --bootstrap URI, -B URI

Type String

The main option to perform a bootstrap of the router by connecting to the MySQL metadata server at the
URI. A password is prompted if needed. If a username is not passed to the URI then the default user
name "root" is used.

Note

While --bootstrap accepts a URI for TCP/IP connections, also passing in
--bootstrap-socket with a local Unix domain socket name will replace the
"host:port" part in the --bootstrap definition with the socket on the same
machine.

By default, bootstrap will perform a system-wide configuration of the router. Only one instance of
the router may be configured for system-wide operation. The system instance of the router has a
router_name of "default". If additional instances are desired, then use the --directory to create self-
contained router installations.

If a configuration file already exists on bootstrap, the existing router_id in that file will be reused, and a
reconfiguration process will occur. The configuration file will be regenerated from scratch and the router's
metadata server account will be recreated, although with the same name.

During the reconfiguration process, all changes made to an existing configuration file are discarded.
To customize a configuration file and still retain the ability of automatic reconfiguration (bootstrapping),

MySQL Router Command Line Programs

35

you can use the --extra-config command line option to specify an additional configuration file
that is read after the main configuration file. These configuration options are used because this extra
configuration file is loaded after the main configuration file.

The bootstrap process creates a new MySQL user account with a randomly generated password to use
by that specific Router instance. This account is used by Router when connecting to the metadata server
and InnoDB cluster to fetch information about its current state. For detailed information about this user
including how its password is stored and the MySQL privilege it requires, see documentation for the
MySQL user option.

The generated configuration file is named mysqlrouter.conf, and its location depends on the type of
instance being configured, the system, and the package. For system-wide installations, the generated
configuration file is added to the system's configuration directory such as /etc or %PROGRAMDATA%
\MySQL\MySQL Router\. Executing mysqlrouter --help will display this location.

The --user option is required if executing a bootstrap with a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument such as --
user=root.

Using --bootstrap adds default values to the generated MySQL Router configuration file, and some of
these default values depend on other conditions. Listed below are some of the conditions that affect the
generated default values, where default is defined by passing in --bootstrap by itself.

Table 4.6 Conditions that affect default --bootstrap values

Condition Description

--conf-base-port Modifies generated bind_port values for each connection type.

By default, generated bind_port values are as follows: For the
classic protocol, Read-Write uses 6446 and Read-Only uses 6447,
and for the X protocol Read-Write uses 64460 and Read-Only
uses 64470.

--conf-use-sockets Inserts socket definitions for each connection type.

--conf-skip-tcp TCP/IP connection definitions are not defined.

--directory Affects all file paths, and also generates additional files.

Single primary mode is disabled If the group_replication_single_primary_mode MySQL
Server option is disabled (it is enabled by default), only Read-
Write (and not Read-Only) connections are defined. For additional
information, see Bootstrapping and InnoDB cluster Modes.

Other This list is not exhaustive, other options and conditions also affect
the generated values.

• --bootstrap-socket socket_name

Property Value

Command-Line Format --bootstrap-socket socket_name

Introduced 2.1.4

Platform Specific Linux

Used in conjunction with --bootstrap to bootstrap using a local Unix domain socket instead of TCP/
IP. The --bootstrap-socket value replaces the "host:port" part in the --bootstrap definition with
the assigned socket name for connecting to the MySQL metadata server using Unix domain sockets.

MySQL Router Command Line Programs

36

This is the MySQL instance that is being bootstrapped from, and this instance must be on the same
machine if sockets are used. For additional details about how bootstrapping works, see --bootstrap.

This option is different than the --conf-use-sockets command line option that sets the socket
configuration file option during the bootstrap process.

This option is not available on Windows.

• --directory dir_path, -d dir_path

Property Value

Command-Line Format --directory dir_path, -d dir_path

Type String

Specifies that a self-contained MySQL Router installation will be created at the defined directory instead
of configuring the system-wide router instance. This also allows multiple router instances to be created
on the same system.

The self-contained directory structure for Router is:

$path/start.sh
$path/stop.sh
$path/mysqlrouter.pid
$path/mysqlrouter.conf
$path/mysqlrouter.key
$path/run
$path/run/keyring
$path/data
$path/log
$path/log/mysqlrouter.log

If this option is specified, the keyring file is stored under the runtime state directory of that instance,
under run/ in the specified directory, as opposed to the system-wide runtime state directory.

If --conf-use-sockets is also enabled then the generated socket files are also added to this
directory.

• --conf-use-sockets

Property Value

Command-Line Format --conf-use-sockets

Platform Specific Linux

Enables local Unix domain sockets.

This option is used while bootstrapping, and enabling it adds the socket option to the generated
configuration file.

The name of the generated socket file depends on the mode and protocol options. With the classic
protocol enabled, the file is named mysql.sock in read-write mode, and mysqlro.sock in read-
only mode. With the X protocol enabled, the file is named mysqlx.sock in read-write mode, and
mysqlxro.sock in read-only mode.

This option is not available on Windows.

• --conf-skip-tcp

MySQL Router Command Line Programs

37

Property Value

Command-Line Format --conf-skip-tcp

Platform Specific Linux

Skips configuration of a TCP port for listening to incoming connections. See also --conf-use-
sockets.

This option is not available on Windows.

• --conf-base-port port_num

Property Value

Command-Line Format --conf-base-port port_num

Type Integer

Base (first) value used for the listening TCP ports by setting bind_port for each bootstrapped route.

This value is used for the classic read-write route, and each additional allocated port is incremented by a
value of one. The port order set is classic read-write / read-only, and then x read-write / read-only.

Example usage:

Example without --conf-base-port
shell> mysqlrouter --bootstrap root@localhost:3310
...
Classic MySQL protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:64460
- Read/Only Connections: localhost:64470

Example demonstrating --conf-base-port behavior
shell> mysqlrouter --bootstrap root@localhost:3310 --conf-base-port 6446
...
Classic MySQL protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

X protocol connections to cluster 'devCluster':
- Read/Write Connections: localhost:6448
- Read/Only Connections: localhost:6449

• --conf-bind-address address

Property Value

Command-Line Format --conf-bind-address address

Type String

Default Value 0.0.0.0

Modifies the bind_address value set by --bootstrap in the generated Router configuration file.
By default, bootstrapping sets bind_address=0.0.0.0 for each route, and this option changes that
value.

MySQL Router Command Line Programs

38

Note

The default bind_address value is 127.0.0.1 if bind_address is not defined.

• --user {user_name|user_id}, -u {user_name|user_id}

Property Value

Command-Line Format --user {user_name|user_id}, -u
{user_name|user_id}

Platform Specific Linux

Type String

Run mysqlrouter as the user having the name user_name or the numeric user ID user_id. “User”
in this context refers to a system login account, not a MySQL user listed in the grant tables. When
bootstrapping, all generated files are owned by this user, and this also sets the associated user option.

This system user is defined in the configuration file under the [DEFAULT] namespace. For additional
information, see the user option's documentation that --user configures.

The --user option is required if executing a bootstrap as a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument, such as --
user=root.

This option is not available on Windows.

• --name router_name

Property Value

Command-Line Format --name router_name

Type String

On initial bootstrap, specifies a symbolic name for a self-contained Router instance. This option is
optional, and is used with --directory. When creating multiple instances, the names must be unique.

• --force-password-validation

Property Value

Command-Line Format --force-password-validation

Introduced 2.1.4

Platform Specific Linux

By default, MySQL Router skips the MySQL Server's validate_password mechanism and instead Router
generates and uses a STRONG password based on known validate_password default settings. This is
because validate_password can be configured by the user and Router can not take into account unusual
custom settings.

This option ensures that password validation (validate_password) is not skipped for generated
passwords, and it is disabled by default.

• --password-retries num_retries

MySQL Router Command Line Programs

39

Property Value

Command-Line Format --password-retries num_retries

Introduced 2.1.4

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 10000

Specifies the number of times MySQL Router should attempt to generate a password when creating user
account with the password validation rules. The default value is 20. The valid range is 1 to 10000.

The most likely reason for failure is due to custom validate_password settings with unusual requirements
such as a 50 character minimum. In that fail scenario, either --force-password-validation is
set to true and/or the mysql_native_password MySQL Server plugin is disabled (this plugin allows
bypassing validation).

• --force

Property Value

Command-Line Format --force

Force a reconfiguration over a previously configured router instance on the host.

• --ssl-mode mode

Property Value

Command-Line Format --ssl-mode mode

Type String

Default Value PREFERRED

Valid Values PREFERRED

DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

SSL connection mode for use during bootstrap and normal operation when connecting to the metadata
server. Analogous to --ssl-mode in the mysql client.

During bootstrap, all connections to metadata servers made by the Router will use the SSL options
specified. If ssl_mode is not specified in the configuration, it will default to PREFERRED. During normal
operation, after Router is launched, its Metadata Cache plugin will read and honor all configured SSL
settings.

When set to a value other than the default (PREFERRED), an ssl_mode entry is inserted under the
[metadata_cache] section in the generated configuration file.

MySQL Router Command Line Programs

40

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
PREFERRED is the default value. As with the mysql client, this value is case-insensitive.

The configuration file equivalent is documented separately at ssl_mode.

• --ssl-cipher ciphers

Property Value

Command-Line Format --ssl-cipher ciphers

Type String

Default Value

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

• --tls-version versions

Property Value

Command-Line Format --tls-version versions

Type String

Default Value

A comma-separated (",") list of TLS versions to request, if SSL is enabled.

• --ssl-ca file_path

Property Value

Command-Line Format --ssl-ca file_path

Type String

Default Value

Path to the SSL CA file to verify a server's certificate against.

• --ssl-capath dir_path

Property Value

Command-Line Format --ssl-capath dir_path

Type String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

• --ssl-crl file_path

Property Value

Command-Line Format --ssl-crl file_path

Type String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

MySQL Router Command Line Programs

41

• --ssl-crlpath dir_path

Property Value

Command-Line Format --ssl-crlpath dir_path

Type String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

• --config file_path, -c file_path

Property Value

Command-Line Format --config file_path, -c file_path

Used to provide a path and file name for the configuration file to use. Use this option if you want to use a
configuration file located in a folder other than the default locations.

When used with --bootstrap, and if the configuration file already exists, a copy of the current file
is saved with a .bak extension if the generated configuration file contents is different than the original.
Existing .bak files are overwritten.

• --extra-config file_path, -a file_path

Property Value

Command-Line Format --extra-config file_path, -a
file_path

Used to provide an optional, additional configuration file to use. Use this option if you want to split the
configuration file into two parts for testing, multiple instances of the application running on the same
machine, etc.

This configuration file is read after the main configuration file. If there are conflicts (an option is set in
multiple configuration files), values from the file that is loaded last is used.

• --install-service

Property Value

Command-Line Format --install-service

Platform Specific Windows

Install Router as a Windows service that automatically starts when Windows starts. The service name is
MySQLRouter.

This installation process does not validate configuration files passed in via --config.

This option is only available on Windows.

• --install-service-manual

Property Value

Command-Line Format --install-service-manual

Platform Specific Windows

MySQL Router Command Line Programs

42

Install MySQL Router as a Windows service that can be manually started. The service name is
MySQLRouter.

This option is only available on Windows.

• --remove-service

Property Value

Command-Line Format --remove-service

Platform Specific Windows

Remove the Router Windows service.

This option is only available on Windows.

• --service

Property Value

Command-Line Format --service

Platform Specific Windows

Start Router as a Windows service.

This option is only available on Windows.

• --update-credentials-section

Property Value

Command-Line Format --update-credentials-section
section_name

Platform Specific Windows

This option is only available on Windows, and refers to its password vault.

• --remove-credentials-section section_name

Property Value

Command-Line Format --remove-credentials-section
section_name

Platform Specific Windows

Remove the credentials for a given section.

This option is only available on Windows, and refers to its password vault.

• --clear-all-credentials

Property Value

Command-Line Format --clear-all-credentials

Platform Specific Windows

Configuration File Options

43

Clear the password vault by removing all credentials stored in it.

This option is only available on Windows, and refers to its password vault.

4.3.2 Configuration File Options

When started, MySQL Router reads a list of configuration files that together make up the configuration of
the router. At least one configuration file is required.

MySQL Router reads options from configuration files that closely resemble the traditional INI file format,
with sections and options. These specify the options set when MySQL Router starts. For file syntax
information, see Section 4.1, “Configuration File Syntax”.

Options are defined under sections, that dictate the option's meaning. For example, user under the
[DEFAULT] section refers to the system user running router, while user under the [metadata_cache]
section refers to the MySQL user that accesses metadata.

The following tables are separated by section, and summarize the MySQL Router options defined in a
MySQL Router configuration file. Detailed information about each of these options, such as descriptions
and allowed values, is documented below these tables.

General Options

Table 4.7 [DEFAULT]

Option Name Description Type

config_folder Path to configuration files String

keyring_path Path to keyring file String

logging_folder Path to router logs String

master_key_path Path to master keyring file String

plugin_folder Path to router plugins String

runtime_folder Path to runtime files String

user System user that router is run as String

Routing Options

Table 4.8 [routing]

Option Name Description Type

bind_address Address router is bound to, also uses bind_port if a port is not defined String

bind_port Default port used by bind_address Integer

client_connect_timeoutMaximum number of seconds to receive packets from MySQL server Integer

connect_timeout Number of seconds before connection attempts to a MySQL server are
considered timed out

Integer

destinations Routing destinations as either a comma-separated list of MySQL servers,
or a metadata-cache definition

String

max_connect_errorsMaximum number of failed MySQL server connections before giving up Integer

max_connections Maximum number of connections assigned to a routed destination
MySQL server

Integer

mode Routing mode, how router chooses destination MySQL servers String

Configuration File Options

44

Option Name Description Type

protocol Protocol for connecting to MySQL Server String

socket Path to unix domain socket file String

Metadata Cache Options

Table 4.9 [metadata_cache]

Option Name Description Type

bootstrap_server_addressesMySQL servers with metadata, as a comma-separated list String

metadata_clusterInnoDB cluster name String

router_id Router ID Integer

ssl_mode SSL connection mode for connecting to the metadata server, defaults to
PREFERRED if not set

String

ttl Time To Live, in seconds Integer

user MySQL user that accesses the MySQL Server's metadata schema String

Logging Options

Table 4.10 [logger]

Option Name Description Type

level Logging level String

MySQL Router Configuration File Option Descriptions

• logging_folder

Property Value

Type String

Default Value $router_basepath

Path to the MySQL Router log file directory. The log file is named mysqlrouter.log, and it is either
generated or appended to if this file already exists.

Setting logging_folder to an empty value sends the messages to the console (stdout).

Note

The default logging_folder value changed from "" to Router's base path in
MySQL Router 2.1.

An example that sends logs to /var/log/mysqlrouter/mysqlrouter.log:

[DEFAULT]
logging_folder = /var/log/mysqlrouter

When the --directory bootstrap option is used, the generated configuration file sets it to $directory/
log/.

• plugin_folder

Configuration File Options

45

Property Value

Type String

Default Value (Other) /usr/local/lib/mysqlrouter

Default Value (Windows)

Path to the MySQL Router plugins. This folder must match the MySQL Router installation directory. You
should only set this if you have a custom installation where the plugins are not in the standard installation
location.

Default value: /usr/local/lib/mysqlrouter

• runtime_folder

Property Value

Type String

Default Value (Other) /run/mysqlrouter

Default Value (Windows)

Path to the MySQL Router runtime files.

Default value: /run/mysqlrouter

• config_folder

Property Value

Type String

Default Value (Other) /usr/local/etc/mysqlrouter

Default Value (Windows)

Path to the MySQL Router configuration files.

Note

The config_folder is currently set at compile time. The option could be used
by future plugins when they have their own configuration files.

Default value: /usr/local/etc/mysqlrouter

• keyring_path

Property Value

Type String

Default Value (Other) /run/mysql-router/keyring-data

Default Value (Windows) %PROGRAMDATA%\MySQL\MySQL Router
\keyring-data

Points to the keyring file's location.

A system-wide bootstrap does not add this option to the generated configuration file, and assumes the
keyring file is located in the system-wide runtime state directory. If --directory is also used, then

Configuration File Options

46

the keyring file is stored under the runtime state directory of that instance, under run/ in the specified
directory.

System-wide default paths are used if this option is not defined.

Example usage:

keyring_path = /opt/myrouter/data/keyring
master_key_path = /opt/myrouter/mysqlrouter.key

Note

This option was added in MySQL Router 2.1.

• master_key_path

Property Value

Type String

Default Value (Other) /run/mysql-router/mysqlrouter.key

Default Value (Windows) %PROGRAMDATA%\MySQL\MySQL Router
\mysqlrouter.key

The master key file's location. This option allows unattended decryption, as otherwise its location is
requested at startup.

System-wide default paths are used if this option is not specified.

Example usage:

keyring_path = /opt/myrouter/data/keyring
master_key_path = /opt/myrouter/mysqlrouter.key

Note

This option was added in MySQL Router 2.1.

• user (system)

Property Value

Type String

Run mysqlrouter as the user having the name user_name or the numeric user ID user_id. “User” in
this context refers to a system login account, not a MySQL user listed in the grant tables. This can also
be assigned at runtime using the --user command line option.

On Linux, installing Router with official DEB or RPM packages creates a local system user and group
named "mysqlrouter" on the host, and MySQL Router runs as this user by default. This account does
not have shell access and its home directory points to the directory where the default configuration file is
stored.

The purpose of this option is to run MySQL Router as a user with restricted system privileges. If the user
does not exist on the system, or if an attempt to start Router as root is made, an error is emitted and
Router exits.

Configuration File Options

47

MySQL Router can be bootstrapped and executed under any Operating System user and does not
require special privileges other than read and write access to its own files. The files it accesses include
plugins (read/execute), configuration file, logs, UNIX domain socket files (if enabled), and more.

By default, the configuration and log files are written to a system-wide location such as /etc and /var/
log. Alternatively, Router can be bootstrapped to a self-contained directory of its own by using the --
directory option. For example:

shell> sudo mysqlrouter --bootstrap localhost:3310 --directory /a/path/myrouter --user snoopy

In this example, Router creates /a/path/myrouter and adds all of the generated files and directories
here, and these are only writable by the system user snoopy. Additionally, user is defined in the
generated configuration file /a/path/myrouter/mysqlrouter.conf:

[DEFAULT]
user=snoopy

Note

An account created by the official MySQL Router packages does not have
shell access and its home directory points to the directory where the default
configuration file is stored.

Note

This is different from the user definition defined in the [metadata_cache]
section, which is a MySQL user.

• bind_address

Property Value

Type String

Default Value 127.0.0.1

Information related to the optional bind_address option:

• Routing entries can be bound to a network interface (NIC). The default bind_address is 127.0.0.1. If
a port is not defined here, then setting bind_port is required.

• By default, --bootstrap sets bind_address=0.0.0.0 for each route in the generated Router
configuration file. This value can be changed using --conf-bind-address.

• Binding to a specific IPv4 or IPv6 address allows and ensures that MySQL Router is not starting and
routing the service on an NIC on which nothing is allowed to execute.

• It is not possible to specify more than one binding address per routing configuration group. However,
using 0.0.0.0:$port (where you define $port) binds all network interfaces (IPs) on the host. IPv6
addresses can also be used.

Example usage:

bind_address = 127.0.0.1:7001

Configuration File Options

48

Note

The bind_address cannot be listed in the destinations list.

• bind_port

Property Value

Type Integer

Optionally, you can define a default port for bind_address using bind_port. If a port is not
configured in bind_address, then bind_port is required and used.

The three examples below all result in bind_address = 127.0.0.1:7001

[routing:example_1]
bind_port = 7001

[routing:example_2]
bind_port = 7001
bind_address = 127.0.0.1

[routing:example_3]
bind_address = 127.0.0.1:7001

• socket

Property Value

Platform Specific Linux

Type String

Sockets are enabled using the socket option, which can be specified with or without the TCP
bind_port and bind_address options. An example:

[routing]
socket = /tmp/mysqlrouter.sock
destinations = a.example.com:3306,b.example.com:3307

When launching MySQL Router, Router will refuse to run if either the socket file already exists or it
cannot be written to.

Relative paths are acceptable and based on the current working directory where Router is launched.

Router can listen to both TCP sockets and Unix sockets simultaneously. For example, the following
[routing] configuration example is valid and configures Router to listen for connections on both
localhost:1234 and /tmp/mysqlrouter.sock:

[routing:my_redirect]
bind_address = localhost:1234
socket = /tmp/mysqlrouter.sock
mode = read-write
destinations = localhost:57121, localhost:57122, localhost:57123

Configuration File Options

49

Note

A Unix domain socket length limit is platform-specific and should not exceed the
system's allowed length.

• protocol

Property Value

Type String

Default Value classic

Valid Values classic

x

Used by the routing plugin when connecting to the destination MySQL server, and can be set to either
"classic" (default), or "x" (X Protocol).

Example usage:

[routing:basic_failover]
bind_port = 7001
mode = read-write
destinations = 10.20.200.1:33060, 10.20.200.2:33060
protocol = x

The protocol option also affects the default port used by by each destination. If a destination port is
not configured, then the default port is 3306 for "classic" (default), 33060 for "x" (X Protocol).

Note

The protocol option, and general X protocol support, was added in Router 2.1.

• connect_timeout

Property Value

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65536

Timeout value used by the MySQL Router when connecting to the destination MySQL server. The
default value is 1 second. The value cannot be unlimited, and an invalid value results in a configuration
error. The valid range is between 1 and 65536. You should keep this value low.

For example, when using read-write mode, the value can be a little higher to wait for the PRIMARY to
become available. When using read-only mode for secondary connections, a lower value makes more
sense because Router selects a new server during connection routing.

Example usage:

connect_timeout = 1

Configuration File Options

50

• destinations

Property Value

Type String

Provides a comma-separated list of destination addresses that should be used when establishing
connections. Exact behavior depends on the mode option, and its associated strategy.

Example usage:

destinations = a.example.com,b.example.com,c.example.com

Note

If a destination's port is not explicitly set, then the default port is 3306 if
protocol is set to "classic" or not set (default), or port 33060 if protocol is set
to "x".

• mode

Property Value

Type String

Valid Values read-write

read-only

Setting this parameter is required, and each mode has different scheduling. Two modes are supported:

• read-write: Typically used for routing to a master or primary MySQL instance.

Mode Schedule: In read-write mode, all traffic is directed to the initial address on the list. If that fails,
then MySQL Router will try the next entry on the list, and will continue trying each MySQL server on
the list. If no more MySQL servers are available on the list, then routing is aborted. This method is also
known as "first-available".

The first successful MySQL server contacted is saved in memory as the first to try for future incoming
connections. This is a temporary state, meaning this is forgotten after MySQL Router is restarted.

[routing:example_strategy]
bind_port = 7001
destinations = primary1.example.com,primary2.example.com,primary3.example.com
mode = read-write

• read-only: Typically used for routing to a slave or secondary MySQL instance.

Mode Schedule: Mode read-only uses a simple round-robin method to go through the list of MySQL
Servers. It sends the first connection to the first address on the list, the next connection to the second
address, and so on, and circles back to the first address after the list is exhausted.

If a MySQL server is not available, then the next server is tried. When none of the MySQL servers on
the list are available, then the routing is aborted.

Unavailable MySQL servers are quarantined. Their availability is checked, and when available they
are put back onto the available destinations list. The destinations order is maintained.

Configuration File Options

51

[routing:ro_route]
bind_port = 7002
destinations = secondary1.example.com,secondary2.example.com,secondary3.example.com
mode = read-only

• max_connections

Property Value

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 65536

Each routing can limit the number of routes or connections. One possible use is to help prevent possible
Denial-Of-Service (DOS) attacks. The default value is 512, and the valid range is between 1 and 65536.

This is similar to MySQL Server's max_connections server system variable.

max_connections = 512

Note

MySQL Router 2.1.5 and 8.0.4 introduced functionality that increases the
concurrent connection limit from around 500 to 5000 connections. This operating
system dependent limitation was changed to use a poll() implementation instead
of select().

• max_connect_errors

Property Value

Type Integer

Default Value 100

Minimum Value 1

Maximum Value 4294967295

The default value is 100, and the valid range is between 1 and 2^32 (4294967295, an unsigned int).

This is similar to MySQL Server's max_connect_errors server system variable.

This can cause a slight performance penalty if an application performs frequent reconnections, because
MySQL Router attempts to discover if connection-related errors are present.

Each routing has its own list of blocked hosts. Blocked clients receive the MySQL Server error 1129
code with a slightly different error message: "1129: Too many connection errors from fail.example.com".
The Router logs contain extra information for blocked clients, such as: INFO [...] 1 authentication errors
for fail.example.com (max 100) WARNING [...] blocking client host fail.example.com

max_connect_errors = 100

• client_connect_timeout

http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors

Configuration File Options

52

Property Value

Type Integer

Default Value 9

Minimum Value 2

Maximum Value 31536000

This is similar to MySQL Server's connect_timeout server system variable.

The default value is 9, which is one less than the MySQL 5.7 default. The valid range is between 2 and
31536000.

client_connect_timeout = 9

• router_id

Property Value

Type Integer

The MySQL Router ID.

• ssl_mode

Property Value

Type String

Default Value PREFERRED

Valid Values PREFERRED

DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

SSL mode for connecting to the MySQL metadata server. It defaults to PREFERRED if not set.

When set to PREFERRED (the default), bootstrapping will warn when SSL is not used and connection to
the metadata server is unencrypted.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY. As
with the mysql client, this value is case-insensitive.

There is also a runtime option for bootstrapping; see --ssl-mode.

• bootstrap_server_addresses

Property Value

Type String

http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_connect_timeout

Configuration File Options

53

Points to a list of MySQL servers with metadata that can be connected to. After the metadata has been
accessed, the metadata cache switches to the servers that are present in the primary ReplicaSet to fetch
the metadata. They are also known as bootstrap servers.

• user (MySQL)

Property Value

Type String

A generated MySQL user with privileges to access the MySQL server's metadata schema. This user's
password is auto-generated and stored in an encrypted keyring. By default, the encryption key for this
keyring is stored in a read protected master key store file, which is defined in the configuration file. Most
commonly, this user and associated password are automatically generated during bootstrap. Related
command line options are --force-password-validation and --password-retries. By default,
the generated password passes the STRONG validate_password strength.

The password is entirely managed by Router and never exposed, and is stored in a local keyring system
using the operating system's account that MySQL Router is running as. It can then be used by Router
to connect to InnoDB cluster and retrieve current topology information. Sessions between Router and
metadata server are encrypted with SSL by default.

Where the generated keyring files are stored depends on how bootstrap is configured. For self-contained
installations (when --directory is used), it is stored under run/ in the self-contained directory. For
system-wide installations, it is stored in the system-wide runtime state directory, and that path is platform
specific. For additional information, see master_key_path and keyring_path

This user is assigned (and requires) the following privileges:

Privileges needed by the Router account:

 On Metadata Server:

 SELECT ON mysql_innodb_cluster_metadata.*

 On Target Replica Sets:

 SELECT ON performance_schema.replication_group_members
 SELECT ON performance_schema.replication_group_member_stats

The generated username follows this pattern: mysql_router_[0-9]{1,6}_[0-9a-z]{12}, where [0-9]
{1,6} is the numeric router id and [0-9a-z]{12} is 12 random lowercase alphanumeric characters. The
router id is reused if already present in mysqlrouter.conf and its length can not exceed 6 digits.

Note

This user is different from the user definition defined in the [DEFAULT] section,
which is a system user.

• metadata_cluster

Property Value

Type String

Name of the InnoDB cluster.

Configuration File Example

54

Note

SQL query to list the MySQL InnoDB cluster names: SELECT * FROM
mysql_innodb_cluster_metadata.clusters;

• ttl

Property Value

Type Integer

Default Value 300

Time to live (in seconds) of information in the metadata cache.

• level

Property Value

Type String

Default Value INFO

Valid Values INFO

DEBUG

WARNING

ERROR

FATAL

Use the logger plugin to log notices, errors, and debugging information. The available log levels are
INFO (default), DEBUG, WARNING, ERROR, and FATAL. These values are case-insensitive.

The INFO level displays all informational messages, warnings, and error messages. The DEBUG level
displays additional diagnostic information from the Router code, including successful routes.

[logger]
level = DEBUG

Output behavior depends on the logging_folder option. Setting logging_folder to a folder saves
a log file named mysqlrouter.log to that folder. Setting logging_folder to an empty value, or not
setting it, outputs the log to the console. It is set in the [DEFAULT] section.

4.3.3 Configuration File Example

Here is a basic connection routing example to a MySQL InnoDB cluster named mycluster. Both classic
and X protocols are enabled, it uses TCP/IP connections instead of UNIX domain sockets, and it was
generated using --bootstrap as a standalone configuration with --directory set to "/opt/routers/
myrouter".

In this example, read-write (primary) traffic is sent to port 6446 (classic) or 64460 (x), and read-only
(secondaries) are accessed using port 6447 (classic) or 64470 (x).

The routing section keys (such as mycluster_default_rw) are optional, but using these descriptive section
keys is helpful for debugging, and also allows multiple configuration sections for the same plugin.

Configuration File Example

55

File automatically generated during MySQL Router bootstrap
[DEFAULT]
logging_folder=/opt/routers/myrouter/log
runtime_folder=/opt/routers/myrouter/run
data_folder=/opt/routers/myrouter/data
keyring_path=/opt/routers/router/data/keyring
master_key_path=/opt/routers/myrouter/mysqlrouter.key

[logger]
level = INFO

[metadata_cache:mycluster]
router_id=5
bootstrap_server_addresses=mysql://localhost:3310,mysql://localhost:3320,mysql://localhost:3330
user=mysql_router5_6owf3spq1c6n
metadata_cluster=mycluster
ttl=300

[routing:mycluster_default_rw]
bind_address=0.0.0.0
bind_port=6446
destinations=metadata-cache://mycluster/default?role=PRIMARY
mode=read-write
protocol=classic

[routing:mycluster_default_ro]
bind_address=0.0.0.0
bind_port=6447
destinations=metadata-cache://mycluster/default?role=SECONDARY
mode=read-only
protocol=classic

[routing:mycluster_default_x_rw]
bind_address=0.0.0.0
bind_port=64460
destinations=metadata-cache://mycluster/default?role=PRIMARY
mode=read-write
protocol=x

[routing:mycluster_default_x_ro]
bind_address=0.0.0.0
bind_port=64470
destinations=metadata-cache://mycluster/default?role=SECONDARY
mode=read-only
protocol=x

56

57

Chapter 5 MySQL Router Application

Table of Contents
5.1 Starting MySQL Router ... 57
5.2 Using the Logging Feature .. 58

The MySQL Router is an executable that typically runs on the same machine as the application that uses
it. This chapter describes the application including available options, how to start the application, and how
to use the logging feature.

There are a number of options available for controlling the application when executing mysqlrouter.
Those options are documented at Section 4.3.1, “MySQL Router Command Line Programs”.

5.1 Starting MySQL Router

MySQL Router requires a configuration file. Although Router searches a predetermined list of default paths
for the configuration file, it is common to start Router by passing in a configuration file with the --config
option.

The process of configuring MySQL Router to automatically start when the host reboots is similar to the
steps needed for MySQL server, which is described at Starting and Stopping MySQL Automatically.

For example, when using systemd:

shell> sudo systemctl start mysqlrouter.service
shell> sudo systemctl enable mysqlrouter.service

Example Log Output

Starting MySQL Router generates several log entries, for example when connecting to a sandboxed
InnoDB cluster:

shell> mysqlrouter --config=/path/to/file/my_router.conf
^C

shell> less /path/to/log/mysqlrouter.log
2017-04-07 16:30:49 INFO [0x7000022fc000] [routing:devCluster_default_ro] started: listening on 0.0.0.0:6447; read-only
2017-04-07 16:30:49 INFO [0x70000237f000] [routing:devCluster_default_rw] started: listening on 0.0.0.0:6446; read-write
2017-04-07 16:30:49 INFO [0x700002402000] [routing:devCluster_default_x_ro] started: listening on 0.0.0.0:64470; read-only
2017-04-07 16:30:49 INFO [0x700002485000] [routing:devCluster_default_x_rw] started: listening on 0.0.0.0:64460; read-write
2017-04-07 16:30:49 INFO [0x700002279000] Starting Metadata Cache
2017-04-07 16:30:49 INFO [0x700002279000] Connections using ssl_mode 'PREFERRED'
2017-04-07 16:30:49 INFO [0x700002279000] Connected with metadata server running on 127.0.0.1:3310
2017-04-07 16:30:49 INFO [0x700002279000] Changes detected in cluster 'devCluster' after metadata refresh
2017-04-07 16:30:49 INFO [0x700002279000] Metadata for cluster 'devCluster' has 1 replicasets:
2017-04-07 16:30:49 INFO [0x700002279000] 'default' (3 members, single-master)
2017-04-07 16:30:49 INFO [0x700002279000] localhost:3310 / 33100 - role=HA mode=RW
2017-04-07 16:30:49 INFO [0x700002279000] localhost:3320 / 33200 - role=HA mode=RO
2017-04-07 16:30:49 INFO [0x700002279000] localhost:3330 / 33300 - role=HA mode=RO
2017-04-07 16:30:49 INFO [0x700002714000] Connected with metadata server running on 127.0.0.1:3310

The log shows that MySQL Router is listening on four ports, lists the active routing strategies by name,
InnoDB cluster information, and more.

http://dev.mysql.com/doc/refman/5.7/en/automatic-start.html

Example Start and Stop Scripts

58

For example, the first line lists the active routing strategy named routing:devCluster_default_ro,
is listening on port 6447, and its mode is read-only. The corresponding section in the MySQL Router
configuration file looks similar to:

[routing:devCluster_default_ro]
bind_address=0.0.0.0
bind_port=6447
destinations=metadata-cache://devCluster/default?role=SECONDARY
mode=read-only
protocol=classic

See how the name, port, and mode were taken directly from the configuration file. In this way, you can
quickly determine which routing strategies are active. This could be particularly useful if running several
instances of MySQL Router, or if multiple configuration files are loaded.

On Windows, MySQL Router can install, remove, or start the service. By default, the service name is
MySQLRouter. For additional information, see the --service and related command line options for
Windows services.

Example Start and Stop Scripts

Bootstrapping MySQL Router with the --directory option generates bash scripts to start and stop
MySQL Router, which look similar to the following:

// *** start.sh *********************** //

#!/bin/bash
basedir=/opt/myrouter
ROUTER_PID=$basedir/mysqlrouter.pid /usr/bin/mysqlrouter -c $basedir/mysqlrouter.conf &
disown %-

// *** stop.sh *********************** //

if [-f /opt/myrouter/mysqlrouter.pid]; then
 kill -HUP `cat /opt/myrouter/mysqlrouter.pid`
 rm -f /opt/myrouter/mysqlrouter.pid
fi

5.2 Using the Logging Feature

The logging feature can be handy for developing and testing your application and deployment of the
MySQL Router. To use logging, enable the logging level option in the configuration file under the section
named [logger]. For example:

[logger]
level = INFO

Set the log file's location with the logging_folder option, defined as a directory path under the
[DEFAULT] section in the configuration file. The logging file is named mysqlrouter.log. For example:

[DEFAULT]
Logs are sent to /path/to/folder/mysqlrouter.log
logging_folder = /path/to/folder

[logger]

Using the Logging Feature

59

level = DEBUG

Setting logging_folder to an empty string sends logs to the console (stdout).

Two common logging levels are INFO (default) and DEBUG:

• INFO: includes informational messages like those shown above, and is the default mode

• DEBUG: includes messages generated inside Router's source code for use in diagnostics. The DEBUG
mode presents verbose information concerning the inner workings of Router. While it may not be of
interest to the application, use of the DEBUG mode may be helpful if you encounter a problem or when
Router is not behaving as you expect.

The following example shows what the messages look like for the DEBUG logging level; compare the INFO
and DEBUG messages:

2017-04-07 18:25:56 INFO [0x700009673000] Connections using ssl_mode 'PREFERRED'
2017-04-07 18:25:56 INFO [0x700009673000] Connected with metadata server running on 127.0.0.1:3310
2017-04-07 18:25:56 DEBUG [0x700009673000] Updating metadata information for cluster 'devCluster'
2017-04-07 18:25:56 DEBUG [0x700009673000] Updating replicaset status from GR for 'default'
2017-04-07 18:25:56 DEBUG [0x700009673000] Replicaset 'default' has 3 members in metadata, 3 in status table
2017-04-07 18:25:56 DEBUG [0x700009673000] End updating replicaset for 'default'
2017-04-07 18:25:56 INFO [0x700009673000] Changes detected in cluster 'devCluster' after metadata refresh
2017-04-07 18:25:56 INFO [0x700009673000] Metadata for cluster 'devCluster' has 1 replicasets:

60

61

Appendix A MySQL Router Frequently Asked Questions
A.1 Where do I install MySQL Router? ... 61
A.2 Can I run more than one instance of the router application? ... 61
A.3 How do I make the router application highly available? .. 61
A.4 Does the router inspect packets? .. 61
A.5 Does the router impact performance? ... 61
A.6 Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to

8.0.3. ... 61
A.7 Can I bind the router to multiple IP addresses? ... 61
A.8 What is the difference between the different scheduling modes and strategies? 62
A.9 How many concurrent connections does each MySQL Router instance support? 62

A.1. Where do I install MySQL Router?

For best performance, MySQL Router is typically installed on the same host as the application that
uses it. Doing so can decrease network latency, allow a local unix domain socket connection to the
application instead of TCP/IP, and typically application server's are easiest to scale. But, this is not a
requirement as Router can be installed on any host, even its own.

Note: Unix domain sockets can function with applications connecting to MySQL Router, but not for
MySQL Router connecting to a MySQL Server.

A.2. Can I run more than one instance of the router application?

Yes, see also the --directory bootstrap option.

A.3. How do I make the router application highly available?

Use MySQL Router as part of InnoDB cluster. For additional details, see InnoDB Cluster.

A.4. Does the router inspect packets?

No.

A.5. Does the router impact performance?

Whenever you introduce a component in a communication stream there will be a certain amount
of overhead incurred and is affected heavily by workload. Fortunately, performance testing on the
current release has shown approximately 1% within the same speed as a direct connection for
simple redirect connection routing.

A.6. Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to 8.0.3.

MySQL Router 2.0 was the initial version and is meant for MySQL Fabric users. It has since been
deprecated and is no longer supported.

MySQL Router 2.1 was introduced to support MySQL InnoDB cluster, and it also added new
features such as bootstrapping.

MySQL Router 8.0 expands on MySQL Router 2.1 but with a version number that aligns with
MySQL Server. In other words, Router 2.1.5 was released as Router 8.0.3 (along with MySQL
Server 8.0.3), and the 2.1.x branch was replaced by 8.0.x. The two branches are fully compatible.

A.7. Can I bind the router to multiple IP addresses?

No, the bind_address option in the configuration file accepts only one address. However, it is
possible to use bind_addres = 0.0.0.0 to bind to all ports on the localhost.

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html

62

A.8. What is the difference between the different scheduling modes and strategies?

Before version 8.0, the mode option determined the scheduling strategy. Setting mode=read-
write means Router uses the first destination host until it fails and then moves to the next until
all hosts were attempted and failed. Setting mode=read-only cycles through the list of host
destinations in a circular (round-robin) manner retrying servers that may have failed previously.

Router 8.0 introduced the routing_strategy option as a replacement to the now deprecated
mode option. It offers the first-available, next-available, round-robin and round-robin-with-fallback
strategies. See the routing_strategy documentation for additional details.

The next-available routing strategy is identical to the read-write mode's schedule, and the round-
robin routing strategy is identical to the read-only mode's schedule.

A.9. How many concurrent connections does each MySQL Router instance support?

Over 5000 as of MySQL Router 2.1.5 and 8.0.4, depending on the operating system's poll() limits,
and just over 500 in earlier versions due to their internal use of select() instead of poll().

http://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy
http://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy

	MySQL Router 2.1
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 Routing for MySQL InnoDB cluster
	1.2 Cluster Metadata and State
	1.3 Connection Routing
	1.4 Application Considerations
	1.5 What's New in MySQL Router 2.1

	Chapter 2 Installing MySQL Router
	2.1 Installing MySQL Router on Linux
	2.2 Installing MySQL Router on macOS
	2.3 Installing MySQL Router on Windows
	2.4 Installing MySQL Router from Source Code
	2.4.1 Prerequisites
	2.4.2 Compiling the Source Code
	2.4.3 Installing from Source Code
	2.4.4 Testing the Installation

	Chapter 3 Deploying MySQL Router
	3.1 Bootstrapping
	3.2 Trying out MySQL Router in a Sandbox
	3.3 Basic Connection Routing

	Chapter 4 Configuration
	4.1 Configuration File Syntax
	4.2 Configuration File Locations
	4.3 Configuration Options
	4.3.1 MySQL Router Command Line Programs
	4.3.1.1 mysqlrouter — Command Line Options

	4.3.2 Configuration File Options
	4.3.3 Configuration File Example

	Chapter 5 MySQL Router Application
	5.1 Starting MySQL Router
	5.2 Using the Logging Feature

	Appendix A MySQL Router Frequently Asked Questions

