MySQL Replication

Abstract
This is the MySQL Replication extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2025-01-28 (revision: 80794)

http://forums.mysql.com

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
LT o] o= 11T o PSP 1
2 Configuring REPICALIONuuiiiiii ettt et e et e e e 3
2.1 Binary Log File Position Based Replication Configuration OVerviewocceevieeeennnnnnn. 4
2.2 Setting Up Binary Log File Position Based Replicationcccooeveeiiiieiiiiinieiiiiinieeeiieeees 4
2.2.1 Setting the Replication Source Configurationcccciiieeiiiiinieiiiii e 5
2.2.2 Creating a User for REPlICALIONccouuuiiiiiiiiieiiii et 6
2.2.3 Obtaining the Replication Source's Binary Log Coordinatesccevvvveeeeninneeenns 6
2.2.4 Choosing a Method for Data SNapShotLSuiviiiiiiiiiiiiii e 8
2.2.5 Setting Up REPHCAS ...covviiiiiiiieee e 10
2.2.6 Adding Replicas to a Replication TOPoIOgYcccuuoiiiiiiiiiieiiiiiieeii e 12

2.3 Replication with Global Transaction 1dentifiers ..o 14
2.3.1 GTID FOrmat and STOTAQgEccuuuieiiiiiieiiiiii ettt e et e et e et e e et e e eere e eees 15
2.3.2 GTID LifE CYCIE ..eeeieieeii ettt e 18
2.3.3 GTID AULO-POSIIONING ..eettneiiiiieeeiii ettt ettt et et e e e eneas 23
2.3.4 Setting Up Replication USIiNG GTIDSuiiiiiiiiiiiiiiieeeiie e 24
2.3.5 Using GTIDs for Failover and SCaleouULcc.uiiiiiiiiiiiiiiiieceei e 26
2.3.6 Restrictions on Replication With GTIDSovviiiiiiiiiiiiiee e 29
2.3.7 Stored Function Examples to Manipulate GTIDScccoiveiiiiiiieiiiiiieeci e 30

2.4 Changing Replication Modes 0n ONliNE SEIVEISoiiiiiiiiieiiiiii e 34
2.4.1 Replication MOAE CONCEPLSceieriieeiiiiie ettt e e e 34
2.4.2 Enabling GTID Transactions ONINEiiiiiiiiiiiiiiece e 36
2.4.3 Disabling GTID Transactions ONIINEcoooiiuiiiiiiiiieei e 38
2.4.4 Verifying Replication of Anonymous TranSactionsvveveeeinieieiinneeiiineeeennnn 39

2.5 MySQL Multi-Source REPICALIONiviiiiieiiii et 40
2.5.1 Configuring Multi-Source RepliCationcccuuiiiiiiiiiiiiiiie e 41
2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replicationc.......... 41
2.5.3 Adding GTID-Based Sources to a Multi-Source Replicaccccovvvvvviiniiiiiiinneennn, 42
2.5.4 Adding a Binary Log Based Source to a Multi-Source Replicacccc.oceevvnieeenn. 43
2.5.5 Starting Multi-Source RepPliCASoeiiiiiiiiiiiie e 43
2.5.6 Stopping Multi-SOUrce REPIICASveiiiiiiieiiiiie e 43
2.5.7 Resetting Multi-SoUrce REPIICASovviuiniiiiii e 44
2.5.8 Multi-Source Replication MONITONNGveiviviieeiiiie e 44

2.6 Replication and Binary Logging Options and Variablescccccoooiiiiiiiiiiiiiniciccei, 45
2.6.1 Replication and Binary Logging Option and Variable Referencec.....cccuuunnen. 47
2.6.2 Replication Source Options and Variables ..o 53
2.6.3 Replica Server Options and Variables ... 60
2.6.4 Binary Logging Options and Variablescccooviiiiiiiiiiiiiini e 92
2.6.5 Global Transaction ID System Variablescooiiiiiiiiiiiiiii e 114

2.7 Common Replication AdMINIStration TASKScccuuiiiiiiiiiiieiiiii e 121
2.7.1 Checking RepliCatioN STALUScccuuuiiiiiiiieeiiiii e e 121
2.7.2 Pausing Replication on the RepliCaooveviiiiiiiiiiii e 123
2.7.3 SKIPPING TraNSACHONSccetiiieiiiiiiee ettt e e 124

3 RePICALION SOIULIONS ...t ettt e e e et e e e s 127
3.1 Using Replication for BACKUPSccouuuiiiiiiiii it 127
3.1.1 Backing Up a Replica Using mySqldumpoveiimiiieieiiieieiieeeeni e 128
3.1.2 Backing Up Raw Data from a RepliCaveiiiriiiiiiiiiieiiiiieeee e 128
3.1.3 Backing Up a Source or Replica by Making It Read Onlyccccoevviviiiniennnnn, 129

3.2 Handling an Unexpected Halt of @ RepliCaoiveuiiiiiiii e 131
3.3 Using Replication with Different Source and Replica Storage Enginesccccccoeveeeenn. 133
3.4 Using Replication for SCAIE-OULiiiiiiiiieiiiii e 134
3.5 Replicating Different Databases to Different Replicasccooovviiiiiiiiiiiiiiiiii e, 136
3.6 Improving Replication PerformManCeccoouiiiiiiiiiiii e 137
3.7 Switching Sources DUrNg FaIlOVETuiiiiiiiiiii e 138
3.8 Setting Up Replication to Use Encrypted CONNECHIONScccvvunieiiriiiieiiiiieeeeiieeeeiie 140

MySQL Replication

3.9 Semisynchronous REPHCAIONccouuiiiiiii e e e s 141
3.9.1 Semisynchronous Replication Administrative Interfacecccoocveviiiiiiiineinn, 144
3.9.2 Semisynchronous Replication Installation and Configurationc..c.oeeee. 145
3.9.3 Semisynchronous Replication MONITOINGccvuveiiieiiiieeiieeeic e 147

3.10 Delayed ReEPICALIONciiieeii e e e e e e e e et e e e e e et e e et e eaaaaes 147

/S LY o] Tor= Vi o] g N0 1 (=TSR T To I T o PP 149

4.1 Replication Features and ISSUEScciuuiiiiiiiiiiei et e e e e e e e e e e 149
4.1.1 Replication and AUTO _INCREMENTiiiiiiiiiiiiciie e 150
4.1.2 Replication and BLACKHOLE TabIeSiiiiiiiiiiiciiiee e 151
4.1.3 Replication and Character SEtSciiiuiiiiiiieiiii e e 151
4.1.4 Replication and CHECKSUM TABLEcoiiiiiiiiii e 151
4.1.5 Replication of CREATE ... IF NOT EXISTS Statementsccccoceeeveeviieiiiieiinns 151
4.1.6 Replication of CREATE TABLE ... SELECT Statementsc.cccceeveviiiiiiiieeinnnnns 151
4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER 152
4.1.8 Replication of CURRENT _USER() +.ivvuiiiiiiiiiiei e e eaa e 152
4.1.9 Replication of DROP ... IF EXISTS Statementscccoveviiiiiiiiiiiiieeiieeeeeeiees 153
4.1.10 Replication with Differing Table Definitions on Source and Replica 153
4.1.11 Replication and DIRECTORY Table Optionsccoveviieiiiiiiiieec e, 157
4.1.12 Replication and Floating-Point Valuescccoiiiiiiiiiin e, 157
4.1.13 Replication and Fractional Seconds SUPPOItccuuieviiiieiiiieiii e e 158
4.1.14 Replication and FLUSH ..o e e 158
4.1.15 Replication and System FUNCLONSccooouiiiiiiiiii e 158
4.1.16 Replication of INVoked FEAtUIESccvviiiiiii i e 160
4.1.17 Replication and LIMIT ... e e 162
4.1.18 Replication and LOAD DATA ...t e 162
4.1.19 Replication and max_allowed _pPacketcccciiiiiiiiiiiiiiii e 162
4.1.20 Replication and MEMORY TabIeScc.oiiiiiiiiii e 163
4.1.21 Replication of the mysqgl System Databasec.cccoeveiiiiiiiiiiiii e, 164
4.1.22 Replication and the Query OPLIMIZETovviuniiiiiieiie e e 164
4.1.23 Replication and Partitioningcc.eeiiiiiiiiie e e e 164
4.1.24 Replication and REPAIR TABLE ..o 164
4.1.25 Replication and Reserved WOrAScooviuiiiiiieiiii e e e 164
4.1.26 Replication and Source or Replica Shutdownscccoveviiiiiiiii i, 165
4.1.27 Replica Errors During Replicationccoooiiiiiiiiiiiie e 166
4.1.28 Replication and Server SQL MOUEooivviiiiiiiiii e 166
4.1.29 Replication and Temporary Tablesccocoiiiiiiiiiiii e 167
4.1.30 Replication Retries and TIMEOULSoiiiiiieiiiieiiii e e e e e eaeees 167
4.1.31 Replication and TiME ZONEScouuiiiinieiii et et e e e e e e e e aaaees 167
4.1.32 Replication and Transaction INCONSISLENCIEScccevvveiiiieiiiiieii e, 168
4.1.33 Replication and TranSaCONSceivuiiiiii e e e e aes 170
4.1.34 Replication and THGOEIS ...uiiiuuieii et e e e e e e e e e eeanaeee 171
4.1.35 Replication and TRUNCATE TABLEoiiiiiiiiiiie e 172
4.1.36 Replication and User Name Lengthcooiiiiiiiiiiiicii e 172
4.1.37 Replication and Variablescoiiiiiiiiiiii e 172
4.1.38 Replication @and VIEBWSciiuiiiii e e e e e e e e e aaees 174

4.2 Replication Compatibility Between MySQL VErSIONSc..oovvvviiiiiiieiiiiecie e 174

4.3 Upgrading a Replication TOPOIOGYuovvvniiiiiieiii e e e e e e 175

4.4 Troubleshooting REPHCALIONoiiiniiiiiici e e 177

4.5 How to Report Replication Bugs or Problemsco.veiiiiiiiiicii e 178

5 Replication IMPIEMENTALIONcouiiiiii e e e e e e e e e e eanaeeees 181

LN I 2 =T o] o= 11T g Tl o 4 F= =N 182
5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication . 183
5.1.2 Usage of Row-Based Logging and Replicationcccooiiiiiiiniiiiieiineeceeeeis 185
5.1.3 Determination of Safe and Unsafe Statements in Binary Loggingc.ccceeeeen. 187

5.2 Replication ChannEISc.uiiiiiiii e e e e e e e e 189
5.2.1 Commands for Operations on a Single Channelcccooiiiiiiiin i 189
5.2.2 Compatibility with Previous Replication Statementscccoovveviieiiiieiiiiecieeennnn, 190

5.2.3 Startup Options and Replication Channelscccccooviiiiiiiii i, 191

MySQL Replication

5.2.4 Replication Channel Naming CONVENLIONScccuiiiiiiiiiiieeiii e ee e e e 192
IR = (=T o] o= 11T o TN N T £=T= (o £ 192
5.3.1 Monitoring Replication Main Threadscccoveiiiiiiiiiiiieee e 193
5.3.2 Monitoring Replication Applier Worker Threadsccooeviiiiiiiiiiiiccii e 194
5.4 Relay Log and Replication Metadata REPOSITONEScccvviiiiiiiiiiiiiiiii e 195
Lo A I T = =Y = YA o o 195
5.4.2 Replication Metadata REPOSItONIESuiviiiiiiiiiiii e 196
5.5 How Servers Evaluate Replication Filtering RUIESccoiviiiiiiiiiiii e, 201
5.5.1 Evaluation of Database-Level Replication and Binary Logging Options 202
5.5.2 Evaluation of Table-Level Replication Optionsccoeveiiiiiiiiieeiin e 203
5.5.3 Interactions Between Replication Filtering Optionscccccovvviiiiiiiiieiiiicceeeen, 205

Vi

Preface and Legal Notices

This is the MySQL Replication extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual

for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software,
used under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB
Cluster 7.5 Commercial Release License Information User Manual for licensing information relating

to third-party software that may be included in this Commercial release. If you are using a Community
release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information
User Manual for licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of
MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated

Vii

https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Documentation Accessibility

on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/
t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Replication

Replication enables data from one MySQL database server (the source) to be copied to one or more
MySQL database servers (the replicas). Replication is asynchronous by default; replicas do not need
to be connected permanently to receive updates from the source. Depending on the configuration, you
can replicate all databases, selected databases, or even selected tables within a database.

Advantages of replication in MySQL include:

» Scale-out solutions - spreading the load among multiple replicas to improve performance. In this
environment, all writes and updates must take place on the replication source server. Reads,
however, may take place on one or more replicas. This model can improve the performance of writes
(since the source is dedicated to updates), while dramatically increasing read speed across an
increasing number of replicas.

» Data security - because data is replicated to the replica, and the replica can pause the replication
process, it is possible to run backup services on the replica without corrupting the corresponding
source data.

* Analytics - live data can be created on the source, while the analysis of the information can take
place on the replica without affecting the performance of the source.

» Long-distance data distribution - you can use replication to create a local copy of data for a remote
site to use, without permanent access to the source.

For information on how to use replication in such scenarios, see Chapter 3, Replication Solutions.

MySQL 5.7 supports different methods of replication. The traditional method is based on replicating
events from the source's binary log, and requires the log files and positions in them to be synchronized
between source and replica. The newer method based on global transaction identifiers (GTIDs) is
transactional and therefore does not require working with log files or positions within these files, which
greatly simplifies many common replication tasks. Replication using GTIDs guarantees consistency
between source and replica as long as all transactions committed on the source have also been
applied on the replica. For more information about GTIDs and GTID-based replication in MySQL, see
Section 2.3, “Replication with Global Transaction Identifiers”. For information on using binary log file
position based replication, see Chapter 2, Configuring Replication.

Replication in MySQL supports different types of synchronization. The original type of synchronization
is one-way, asynchronous replication, in which one server acts as the source, while one or more other
servers act as replicas. This is in contrast to the synchronous replication which is a characteristic of
NDB Cluster (see MySQL NDB Cluster 7.5 and NDB Cluster 7.6). In MySQL 5.7, semisynchronous
replication is supported in addition to the built-in asynchronous replication. With semisynchronous
replication, a commit performed on the source blocks before returning to the session that performed
the transaction until at least one replica acknowledges that it has received and logged the events for
the transaction; see Section 3.9, “Semisynchronous Replication”. MySQL 5.7 also supports delayed
replication such that a replica deliberately lags behind the source by at least a specified amount of
time; see Section 3.10, “Delayed Replication”. For scenarios where synchronous replication is required,
use NDB Cluster (see MySQL NDB Cluster 7.5 and NDB Cluster 7.6).

There are a number of solutions available for setting up replication between servers, and the best
method to use depends on the presence of data and the engine types you are using. For more
information on the available options, see Section 2.2, “Setting Up Binary Log File Position Based
Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates
entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows.
You can also use a third variety, Mixed Based Replication (MBR). For more information on the different
replication formats, see Section 5.1, “Replication Formats”.

Replication is controlled through a number of different options and variables. For more information, see
Section 2.6, “Replication and Binary Logging Options and Variables”.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

You can use replication to solve a number of different problems, including performance, supporting
the backup of different databases, and as part of a larger solution to alleviate system failures. For
information on how to address these issues, see Chapter 3, Replication Solutions.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and potential problems and their
resolution, see Chapter 4, Replication Notes and Tips. For answers to some questions often asked by
those who are new to MySQL Replication, see MySQL 5.7 FAQ: Replication.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are
recorded and replicated, see Chapter 5, Replication Implementation.

https://dev.mysql.com/doc/refman/5.7/en/faqs-replication.html

Chapter 2 Configuring Replication

Table of Contents

2.1 Binary Log File Position Based Replication Configuration OVEIVIEWccceuuiieiiiiiieieinineeenns 4
2.2 Setting Up Binary Log File Position Based Replicationcoouuiiiiiiiiiiiiiiicei e 4
2.2.1 Setting the Replication Source Configurationc...vveiiiiiiieiiiinieeiiieeeeei e 5
2.2.2 Creating a User for RePlICALIONuuiiiiiiiiiiiiiii e e e 6
2.2.3 Obtaining the Replication Source's Binary Log Coordinatescceeveievinneiiiineereninnnn. 6
2.2.4 Choosing a Method for Data SNAaPSNOLSuiiiiiiiiiiiii e 8
2.2.5 Setting UpP REPICAS ...covunieiiiiiiee it 10
2.2.6 Adding Replicas to a Replication TOPOIOGYccouuuiiiiiiiiiiiiie e 12
2.3 Replication with Global Transaction 1dentifiers ..., 14
2.3.1 GTID FOrmat @nd STOTAGEcceuuueeiitiieiiiiite ettt e e et e ettt e et et e et et e e eene e eeee 15
2.3.2 GTID LifE CYCIE ..ottt et e e e e 18
2.3.3 GTID AULO-POSITIONING ..evtiiieeiitiee ettt ettt ettt et e e e e eeeens 23
2.3.4 Setting Up Replication USING GTIDSuiiiiiiiieiiiiiieeeei ettt 24
2.3.5 Using GTIDs for Failover and SCalEOULoviiiiiiiiiiiiieiiii e 26
2.3.6 Restrictions on Replication With GTIDScciiiiiiiiiiiiiieeiii e 29
2.3.7 Stored Function Examples to Manipulate GTIDSoveiiiiiiiiiiiiiiieieiii e 30
2.4 Changing Replication Modes 0n ONliNE SEIVEISccouuuiiiiiiiieiiii e 34
2.4.1 Replication MOAE CONCEPLSceieriieeiiii ettt ettt e et e e e e e s 34
2.4.2 Enabling GTID Transactions ONIINEiiiiiiiiiiiiii e 36
2.4.3 Disabling GTID Transactions ONIINEcoeuuiiiiiiiieii e 38
2.4.4 Verifying Replication of ANONYMOUS TranSaCtioNSovevieiiiieiiiiiiieeeiiiee e 39
2.5 MySQL Multi-SoUrce REPICALIONu.iiiiiieieii et e 40
2.5.1 Configuring Multi-Source RepPliCAtIONccouuuiiiiiiiiie e 41
2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replicationcccccooveiivinnenen. 41
2.5.3 Adding GTID-Based Sources to a Multi-Source Replicaccoeviiiieiiiiiiiiiiiiieie, 42
2.5.4 Adding a Binary Log Based Source to a Multi-Source Replicacoouviviiiiiiniciiinnnnn. 43
2.5.5 Starting MUlti-SOUICEe REPIICASuuiiiiiiieiiiii e 43
2.5.6 Stopping MUlti-SOUICe REPIICASoeiiiiiieiiiiie e 43
2.5.7 Resetting Multi-SOUrce REPIICASvviiiiiieiiiii e 44
2.5.8 Multi-Source Replication MONITOINGieiieiiieiiiie e 44
2.6 Replication and Binary Logging Options and Variables ..o 45
2.6.1 Replication and Binary Logging Option and Variable Referenceccccoevviiiiiiiiinns a7
2.6.2 Replication Source Options and Variables ..o 53
2.6.3 Replica Server Options and Variablesooiiiiiiiiiiiii e 60
2.6.4 Binary Logging Options and Variables ... 92
2.6.5 Global Transaction ID System Variablescoouiiiiiiiiiiiiiiic e 114
2.7 Common Replication AdmIiNIStration TASKSiviiureiiiiiiie e 121
2.7.1 Checking RepliCation STALUSc.uuuiiiiiiiieiiii ettt e e eenees 121
2.7.2 Pausing Replication on the RepliCacoouuuiiiiiiii e 123
2.7.3 SKIPPING TraNSACHONS .. .cevtuieiiiii ettt et e et e e et e e et e e e erb e e e enanaeeees 124

This section describes how to configure the different types of replication available in MySQL and
includes the setup and configuration required for a replication environment, including step-by-step
instructions for creating a new replication environment. The major components of this section are:

» For a guide to setting up two or more servers for replication using binary log file positions,
Section 2.2, “Setting Up Binary Log File Position Based Replication”, deals with the configuration of
the servers and provides methods for copying data between the source and replicas.

» For a guide to setting up two or more servers for replication using GTID transactions, Section 2.3,
“Replication with Global Transaction Identifiers”, deals with the configuration of the servers.

Binary Log File Position Based Replication Configuration Overview

« Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication
(MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both SBR
and RBR formats when appropriate. The different formats are discussed in Section 5.1, “Replication
Formats”.

» Detailed information on the different configuration options and variables that apply to replication is
provided in Section 2.6, “Replication and Binary Logging Options and Variables”.

» Once started, the replication process should require little administration or monitoring. However,
for advice on common tasks that you may want to execute, see Section 2.7, “Common Replication
Administration Tasks”.

2.1 Binary Log File Position Based Replication Configuration
Overview

This section describes replication between MySQL servers based on the binary log file position
method, where the MySQL instance operating as the source (where the database changes originate)
writes updates and changes as “events” to the binary log. The information in the binary log is stored in
different logging formats according to the database changes being recorded. Replicas are configured
to read the binary log from the source and to execute the events in the binary log on the replica's local
database.

Each replica receives a copy of the entire contents of the binary log. It is the responsibility of the replica
to decide which statements in the binary log should be executed. Unless you specify otherwise, all
events in the source's binary log are executed on the replica. If required, you can configure the replica
to process only events that apply to particular databases or tables.

I Important

You cannot configure the source to log only certain events.

Each replica keeps a record of the binary log coordinates: the file name and position within the file that
it has read and processed from the source. This means that multiple replicas can be connected to the
source and executing different parts of the same binary log. Because the replicas control this process,
individual replicas can be connected and disconnected from the server without affecting the source's
operation. Also, because each replica records the current position within the binary log, it is possible for
replicas to be disconnected, reconnect and then resume processing.

The source and each replica must be configured with a unique ID (using the server i d system
variable). In addition, each replica must be configured with information about the source's host name,
log file name, and position within that file. These details can be controlled from within a MySQL session
using the CHANGE MASTER TOstatement on the replica. The details are stored within the replica's
connection metadata repository, which can be either a file or a table (see Section 5.4, “Relay Log and
Replication Metadata Repositories”).

2.2 Setting Up Binary Log File Position Based Replication

This section describes how to set up a MySQL server to use binary log file position based replication.
There are a number of different methods for setting up replication, and the exact method to use
depends on how you are setting up replication, and whether you already have data in the database on
the source.

There are some generic tasks that are common to all setups:

» On the source, you must enable binary logging and configure a unique server ID. This might require
a server restart. See Section 2.2.1, “Setting the Replication Source Configuration”.

» On each replica that you want to connect to the source, you must configure a unique server ID. This
might require a server restart. See Section 2.2.5.1, “Setting the Replica Configuration”.

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Setting the Replication Source Configuration

» Optionally, create a separate user for your replicas to use during authentication with the source when
reading the binary log for replication. See Section 2.2.2, “Creating a User for Replication”.

» Before creating a data snapshot or starting the replication process, on the source you should record
the current position in the binary log. You need this information when configuring the replica so that
the replica knows where in the binary log to start executing events. See Section 2.2.3, “Obtaining the
Replication Source's Binary Log Coordinates”.

« If you already have data on the source and want to use it to synchronize the replica, you need to
create a data snapshot to copy the data to the replica. The storage engine you are using has an
impact on how you create the snapshot. When you are using Myl SAM you must stop processing
statements on the source to obtain a read-lock, then obtain its current binary log coordinates and
dump its data, before permitting the source to continue executing statements. If you do not stop the
execution of statements, the data dump and the source's status information do not match, resulting
in inconsistent or corrupted databases on the replicas. For more information on replicating a Myl SAM
source, see Section 2.2.3, “Obtaining the Replication Source's Binary Log Coordinates”. If you are
using | nnoDB, you do not need a read-lock and a transaction that is long enough to transfer the data
snapshot is sufficient. For more information, see InnoDB and MySQL Replication.

» Configure the replica with settings for connecting to the source, such as the host name, login
credentials, and binary log file name and position. See Section 2.2.5.2, “Setting the Source
Configuration on the Replica”.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

After configuring the basic options, select your scenario:

» To set up replication for a fresh installation of a source and replicas that contain no data, see
Section 2.2.5.3, “Setting Up Replication between a New Source and Replicas”.

» To set up replication of a new source using the data from an existing MySQL server, see
Section 2.2.5.4, “Setting Up Replication with Existing Data”.

» To add replicas to an existing replication environment, see Section 2.2.6, “Adding Replicas to a
Replication Topology”.

Before administering MySQL replication servers, read this entire chapter and try all statements
mentioned in SQL Statements for Controlling Replication Source Servers, and SQL Statements for
Controlling Replica Servers. Also familiarize yourself with the replication startup options described in
Section 2.6, “Replication and Binary Logging Options and Variables”.

2.2.1 Setting the Replication Source Configuration

To configure a source to use hinary log file position based replication, you must ensure that binary
logging is enabled, and establish a unique server ID.

Each server within a replication topology must be configured with a unique server ID, which you can
specify using the ser ver _i d system variable. This server ID is used to identify individual servers
within the replication topology, and must be a positive integer between 1 and (232)—1. You can change
the server _i d value dynamically by issuing a statement like this:

SET GLOBAL server_id = 2;

With the default server ID of 0, a source refuses any connections from replicas, and a replica refuses
to connect to a source, so this value cannot be used in a replication topology. Other than that, how
you organize and select the server IDs is your choice, so long as each server ID is different from every
other server ID in use by any other server in the replication topology. Note that if a value of 0 was set
previously for the server ID, you must restart the server to initialize the source with your new nonzero

https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/replication-statements-master.html
https://dev.mysql.com/doc/refman/5.7/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/5.7/en/replication-statements-replica.html

Creating a User for Replication

server ID. Otherwise, a server restart is not needed, unless you need to enable binary logging or make
other configuration changes that require a restart.

Binary logging must be enabled on the source because the binary log is the basis for replicating
changes from the source to its replicas. If binary logging is not enabled on the source using the | og-

bi n option, replication is not possible. To enable binary logging on a server where it is not already
enabled, you must restart the server. In this case, shut down the MySQL server and edit the ny. cnf or
ny. i ni file. Within the [nysql d] section of the configuration file, add the | og- bi n and server-id
options. If these options already exist, but are commented out, uncomment the options and alter them
according to your needs. For example, to enable binary logging using a log file name prefix of nysql -
bi n, and configure a server ID of 1, use these lines:

[nysql d]
| 0g- bi n=nysql - bi n
server-id=1

After making the changes, restart the server.
Note
The following options have an impact on this procedure:

» For the greatest possible durability and consistency in a
replication setup using | nnoDB with transactions, you should use
i nnodb_flush_log at _trx_commit=1andsync_bi nl og=1 in the
source's my. cnf file.

¢ Ensure that the ski p_net wor ki ng system variable is not enabled on your
source. If networking has been disabled, the replica cannot communicate with
the source and replication fails.

2.2.2 Creating a User for Replication

Each replica connects to the source using a MySQL user name and password, so there must be a
user account on the source that the replica can use to connect. The user name is specified by the
MASTER USER option on the CHANGE MASTER TOcommand when you set up a replica. Any account
can be used for this operation, providing it has been granted the REPLI CATI ON SLAVE privilege. You
can choose to create a different account for each replica, or connect to the source using the same
account for each replica.

Although you do not have to create an account specifically for replication, you should be aware that

the replication user name and password are stored in plain text in the replication metadata repositories
(see Section 5.4.2, “Replication Metadata Repositories”). Therefore, you may want to create a separate
account that has privileges only for the replication process, to minimize the possibility of compromise to
other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for
replication, use the GRANT statement. If you create an account solely for the purposes of replication,
that account needs only the REPLI CATI ON SLAVE privilege. For example, to set up a new user, r epl ,
that can connect for replication from any host within the exanpl e. comdomain, issue these statements
on the source:

nysqgl > CREATE USER 'repl' @ % exanpl e. coml | DENTI FI ED BY ' password';
nmysqgl > GRANT REPL| CATI ON SLAVE ON *.* TO 'repl' @ % exanpl e. con ;

See Account Management Statements, for more information on statements for manipulation of user
accounts.

2.2.3 Obtaining the Replication Source's Binary Log Coordinates

To configure the replica to start the replication process at the correct point, you need to note the
source's current coordinates within its binary log.

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html

Obtaining the Replication Source's Binary Log Coordinates

Warning

This procedure uses FLUSH TABLES W TH READ LOCK, which blocks
COWM T operations for | nnoDB tables.

If you are planning to shut down the source to create a data snapshot, you can optionally skip this
procedure and instead store a copy of the binary log index file along with the data snapshot. In that
situation, the source creates a new binary log file on restart. The source's binary log coordinates where
the replica must start the replication process are therefore the start of that new file, which is the next
binary log file on the source following after the files that are listed in the copied binary log index file.

To obtain the source's binary log coordinates, follow these steps:

1. Start a session on the source by connecting to it with the command-line client, and flush all tables
and block write statements by executing the FLUSH TABLES W TH READ LOCK statement:

nysql > FLUSH TABLES W TH READ LOCK;
Warning

Leave the client from which you issued the FLUSH TABLES statement
running so that the read lock remains in effect. If you exit the client, the lock
is released.

2. In a different session on the source, use the SHON MASTER STATUS statement to determine the
current binary log file name and position:

nysql > SHOW MASTER STATUS\ G

KAKK KKK KRR Kk hkhkkhkhkkkkhx] [QWY % % % % ok ok ok ok ok ok ok ok kK ok ok ok ok ok ko Kk ok kK

Fil e: nysqgl - bi n. 000003
Position: 73
Bi nl og_Do_DB: test
Bi nl og_| gnore_DB: nmanual , nysql
Executed_Gid_Set: 3E11FA47-71CA- 11E1- 9E33- CB0AA9429562: 1-5
1 rowin set (0.00 sec)

The Fi | e column shows the name of the log file and the Posi ti on column shows the position
within the file. In this example, the binary log file is nysql - bi n. 000003 and the position is 73.
Record these values. You need them later when you are setting up the replica. They represent the
replication coordinates at which the replica should begin processing new updates from the source.

If the source has been running previously without binary logging enabled, the log file name and
position values displayed by SHOWV MASTER STATUS or nysql dunp - - mast er - dat a are empty.
In that case, the values that you need to use later when specifying the source's log file and position
are the empty string (' ') and 4.

You now have the information you need to enable the replica to start reading from the binary log in the
correct place to start replication.

The next step depends on whether you have existing data on the source. Choose one of the following
options:

« If you have existing data that needs be to synchronized with the replica before you start replication,
leave the client running so that the lock remains in place. This prevents any further changes
being made, so that the data copied to the replica is in synchrony with the source. Proceed to
Section 2.2.4, “Choosing a Method for Data Snapshots”.

« If you are setting up a new replication topology, you can exit the first session to release the read
lock. See Section 2.2.5.3, “Setting Up Replication between a New Source and Replicas” for how to
proceed.

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html

Choosing a Method for Data Snapshots

2.2.4 Choosing a Method for Data Snapshots

If the database on the source contains existing data it is necessary to copy this data to each replica.
There are different ways to dump the data from the source. The following sections describe possible
options.

To select the appropriate method of dumping the database, choose between these options:

» Use the nysql dunp tool to create a dump of all the databases you want to replicate. This is the
recommended method, especially when using | nnoDB.

« If your database is stored in binary portable files, you can copy the raw data files to a replica. This
can be more efficient than using mysql dunp and importing the file on each replica, because it skips
the overhead of updating indexes as the | NSERT statements are replayed. With storage engines
such as | nnoDB this is not recommended.

2.2.4.1 Creating a Data Snapshot Using mysqldump

To create a snapshot of the data in an existing source, use the nmysql dunp tool. Once the data dump
has been completed, import this data into the replica before starting the replication process.

The following example dumps all databases to a file named dbdunp. db, and includes the - - nast er -
dat a option which automatically appends the CHANGE MASTER TO statement required on the replica
to start the replication process:

$> nysql dunp --all -dat abases --naster-data > dbdunp. db
Note

If you do not use - - mast er - dat a, then it is necessary to lock all tables in
a separate session manually. See Section 2.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

It is possible to exclude certain databases from the dump using the nmysql dunp tool. If you want to
choose which databases to include in the dump, do not use - - al | - dat abases. Choose one of these
options:

» Exclude all the tables in the database using - - i gnor e-t abl e option.

* Name only those databases which you want dumped using the - - dat abases option.
For more information, see mysgldump — A Database Backup Program.

To import the data, either copy the dump file to the replica, or access the file from the source when
connecting remotely to the replica.

2.2.4.2 Creating a Data Snapshot Using Raw Data Files

This section describes how to create a data snapshot using the raw files which make up the database.
Employing this method with a table using a storage engine that has complex caching or logging
algorithms requires extra steps to produce a perfect “point in time” snapshot: the initial copy command
could leave out cache information and logging updates, even if you have acquired a global read lock.
How the storage engine responds to this depends on its crash recovery abilities.

If you use | nnoDB tables, you can use the nmysql backup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See MySQL Enterprise Backup
Overview for detailed information.

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_ignore-table
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html

Choosing a Method for Data Snapshots

This method also does not work reliably if the source and replica have different values for
ft stopword file,ft _mn word |en,orft_ nax_word | en and you are copying tables having
full-text indexes.

Assuming the above exceptions do not apply to your database, use the cold backup technique to
obtain a reliable binary snapshot of | nnoDB tables: do a slow shutdown of the MySQL Server, then
copy the data files manually.

To create a raw data snapshot of My| SAMtables when your MySQL data files exist on a single
file system, you can use standard file copy tools such as cp or copy, a remote copy tool such as
scp orr sync, an archiving tool such as zi p ort ar, or a file system snapshot tool such as dunp.
If you are replicating only certain databases, copy only those files that relate to those tables. For

| nnoDB, all tables in all databases are stored in the system tablespace files, unless you have the
i nnodb_file_ per_tabl e option enabled.

The following files are not required for replication:
* Files relating to the nysql database.

» The replica's connection metadata repository file, if used (see Section 5.4, “Relay Log and
Replication Metadata Repositories”).

» The source's binary log files, with the exception of the binary log index file if you are going to use this
to locate the source's binary log coordinates for the replica.

» Any relay log files.
Depending on whether you are using | nnoDB tables or not, choose one of the following:

If you are using | nnoDB tables, and also to get the most consistent results with a raw data snapshot,
shut down the source server during the process, as follows:

1. Acquire a read lock and get the source's status. See Section 2.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

2. In a separate session, shut down the source server:

$> nysqgl adm n shut down

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

$> tar cf /tnp/db.tar ./data

$> zip -r /tnp/db.zip ./data
$> rsync --recursive ./data /tnp/dbdata

4. Restart the source server.

If you are not using | nnoDB tables, you can get a snapshot of the system from a source without
shutting down the server as described in the following steps:

1. Acquire aread lock and get the source's status. See Section 2.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

$> tar cf /tnp/db.tar ./data

$> zip -r /tnp/db.zip ./data
$> rsync --recursive ./data /tnp/dbdata

3. In the client where you acquired the read lock, release the lock:

nysql > UNLOCK TABLES

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ft_stopword_file
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ft_min_word_len
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ft_max_word_len
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_cold_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_slow_shutdown
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

Setting Up Replicas

Once you have created the archive or copy of the database, copy the files to each replica before
starting the replication process.

2.2.5 Setting Up Replicas

The following sections describe how to set up replicas. Before you proceed, ensure that you have:

» Configured the source with the necessary configuration properties. See Section 2.2.1, “Setting the
Replication Source Configuration”.

» Obtained the source's status information, or a copy of the source's binary log index file made during
a shutdown for the data snapshot. See Section 2.2.3, “Obtaining the Replication Source's Binary Log
Coordinates”.

» On the source, released the read lock:

nysqgl > UNLOCK TABLES;

2.2.5.1 Setting the Replica Configuration

Each replica must have a unique server ID, as specified by the ser ver _i d system variable. If you are
setting up multiple replicas, each one must have a unique ser ver _i d value that differs from that of
the source and from any of the other replicas. If the replica's server ID is not already set, or the current
value conflicts with the value that you have chosen for the source server or another replica, you must
change it. With the default ser ver _i d value of 0, a replica refuses to connect to a source.

You can change the server i d value dynamically by issuing a statement like this:

SET GLOBAL server_id = 21;

If the default ser ver i d value of 0 was set previously, you must restart the server to initialize the
replica with your new nonzero server ID. Otherwise, a server restart is not needed when you change
the server ID, unless you make other configuration changes that require it. For example, if binary
logging was disabled on the server and you want it enabled for your replica, a server restart is required
to enable this.

If you are shutting down the replica server, you can edit the [mysql d] section of the configuration file
to specify a unique server ID. For example:

[mysql d]
server-id=21

A replica is not required to have binary logging enabled for replication to take place. However, binary
logging on a replica means that the replica's binary log can be used for data backups and crash
recovery. Replicas that have binary logging enabled can also be used as part of a more complex
replication topology. If you want to enable binary logging on a replica, use the | og- bi n option in the
[mysqgl d] section of the configuration file. A server restart is required to start binary logging on a
server that did not previously use it.

2.2.5.2 Setting the Source Configuration on the Replica

To set up the replica to communicate with the source for replication, configure the replica with the
necessary connection information. To do this, execute the following statement on the replica, replacing
the option values with the actual values relevant to your system:

nmysql > CHANGE MASTER TO

-> MASTER _HOST=' sour ce_host _nane',

-> MASTER USER='repl i cati on_user _nang',

-> MASTER_PASSWORD=' r epl i cat i on_password',
-> MASTER LOG FI LE='recorded_| og_fil e_nange',
-> MASTER LOG POS=r ecorded_| og_posi tion;

10

Setting Up Replicas

Note

Replication cannot use Unix socket files. You must be able to connect to the
source MySQL server using TCP/IP.

The CHANGE MASTER TOstatement has other options as well. For example, it is possible to set up
secure replication using SSL. For a full list of options, and information about the maximum permissible
length for the string-valued options, see CHANGE MASTER TO Statement.

The next steps depend on whether you have existing data to import to the replica or not. See
Section 2.2.4, “Choosing a Method for Data Snapshots” for more information. Choose one of the
following:

« If you do not have a snapshot of a database to import, see Section 2.2.5.3, “Setting Up Replication
between a New Source and Replicas”.

« If you have a snapshot of a database to import, see Section 2.2.5.4, “Setting Up Replication with
Existing Data”.

2.2.5.3 Setting Up Replication between a New Source and Replicas

When there is no snapshot of a previous database to import, configure the replica to start replication
from the new source.

To set up replication between a source and a new replica:
1. Start up the replica and connect to it.

2. Execute a CHANGE MASTER TOstatement to set the source configuration. See Section 2.2.5.2,
“Setting the Source Configuration on the Replica”.

Perform these setup steps on each replica.

This method can also be used if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading
the data into a new source, the data is automatically replicated to the replicas.

If you are setting up a new replication environment using the data from a different existing database
server to create a new source, run the dump file generated from that server on the new source. The
database updates are automatically propagated to the replicas:

$> nysql -h master < fulldb. dunp

2.2.5.4 Setting Up Replication with Existing Data

When setting up replication with existing data, transfer the snapshot from the source to the replica
before starting replication. The process for importing data to the replica depends on how you created
the snapshot of data on the source.

Follow this procedure to set up replication with existing data:
1. Import the data to the replica using one of the following methods:

a. Ifyou used nysql dunp, start the replica server, ensuring that replication does not start by
using the - - ski p- sl ave- st art option. Then import the dump file:

$> nysql < full db. dunp

b. If you created a snapshot using the raw data files, extract the data files into your replica's data
directory. For example:

$> tar xvf dbdunp.tar

11

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Adding Replicas to a Replication Topology

You may need to set permissions and ownership on the files so that the replica server can
access and modify them. Then start the replica server, ensuring that replication does not start
by using the - - ski p- sl ave- st art option.

2. Configure the replica with the replication coordinates from the source. This tells the replica the
binary log file and position within the file where replication needs to start. Also, configure the replica
with the login credentials and host name of the source. For more information on the CHANGE
MASTER TOstatement required, see Section 2.2.5.2, “Setting the Source Configuration on the
Replica”.

3. Start the replication threads:

nysql > START SLAVE;

After you have performed this procedure, the replica connects to the source and replicates any updates
that have occurred on the source since the snapshot was taken.

If the server i d system variable for the source is not correctly set, replicas cannot connect to it.
Similarly, if you have not set ser ver i d correctly for the replica, you get the following error in the
replica’s error log:

War ni ng: You shoul d set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this M/SQ server wll
not act as a sl ave.

You also find error messages in the replica's error log if it is not able to replicate for any other reason.

The replica stores information about the source you have configured in its connection metadata
repository. The connection metadata repository can be in the form of files or a table, as determined

by the value set for the mast er _i nf o_r eposi t ory system variable. When a replica runs with

mast er _i nfo_repository=FI LE, two files are stored in the data directory, named nast er . i nf o
andrel ay-1og.info.Ilfmaster_i nfo_repository=TABLE instead, this information is saved in
the mast er _sl ave_i nf o table in the nysql database. In either case, do not remove or edit the files
or table. Always use the CHANGE MASTER TOstatement to change replication parameters. The replica
can use the values specified in the statement to update the status files automatically. See Section 5.4,
“Relay Log and Replication Metadata Repositories”, for more information.

Note

The contents of the connection metadata repository override some of the
server options specified on the command line or in my. cnf . See Section 2.6,
“Replication and Binary Logging Options and Variables”, for more details.

A single snapshot of the source suffices for multiple replicas. To set up additional replicas, use the
same source snapshot and follow the replica portion of the procedure just described.

2.2.6 Adding Replicas to a Replication Topology

You can add another replica to an existing replication configuration without stopping the source
server. To do this, you can set up the new replica by copying the data directory of an existing replica,
and giving the new replica a different server ID (which is user-specified) and server UUID (which is
generated at startup).

To duplicate an existing replica:

1. Stop the existing replica and record the replica status information, particularly the source's binary
log file and relay log file positions. You can view the replica status either in the Performance
Schema replication tables (see Performance Schema Replication Tables), or by issuing SHOW
SLAVE STATUS as follows:

nysql > STOP SLAVE;
nysqgl > SHOW SLAVE STATUS\ G

12

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Adding Replicas to a Replication Topology

2. Shut down the existing replica:

$> nysql admi n shut down

3. Copy the data directory from the existing replica to the new replica, including the log files and relay
log files. You can do this by creating an archive using t ar or W nZi p, or by performing a direct
copy using a tool such as cp orrsync.

Important

» Before copying, verify that all the files relating to the existing replica
actually are stored in the data directory. For example, the | nnoDB
system tablespace, undo tablespace, and redo log might be stored
in an alternative location. | nnoDB tablespace files and file-per-table
tablespaces might have been created in other directories. The binary logs
and relay logs for the replica might be in their own directories outside
the data directory. Check through the system variables that are set for
the existing replica and look for any alternative paths that have been
specified. If you find any, copy these directories over as well.

« During copying, if files have been used for the replication metadata
repositories (see Section 5.4, “Relay Log and Replication Metadata
Repositories”), which is the default in MySQL 5.7, ensure that you also
copy these files from the existing replica to the new replica. If tables have
been used for the repositories, the tables are in the data directory.

 After copying, delete the aut 0. cnf file from the copy of the data directory
on the new replica, so that the new replica is started with a different
generated server UUID. The server UUID must be unique.

A common problem that is encountered when adding new replicas is that the new replica fails with
a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so

replication may break when this MySQL server acts as a slave and has his hostname

changed!! Please use '--relay-log=new replica_hostnanme-relay-bin' to avoid this problem
071118 16:44:10 [ERROR] Failed to open the relay log './old_replica_hostnane-rel ay-bin. 003525
(relay_l og_pos 22940879)

071118 16:44:10 [ERROR] Could not find target log during relay log initialization

071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the r el ay | og system variable is not specified, as the relay log files
contain the host name as part of their file names. This is also true of the relay log index file if the
rel ay_| og_i ndex system variable is not used. For more information about these variables, see
Section 2.6, “Replication and Binary Logging Options and Variables”.

To avoid this problem, use the same value for r el ay_| og on the new replica that was

used on the existing replica. If this option was not set explicitly on the existing replica, use

exi sting_replica_hostnane-rel ay- bi n. If this is not possible, copy the existing replica's
relay log index file to the new replica and set the r el ay | og_i ndex system variable on the new
replica to match what was used on the existing replica. If this option was not set explicitly on the
existing replica, use exi sti ng_replica_host nane-r el ay- bi n. i ndex. Alternatively, if you
have already tried to start the new replica after following the remaining steps in this section and
have encountered errors like those described previously, then perform the following steps:

a. If you have not already done so, issue STOP SLAVE on the new replica.

If you have already started the existing replica again, issue STOP SLAVE on the existing replica
as well.

b. Copy the contents of the existing replica's relay log index file into the new replica's relay log
index file, making sure to overwrite any content already in the file.

13

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html

Replication with Global Transaction Identifiers

c. Proceed with the remaining steps in this section.
4. When copying is complete, restart the existing replica.

5. On the new replica, edit the configuration and give the new replica a unique server ID (using the
server _i d system variable) that is not used by the source or any of the existing replicas.

6. Start the new replica server, specifying the - - ski p- sl ave- st art option so that replication does
not start yet. Use the Performance Schema replication tables or issue SHON SLAVE STATUS to
confirm that the new replica has the correct settings when compared with the existing replica. Also
display the server ID and server UUID and verify that these are correct and unique for the new
replica.

7. Start the replication threads by issuing a START SLAVE statement:

mysql > START SLAVE;

The new replica now uses the information in its connection metadata repository to start the
replication process.

2.3 Replication with Global Transaction Identifiers

This section explains transaction-based replication using global transaction identifiers (GTIDs). When
using GTIDs, each transaction can be identified and tracked as it is committed on the originating server
and applied by any replicas; this means that it is not necessary when using GTIDs to refer to log files
or positions within those files when starting a new replica or failing over to a new source, which greatly
simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple

to determine whether sources and replicas are consistent; as long as all transactions committed on

a source are also committed on a replica, consistency between the two is guaranteed. You can use
either statement-based or row-based replication with GTIDs (see Section 5.1, “Replication Formats”);
however, for best results, we recommend that you use the row-based format.

GTIDs are always preserved between source and replica. This means that you can always determine
the source for any transaction applied on any replica by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the
same GTID is ignored by that server. Thus, a transaction committed on the source can be applied no
more than once on the replica, which helps to guarantee consistency.

This section discusses the following topics:

» How GTIDs are defined and created, and how they are represented in a MySQL server (see
Section 2.3.1, “GTID Format and Storage”).

» The life cycle of a GTID (see Section 2.3.2, “GTID Life Cycle”).

» The auto-positioning function for synchronizing a replica and source that use GTIDs (see
Section 2.3.3, “GTID Auto-Positioning”).

» A general procedure for setting up and starting GTID-based replication (see Section 2.3.4, “Setting
Up Replication Using GTIDs").

e Suggested methods for provisioning new replication servers when using GTIDs (see Section 2.3.5,
“Using GTIDs for Failover and Scaleout”).

» Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 2.3.6, “Restrictions on Replication with GTIDs").

 Stored functions that you can use to work with GTIDs (see Section 2.3.7, “Stored Function Examples
to Manipulate GTIDs").

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 2.6.5, “Global Transaction ID System Variables”. See also Functions Used with Global

14

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html

GTID Format and Storage

Transaction Identifiers (GTIDs), which describes SQL functions supported by MySQL 5.7 for use with
GTIDs.

2.3.1 GTID Format and Storage

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (the source). This identifier is unique not only to the server on which it
originated, but is unique across all servers in a given replication topology.

GTID assignment distinguishes between client transactions, which are committed on the source, and
replicated transactions, which are reproduced on a replica. When a client transaction is committed

on the source, it is assigned a new GTID, provided that the transaction was written to the binary log.
Client transactions are guaranteed to have monotonically increasing GTIDs without gaps between the
generated numbers. If a client transaction is not written to the binary log (for example, because the
transaction was filtered out, or the transaction was read-only), it is not assigned a GTID on the server
of origin.

Replicated transactions retain the same GTID that was assigned to the transaction on the server of
origin. The GTID is present before the replicated transaction begins to execute, and is persisted even
if the replicated transaction is not written to the binary log on the replica, or is filtered out on the replica.
The MySQL system table nysql . gt i d_execut ed is used to preserve the assigned GTIDs of all the
transactions applied on a MySQL server, except those that are stored in a currently active binary log
file.

The auto-skip function for GTIDs means that a transaction committed on the source can be applied

no more than once on the replica, which helps to guarantee consistency. Once a transaction with a
given GTID has been committed on a given server, any attempt to execute a subsequent transaction
with the same GTID is ignored by that server. No error is raised, and no statement in the transaction is
executed.

If a transaction with a given GTID has started to execute on a server, but has not yet committed or
rolled back, any attempt to start a concurrent transaction on the server with the same GTID blocks. The
server neither begins to execute the concurrent transaction nor returns control to the client. Once the
first attempt at the transaction commits or rolls back, concurrent sessions that were blocking on the
same GTID may proceed. If the first attempt rolled back, one concurrent session proceeds to attempt
the transaction, and any other concurrent sessions that were blocking on the same GTID remain
blocked. If the first attempt committed, all the concurrent sessions stop being blocked, and auto-skip all
the statements of the transaction.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTIl D = source_id:transaction_id

The sour ce_i d identifies the originating server. Normally, the source's ser ver _uui d is used for
this purpose. The t ransacti on_i d is a sequence number determined by the order in which the
transaction was committed on the source. For example, the first transaction to be committed has 1
asitstransacti on_i d, and the tenth transaction to be committed on the same originating server
is assigned atransacti on_i d of 10. Itis not possible for a transaction to have 0 as a sequence
number in a GTID. For example, the twenty-third transaction to be committed originally on the server
with the UUID 3E11FA47- 71CA- 11E1- 9E33- C80AA9429562 has this GTID:

3E11FA47- 71CA- 11E1- 9E33- CB0AA9429562: 23

The upper limit for sequence numbers for GTIDs on a server instance is the number of non-negative
values for a signed 64-bit integer (2 to the power of 63 minus 1, or 9,223,372,036,854,775,807). If the
server runs out of GTIDs, it takes the action specified by bi nl og_error _acti on.

The GTID for a transaction is shown in the output from nmysql bi nl og, and it is used to identify

an individual transaction in the Performance Schema replication status tables, for example,
replication_applier_status_by worker. The value stored by the gti d_next system variable
(@AELOBAL. gt i d_next) is a single GTID.

15

https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html

GTID Format and Storage

GTID Sets

A GTID set is a set comprising one or more single GTIDs or ranges of GTIDs. GTID sets are

used in a MySQL server in several ways. For example, the values stored by the gt i d_execut ed

and gt i d_pur ged system variables are GTID sets. The START SLAVE clauses UNTI L
SQL_BEFORE_GTI DS and UNTI L SQL_AFTER_GTI DS can be used to make a replica process
transactions only up to the first GTID in a GTID set, or stop after the last GTID in a GTID set. The built-
in functions GTI D_SUBSET() and GTlI D_SUBTRACT() require GTID sets as input.

A range of GTIDs originating from the same server can be collapsed into a single expression, as shown
here:

3E11FA47- 71CA- 11E1- 9E33- CB0AA9429562: 1-5

The above example represents the first through fifth transactions originating on the MySQL server
whose server _uui d is 3E11FA47- 71CA- 11E1- 9E33- CB0AA9429562. Multiple single GTIDs or
ranges of GTIDs originating from the same server can also be included in a single expression, with the
GTIDs or ranges separated by colons, as in the following example:

3E11FA47- 71CA- 11E1- 9E33- C80AA9429562: 1- 3: 11: 47- 49

A GTID set can include any combination of single GTIDs and ranges of GTIDs, and it can
include GTIDs originating from different servers. This example shows the GTID set stored in the
gti d_execut ed system variable (@=LOBAL. gt i d_execut ed) of a replica that has applied
transactions from more than one source:

2174B383- 5441- 11E8- BOOA- CB0AA9429562: 1-3, 24DA167- 0COC- 11E8- 8442- 00059A3C7B00: 1- 19

When GTID sets are returned from server variables, UUIDs are in alphabetical order, and numeric
intervals are merged and in ascending order.

The syntax for a GTID set is as follows:

gtid_set:

uuid_set [, uuid_set] ...

|
uui d_set:

uuid:interval [:interval]...
uui d:

hhhhhhhh- hhhh- hhhh- hhhh- hhhhhhhhhhhh

[0-9] A-F]
interval:

n[- nj

(n >= 1)

mysql.gtid_executed Table

GTIDs are stored in a table named gt i d_execut ed, in the nysql database. A row in this table
contains, for each GTID or set of GTIDs that it represents, the UUID of the originating server, and the
starting and ending transaction IDs of the set; for a row referencing only a single GTID, these last two
values are the same.

The mysql . gt i d_execut ed table is created (if it does not already exist) when MySQL Server is
installed or upgraded, using a CREATE TABLE statement similar to that shown here:

CREATE TABLE gti d_executed (
sour ce_uui d CHAR(36) NOT NULL,
interval _start Bl G NT(20) NOT NULL,
interval _end Bl G NT(20) NOT NULL,
PRI MARY KEY (source_uuid, interval _start)

16

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

GTID Format and Storage

Warning

As with other MySQL system tables, do not attempt to create or modify this
table yourself.

The nysql . gti d_execut ed table is provided for internal use by the MySQL server. It enables a
replica to use GTIDs when binary logging is disabled on the replica, and it enables retention of the
GTID state when the binary logs have been lost. Note that the nmysql . gt i d_execut ed table is
cleared if you issue RESET NMASTER.

GTIDs are stored in the nysql . gti d_execut ed table only when gt i d_node is ONor
ON_PERM SSI VE. The point at which GTIDs are stored depends on whether binary logging is enabled
or disabled:

* If binary logging is disabled (I og_bi n is OFF), orif | og_sl ave_updat es is disabled, the server

stores the GTID belonging to each transaction together with the transaction in the buffer when the
transaction is committed, and the background thread adds the contents of the buffer periodically

as one or more entries to the mysql . gt i d_execut ed table. In addition, the table is compressed
periodically at a user-configurable rate; see mysql.gtid_executed Table Compression, for more
information. This situation can only apply on a replica where binary logging or replica update logging
is disabled. It does not apply on a replication source server, because on the source, binary logging
must be enabled for replication to take place.

If binary logging is enabled (I og_bi n is ON), whenever the binary log is rotated or the server is shut
down, the server writes GTIDs for all transactions that were written into the previous binary log into
the mysql . gti d_execut ed table. This situation applies on a replication source server, or a replica
where binary logging is enabled.

In the event of the server stopping unexpectedly, the set of GTIDs from the current binary log file is
not saved in the mysql . gt i d_execut ed table. These GTIDs are added to the table from the binary
log file during recovery. The exception to this is if binary logging is not enabled when the server

is restarted. In this situation, the server cannot access the binary log file to recover the GTIDs, so
replication cannot be started.

When binary logging is enabled, the nysql . gti d_execut ed table does not hold a complete
record of the GTIDs for all executed transactions. That information is provided by the global value

of the gti d_execut ed system variable. Always use @=L OBAL. gt i d_execut ed, which is
updated after every commit, to represent the GTID state for the MySQL server, and do not query the
nysql . gti d_execut ed table.

mysql.gtid_executed Table Compression

Over the course of time, the nysql . gti d_execut ed table can become filled with many rows referring
to individual GTIDs that originate on the same server, and whose transaction IDs make up a range,
similar to what is shown here:

3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 37 | 37 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 38 | 38 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 39 | 39 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 40 | 40 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 41 | 41 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 42 | 42 |
3E11FAA7- 71CA- 11E1- 9E33- CB0AA9429562 | 43 | 43 |

To save space, the MySQL server compresses the mysql . gt i d_execut ed table periodically by
replacing each such set of rows with a single row that spans the entire interval of transaction identifiers,
like this:

fpmccccoccoocoocooccoscossoosoocoosoosoo fmccccoosoosoosoo fmccocoocoosoos +

17

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html

GTID Life Cycle

| source_uuid interval _start | interval _end |

| 3E11FA47- 71CA- 11E1- 9E33- C80AA9429562 | 37 | 43 |

You can control the number of transactions that are allowed to elapse before the table is compressed,
and thus the compression rate, by setting the gt i d_execut ed_conpr essi on_peri od system
variable. This variable's default value is 1000, meaning that by default, compression of the table is
performed after each 1000 transactions. Setting gt i d_execut ed_conpr essi on_periodto0
prevents the compression from being performed at all, and you should be prepared for a potentially
large increase in the amount of disk space that may be required by the gt i d_execut ed table if you
do this.

Note

When binary logging is enabled, the value of
gti d_executed_conpressi on_peri od is not used and the
nysql . gti d_execut ed table is compressed on each binary log rotation.

Compression of the mysql . gti d_execut ed table is performed by a dedicated foreground thread
named t hr ead/ sql / conpress_gti d_t abl e. This thread is not listed in the output of SHOW
PROCESSLI ST, but it can be viewed as a row in the t hr eads table, as shown here:

nysqgl > SELECT * FROM performance_schena. t hreads WHERE NAME LI KE ' %gti d% \ G

khkkhkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkkhkhkkkkkk*x*%x 1 r ow khkkhkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkkkkkkkkkkx*

THREAD | D:

NAME:

TYPE.
PROCESSLI ST_| D
PROCESSLI| ST_USER
PROCESSLI| ST_HOST!
PROCESSLI| ST_DB:
PROCESSL| ST_COMVAND:
PROCESSLI ST_TI ME
PROCESSLI| ST_STATE
PROCESSLI ST_I NFO
PARENT_ _THREAD | D:
ROLE:

| NSTRUMENTED:

HI STORY:

CONNECTI ON_TYPE
THREAD OS | D

26

thread/ sql /conpress_gtid_table
FOREGROUND
1

NULL

NULL

NULL
Daenon
1509
Suspendi ng
NULL

1

NULL

YES

YES

NULL

18677

The t hread/ sql / conpress_gti d_t abl e thread normally sleeps until
gtid_execut ed conpression_peri od transactions have been executed, then wakes up to
perform compression of the mysql . gti d_execut ed table as described previously. It then sleeps

until another gt i d_execut ed_conpr essi on_per i od transactions have taken place, then wakes up
to perform the compression again, repeating this loop indefinitely. Setting this value to 0 when binary
logging is disabled means that the thread always sleeps and never wakes up, meaning that this explicit
compression method is not used. Instead, compression occurs implicitly as required.

2.3.2 GTID Life Cycle

The life cycle of a GTID consists of the following steps:

1. Atransaction is executed and committed on the replication source server. This client transaction is
assigned a GTID composed of the source's UUID and the smallest nonzero transaction sequence
number not yet used on this server. The GTID is written to the source's binary log (immediately
preceding the transaction itself in the log). If a client transaction is not written to the binary log
(for example, because the transaction was filtered out, or the transaction was read-only), it is not
assigned a GTID.

2. If a GTID was assigned for the transaction, the GTID is persisted atomically at commit time by
writing it to the binary log at the beginning of the transaction (asa G i d_| og_event). Whenever

18

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-threads-table.html

GTID Life Cycle

the binary log is rotated or the server is shut down, the server writes GTIDs for all transactions that
were written into the previous binary log file into the nmysql . gti d_execut ed table.

If a GTID was assigned for the transaction, the GTID is externalized non-atomically (very shortly
after the transaction is committed) by adding it to the set of GTIDs in the gti d_execut ed
system variable (@=L OBAL. gt i d_execut ed). This GTID set contains a representation of the
set of all committed GTID transactions, and it is used in replication as a token that represents

the server state. With binary logging enabled (as required for the source), the set of GTIDs in

the gt i d_execut ed system variable is a complete record of the transactions applied, but the
nysql . gti d_execut ed table is not, because the most recent history is still in the current binary
log file.

After the binary log data is transmitted to the replica and stored in the replica's relay log (using
established mechanisms for this process, see Chapter 5, Replication Implementation, for details),
the replica reads the GTID and sets the value of its gt i d_next system variable as this GTID. This
tells the replica that the next transaction must be logged using this GTID. It is important to note that
the replica sets gt i d_next in a session context.

The replica verifies that no thread has yet taken ownership of the GTID in gt i d_next in order to
process the transaction. By reading and checking the replicated transaction's GTID first, before
processing the transaction itself, the replica guarantees not only that no previous transaction having
this GTID has been applied on the replica, but also that no other session has already read this
GTID but has not yet committed the associated transaction. So if multiple clients attempt to apply
the same transaction concurrently, the server resolves this by letting only one of them execute. The
gti d_owned system variable (@aELOBAL. gt i d_owned) for the replica shows each GTID that is
currently in use and the ID of the thread that owns it. If the GTID has already been used, no error is
raised, and the auto-skip function is used to ignore the transaction.

If the GTID has not been used, the replica applies the replicated transaction. Because gt i d_next
is set to the GTID already assigned by the source, the replica does not attempt to generate a new
GTID for this transaction, but instead uses the GTID stored ingt i d_next .

If binary logging is enabled on the replica, the GTID is persisted atomically at commit time by writing
it to the binary log at the beginning of the transaction (asa Gt i d_| og_event). Whenever the
binary log is rotated or the server is shut down, the server writes GTIDs for all transactions that
were written into the previous binary log file into the mysql . gt i d_execut ed table.

If binary logging is disabled on the replica, the GTID is persisted atomically by writing it directly
into the nysql . gti d_execut ed table. MySQL appends a statement to the transaction to insert
the GTID into the table. In this situation, the nysql . gt i d_execut ed table is a complete record
of the transactions applied on the replica. Note that in MySQL 5.7, the operation to insert the
GTID into the table is atomic for DML statements, but not for DDL statements, so if the server
exits unexpectedly after a transaction involving DDL statements, the GTID state might become
inconsistent. From MySQL 8.0, the operation is atomic for DDL statements as well as for DML
statements.

Very shortly after the replicated transaction is committed on the replica, the GTID is externalized
non-atomically by adding it to the set of GTIDs in the gt i d_execut ed system variable

(@@ OBAL. gt i d_execut ed) for the replica. As for the source, this GTID set contains a
representation of the set of all committed GTID transactions. If binary logging is disabled on the
replica, the nysql . gti d_execut ed table is also a complete record of the transactions applied on
the replica. If binary logging is enabled on the replica, meaning that some GTIDs are only recorded
in the binary log, the set of GTIDs in the gt i d_execut ed system variable is the only complete
record.

Client transactions that are completely filtered out on the source are not assigned a GTID, therefore
they are not added to the set of transactions in the gt i d_execut ed system variable, or added

to the mysql . gti d_execut ed table. However, the GTIDs of replicated transactions that are
completely filtered out on the replica are persisted. If binary logging is enabled on the replica, the
filtered-out transaction is written to the binarylogasa G i d_| og_event followed by an empty

19

GTID Life Cycle

transaction containing only BEG N and COVM T statements. If binary logging is disabled, the GTID of
the filtered-out transaction is written to the nysql . gt i d_execut ed table. Preserving the GTIDs for
filtered-out transactions ensures that the nysql . gt i d_execut ed table and the set of GTIDs in the
gti d_execut ed system variable can be compressed. It also ensures that the filtered-out transactions
are not retrieved again if the replica reconnects to the source, as explained in Section 2.3.3, “GTID
Auto-Positioning”.

On a multithreaded replica (with sl ave_paral | el _workers > 0), transactions

can be applied in parallel, so replicated transactions can commit out of order (unless

sl ave_preserve_comm t _order =1 is set). When that happens, the set of GTIDs in the

gt i d_execut ed system variable contains multiple GTID ranges with gaps between them. (On

a source or a single-threaded replica, there are monotonically increasing GTIDs without gaps
between the numbers.) Gaps on multithreaded replicas only occur among the most recently applied
transactions, and are filled in as replication progresses. When replication threads are stopped cleanly
using the STOP SLAVE statement, ongoing transactions are applied so that the gaps are filled in. In
the event of a shutdown such as a server failure or the use of the Kl LL statement to stop replication
threads, the gaps might remain.

What changes are assigned a GTID?

The typical scenario is that the server generates a new GTID for a committed transaction. However,
GTIDs can also be assigned to other changes besides transactions, and in some cases a single
transaction can be assigned multiple GTIDs.

Every database change (DDL or DML) that is written to the binary log is assigned a GTID. This
includes changes that are autocommitted, and changes that are committed using BEG Nand COVM T
or START TRANSACTI ON statements. A GTID is also assigned to the creation, alteration, or deletion
of a database, and of a non-table database object such as a procedure, function, trigger, event, view,
user, role, or grant.

Non-transactional updates as well as transactional updates are assigned GTIDs. In addition, for a non-
transactional update, if a disk write failure occurs while attempting to write to the binary log cache and a
gap is therefore created in the binary log, the resulting incident log event is assigned a GTID.

When a table is automatically dropped by a generated statement in the binary log, a GTID is assigned
to the statement. Temporary tables are dropped automatically when a replica begins to apply

events from a source that has just been started, and when statement-based replication is in use

(bi nl og_f or mat =STATEMENT) and a user session that has open temporary tables disconnects.
Tables that use the MEMORY storage engine are deleted automatically the first time they are accessed
after the server is started, because rows might have been lost during the shutdown.

When a transaction is not written to the binary log on the server of origin, the server does not assign
a GTID to it. This includes transactions that are rolled back and transactions that are executed while
binary logging is disabled on the server of origin, either globally (with - - ski p- | og- bi n specified
in the server's configuration) or for the session (SET @@BESSI ON. sql _| og_bi n = 0). This also
includes no-op transactions when row-based replication is in use (bi nl og_f or nat =ROW.

XA transactions are assigned separate GTIDs for the XA PREPARE phase of the transaction and the
XA COVMM T or XA ROLLBACK phase of the transaction. XA transactions are persistently prepared so
that users can commit them or roll them back in the case of a failure (which in a replication topology
might include a failover to another server). The two parts of the transaction are therefore replicated
separately, so they must have their own GTIDs, even though a non-XA transaction that is rolled back
would not have a GTID.

In the following special cases, a single statement can generate multiple transactions, and therefore be
assigned multiple GTIDs:

» A stored procedure is invoked that commits multiple transactions. One GTID is generated for each
transaction that the procedure commits.

20

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html

GTID Life Cycle

« A multi-table DROP TABLE statement drops tables of different types.

» ACREATE TABLE ... SELECT statement is issued when row-based replication is in use
(bi nl og_f or mat =ROW. One GTID is generated for the CREATE TABLE action and one GTID is
generated for the row-insert actions.

The gti d _next System Variable

By default, for new transactions committed in user sessions, the server automatically generates and
assigns a new GTID. When the transaction is applied on a replica, the GTID from the server of origin
is preserved. You can change this behavior by setting the session value of the gt i d_next system
variable:

« When gti d_next is setto AUTOVATI C, which is the default, and a transaction is committed and
written to the binary log, the server automatically generates and assigns a new GTID. If a transaction
is rolled back or not written to the binary log for another reason, the server does not generate and
assign a GTID.

e Ifyousetgtid next toavalid GTID (consisting of a UUID and a transaction sequence number,
separated by a colon), the server assigns that GTID to your transaction. This GTID is assigned and
added to gt i d_execut ed even when the transaction is not written to the binary log, or when the
transaction is empty.

Note that after you set gt i d_next to a specific GTID, and the transaction has been committed or
rolled back, an explicit SET @@BESSI ON. gt i d_next statement must be issued before any other
statement. You can use this to set the GTID value back to AUTOVATI Cif you do not want to assign any
more GTIDs explicitly.

When replication applier threads apply replicated transactions, they use this technique, setting
@aBESSI ON. gti d_next explicitly to the GTID of the replicated transaction as assigned on the server
of origin. This means the GTID from the server of origin is retained, rather than a new GTID being
generated and assigned by the replica. It also means the GTID is added to gt i d_execut ed on the
replica even when binary logging or replica update logging is disabled on the replica, or when the
transaction is a no-op or is filtered out on the replica.

It is possible for a client to simulate a replicated transaction by setting @@5ESSI ON. gt i d_next to a
specific GTID before executing the transaction. This technique is used by mysql bi nl og to generate a
dump of the binary log that the client can replay to preserve GTIDs. A simulated replicated transaction
committed through a client is completely equivalent to a replicated transaction committed through a
replication applier thread, and they cannot be distinguished after the fact.

The gti d_pur ged System Variable

The set of GTIDs in the gt i d_pur ged system variable (@GELOBAL. gt i d_pur ged) contains the
GTIDs of all the transactions that have been committed on the server, but do not exist in any binary log
file on the server. gt i d_pur ged is a subset of gt i d_execut ed. The following categories of GTIDs
areingti d_purged:

» GTIDs of replicated transactions that were committed with binary logging disabled on the replica.
» GTIDs of transactions that were written to a binary log file that has now been purged.

» GTIDs that were added explicitly to the set by the statement SET @aELOBAL. gti d_pur ged.

You can change the value of gt i d_pur ged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. When
you add GTIDs to gt i d_pur ged, they are also added to gt i d_execut ed. An example use case for
this action is when you are restoring a backup of one or more databases on a server, but you do not
have the relevant binary logs containing the transactions on the server. In MySQL 5.7, you can only

21

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

GTID Life Cycle

change the value of gt i d_pur ged when gt i d_execut ed (and therefore gt i d_pur ged) is empty.
For details of how to do this, see the description for gt i d_pur ged.

The sets of GTIDs inthe gt i d_execut ed and gti d_pur ged system variables are initialized when
the server starts. Every binary log file begins with the event Previ ous_gti ds_| og_event, which
contains the set of GTIDs in all previous binary log files (composed from the GTIDs in the preceding
file's Previ ous_gtids | og event, and the GTIDs of every G i d_| og_event in the preceding file
itself). The contents of Previ ous_gti ds_| og_event in the oldest and most recent binary log files
are used to compute the gt i d_execut ed and gt i d_pur ged sets at server startup:

e gtid _execut ed is computed as the union of the GTIDs in Previ ous_gti ds_| og_event inthe
most recent binary log file, the GTIDs of transactions in that binary log file, and the GTIDs stored in
the mysql . gtid_execut ed table. This GTID set contains all the GTIDs that have been used (or
added explicitly to gt i d_pur ged) on the server, whether or not they are currently in a binary log file
on the server. It does not include the GTIDs for transactions that are currently being processed on
the server (GGELOBAL. gt i d_owned).

e gtid_purged is computed by first adding the GTIDs in Previ ous_gti ds | og _event inthe most
recent binary log file and the GTIDs of transactions in that binary log file. This step gives the set of
GTIDs that are currently, or were once, recorded in a binary log on the server (gt i ds_i n_bi nl og).
Next, the GTIDs in Previ ous_gti ds_| og_event inthe oldest binary log file are subtracted from
gtids_in_binlog. This step gives the set of GTIDs that are currently recorded in a binary log
on the server (gti ds_i n_bi nl og_not purged). Finally,gti ds_in_binlog _not purgedis
subtracted from gt i d_execut ed. The result is the set of GTIDs that have been used on the server,
but are not currently recorded in a binary log file on the server, and this result is used to initialize
gtid_purged.

If binary logs from MySQL 5.7.7 or older are involved in these computations, it is possible for incorrect
GTID sets to be computed for gt i d_execut ed and gt i d_pur ged, and they remain incorrect even if
the server is later restarted. For details, see the description for the bi nl og_gti d_si npl e_recovery
system variable, which controls how the binary logs are iterated to compute the GTID sets. If one of the
situations described there applies on a server, set bi nl og_gti d_si npl e_recover y=FALSE in the
server's configuration file before starting it. That setting makes the server iterate all the binary log files
(not just the newest and oldest) to find where GTID events start to appear. This process could take a
long time if the server has a large number of binary log files without GTID events.

Resetting the GTID Execution History

If you need to reset the GTID execution history on a server, use the RESET MASTER statement. For
example, you might need to do this after carrying out test queries to verify a replication setup on new
GTID-enabled servers, or when you want to join a new server to a replication group but it contains
some unwanted local transactions that are not accepted by Group Replication.

Warning

Use RESET MASTER with caution to avoid losing any wanted GTID execution
history and binary log files.

Before issuing RESET MASTER, ensure that you have backups of the server's binary log files

and binary log index file, if any, and obtain and save the GTID set held in the global value of the

gti d_execut ed system variable (for example, by issuing a SELECT @& OBAL. gti d_execut ed
statement and saving the results). If you are removing unwanted transactions from that GTID set, use
nmysqgl bi nl og to examine the contents of the transactions to ensure that they have no value, contain
no data that must be saved or replicated, and did not result in data changes on the server.

When you issue RESET NMASTER, the following reset operations are carried out:
» The value of the gt i d_pur ged system variable is set to an empty string (" ').

» The global value (but not the session value) of the gt i d_execut ed system variable is set to an
empty string.

22

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html

GTID Auto-Positioning

e« Thenysqgl . gti d_execut ed table is cleared (see mysql.gtid_executed Table).

« If the server has binary logging enabled, the existing binary log files are deleted and the binary log
index file is cleared.

Note that RESET MASTER s the method to reset the GTID execution history even if the server is a
replica where binary logging is disabled. RESET SLAVE has no effect on the GTID execution history.

2.3.3 GTID Auto-Positioning

GTIDs replace the file-offset pairs previously required to determine points for starting, stopping, or
resuming the flow of data between source and replica. When GTIDs are in use, all the information that
the replica needs for synchronizing with the source is obtained directly from the replication data stream.

To start a replica using GTID-based replication, you do not include MASTER LOG FI LE or

MASTER _LOG_POCS options in the CHANGE MASTER TOstatement used to direct the replica to replicate
from a given source. These options specify the name of the log file and the starting position within

the file, but with GTIDs the replica does not need this nonlocal data. Instead, you need to enable the
MASTER_AUTO_PGsI TI ON option. For full instructions to configure and start sources and replicas
using GTID-based replication, see Section 2.3.4, “Setting Up Replication Using GTIDs".

The MASTER_AUTO _PCsI Tl ON option is disabled by default. If multi-source replication is enabled
on the replica, you need to set this option for each applicable replication channel. Disabling the
MASTER _AUTO POCsI Tl ON option again causes the replica to revert to position-based replication.

When a replica has GTIDs enabled (GTI D_MODE=ON, ON_PERM SSI VE, or OFF_PERM SS| VE
) and the MASTER_AUTO_PCSI TI ON option enabled, auto-positioning is activated for connection
to the source. The source must have GTl D_MODE=ON set in order for the connection to succeed.
In the initial handshake, the replica sends a GTID set containing the transactions that it has
already received, committed, or both. This GTID set is equal to the union of the set of GTIDs
inthe gt i d_execut ed system variable (@AE_OBAL. gt i d_execut ed), and the set of GTIDs
recorded in the Performance Schemar epl i cati on_connecti on_st at us table as received
transactions (the result of the statement SELECT RECElI VED TRANSACTI ON_SET FROM
PERFORMANCE_SCHENMA. r epl i cati on_connecti on_st at us).

The source responds by sending all transactions recorded in its binary log whose GTID is not included
in the GTID set sent by the replica. To do this, the source first identifies the appropriate binary log file to
begin working with, by checking the Pr evi ous_gti ds_| og_event in the header of each of its binary
log files, starting with the most recent. When the source finds the first Previ ous_gti ds_| og_event
which contains no transactions that the replica is missing, it begins with that binary log file. This method
is efficient and only takes a significant amount of time if the replica is behind the source by a large
number of binary log files. The source then reads the transactions in that binary log file and subsequent
files up to the current one, sending the transactions with GTIDs that the replica is missing, and skipping
the transactions that were in the GTID set sent by the replica. The elapsed time until the replica
receives the first missing transaction depends on its offset in the binary log file. This exchange ensures
that the source only sends the transactions with a GTID that the replica has not already received or
committed. If the replica receives transactions from more than one source, as in the case of a diamond
topology, the auto-skip function ensures that the transactions are not applied twice.

If any of the transactions that should be sent by the source have been purged from the source's binary
log, or added to the set of GTIDs in the gt i d_pur ged system variable by another method, the source
sends the error ER_ MASTER HAS PURGED REQUI RED GTI DS to the replica, and replication does not
start. The GTIDs of the missing purged transactions are identified and listed in the source's error log in
the warning message ER_ FOUND_M SSI NG_GTI DS. The replica cannot recover automatically from this
error because parts of the transaction history that are needed to catch up with the source have been
purged. Attempting to reconnect without the MASTER _AUTO_POSI TI ON option enabled only results in
the loss of the purged transactions on the replica. The correct approach to recover from this situation is
for the replica to replicate the missing transactions listed in the ER_ FOUND_M SSI NG _GTI DS message
from another source, or for the replica to be replaced by a new replica created from a more recent

23

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_master_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_found_missing_gtids

Setting Up Replication Using GTIDs

backup. Consider revising the binary log expiration period on the source to ensure that the situation
does not occur again.

If during the exchange of transactions it is found that the replica has received or committed
transactions with the source's UUID in the GTID, but the source itself does not have a record of

them, the source sends the error ER_SLAVE HAS MORE_GTI DS_THAN MASTER to the replica and
replication does not start. This situation can occur if a source that does not have sync_bi nl og=1 set
experiences a power failure or operating system crash, and loses committed transactions that have
not yet been synchronized to the binary log file, but have been received by the replica. The source and
replica can diverge if any clients commit transactions on the source after it is restarted, which can lead
to the situation where the source and replica are using the same GTID for different transactions. The
correct approach to recover from this situation is to check manually whether the source and replica
have diverged. If the same GTID is now in use for different transactions, you either need to perform
manual conflict resolution for individual transactions as required, or remove either the source or the
replica from the replication topology. If the issue is only missing transactions on the source, you can
make the source into a replica instead, allow it to catch up with the other servers in the replication
topology, and then make it a source again if needed.

2.3.4 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 5.7.
This is a “cold start” procedure that assumes either that you are starting the replication source server
for the first time, or that it is possible to stop it; for information about provisioning replicas using GTIDs
from a running source, see Section 2.3.5, “Using GTIDs for Failover and Scaleout”. For information
about changing GTID mode on servers online, see Section 2.4, “Changing Replication Modes on
Online Servers”.

The key steps in this startup process for the simplest possible GTID replication topology, consisting of
one source and one replica, are as follows:

1. If replication is already running, synchronize both servers by making them read-only.
2. Stop both servers.
3. Restart both servers with GTIDs enabled and the correct options configured.

The nysql d options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the replica to use the source as the replication data source and to use auto-positioning. The
SQL statements needed to accomplish this step are described in the example that follows later in
this section.

5. Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers
where GTIDs are enabled, so backups taken before this point cannot be used with your new
configuration.

6. Start the replica, then disable read-only mode on both servers, so that they can accept updates.

In the following example, two servers are already running as source and replica, using MySQL's

binary log position-based replication protocol. If you are starting with new servers, see Section 2.2.2,
“Creating a User for Replication” for information about adding a specific user for replication connections
and Section 2.2.1, “Setting the Replication Source Configuration” for information about setting the
server _i d variable. The following examples show how to store nysql d startup options in server's
option file, see Using Option Files for more information. Alternatively you can use startup options when
running nysql d.

Most of the steps that follow require the use of the MySQL r oot account or another MySQL user
account that has the SUPER privilege. mysql adni n shut down requires either the SUPER privilege or
the SHUTDOWN privilege.

24

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_has_more_gtids_than_master
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_shutdown

Setting Up Replication Using GTIDs

Step 1: Synchronize the servers. This step is only required when working with servers which are
already replicating without using GTIDs. For new servers proceed to Step 3. Make the servers read-
only by setting the r ead_onl y system variable to ON on each server by issuing the following:

nysqgl > SET @AGLOBAL. read_only = ON,

Wait for all ongoing transactions to commit or roll back. Then, allow the replica to catch up with the
source. It is extremely important that you make sure the replica has processed all updates before
continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally,
wait for the server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing transactions without GTIDs
cannot be used on servers where GTIDs are enabled. Before proceeding, you
must be sure that transactions without GTIDs do not exist anywhere in the

topology.

Step 2: Stop both servers. Stop each server using nysql adni n as shown here, where user nane
is the user name for a MySQL user having sufficient privileges to shut down the server:

$> nysql admi n -uusernane -p shut down
Then supply this user's password at the prompt.

Step 3: Start both servers with GTIDs enabled. To enable GTID-based replication, each server
must be started with GTID mode enabled by setting the gt i d_node variable to ON, and with the
enforce_gtid_consi st ency variable enabled to ensure that only statements which are safe for
GTID-based replication are logged. For example:

gtid_node=ON
enf orce-gti d-consi st ency=0ON

In addition, you should start replicas with the - - ski p- sl ave- st art option before configuring the
replica settings. For more information on GTID related options and variables, see Section 2.6.5, “Global
Transaction ID System Variables”.

It is not mandatory to have binary logging enabled in order to use GTIDs when using the
mysql.gtid_executed Table. Replication source server must always have binary logging enabled in
order to be able to replicate. However, replica servers can use GTIDs but without binary logging. If you
need to disable binary logging on a replica, you can do this by specifying the - - ski p- | og- bi n and
--1 0g- sl ave- updat es=OFF options for the replica.

Step 4: Configure the replicato use GTID-based auto-positioning. Tell the replica to use the
source with GTID based transactions as the replication data source, and to use GTID-based auto-
positioning rather than file-based positioning. Issue a CHANGE MASTER TOstatement on the replica,
including the MASTER _AUTO_POCSI TI ON option in the statement to tell the replica that the source's
transactions are identified by GTIDs.

You may also need to supply appropriate values for the source's host name and port number as well as
the user name and password for a replication user account which can be used by the replica to connect
to the source; if these have already been set prior to Step 1 and no further changes need to be made,
the corresponding options can safely be omitted from the statement shown here.

nysql > CHANGE MASTER TO

> MASTER_HOST = host,
> MASTER _PORT = port,
> MASTER _USER = user,

25

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Using GTIDs for Failover and Scaleout

> MASTER_PASSWORD = password,
> MASTER_AUTO _POSI TI ON = 1;

Neither the MASTER LOG FI LE option nor the MASTER LOG PGS option may be used with
MASTER AUTO POsI Tl ON set equal to 1. Attempting to do so causes the CHANGE MASTER TO
statement to fail with an error.

Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no
longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point,
so that you are not left without a usable backup.

For instance, you can execute FLUSH LOGS on the server where you are taking backups. Then either
explicitly take a backup or wait for the next iteration of any periodic backup routine you may have set

up.
Step 6: Start the replica and disable read-only mode. Start the replica like this:

nmysql > START SLAVE;

The following step is only necessary if you configured a server to be read-only in Step 1. To allow the
server to begin accepting updates again, issue the following statement:

nysqgl > SET @aBLOBAL. read_only = OFF;

GTID-based replication should now be running, and you can begin (or resume) activity on the source
as before. Section 2.3.5, “Using GTIDs for Failover and Scaleout”, discusses creation of new replicas
when using GTIDs.

2.3.5 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new replica which can then be used for scaleout, being promoted to source
as necessary for failover. This section describes the following techniques:

» Simple replication
» Copying data and transactions to the replica

* Injecting empty transactions

Excluding transactions with gtid_purged

Restoring GTID mode replicas

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in
general management of the replication data flow and of failover activities in particular. Each identifier
uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role
in applying changes to the database: the server automatically skips any transaction having an identifier
which the server recognizes as one that it has processed before. This behavior is critical for automatic
replication positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from

the old server to the new one, and to preserve the relationship between the identifiers and the actual
events. This is necessary for restoring a replica that is immediately available as a candidate to become
a new source on failover or switchover.

Simple replication. The easiest way to reproduce all identifiers and transactions on a new server
is to make the new server into the replica of a source that has the entire execution history, and enable

26

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs

Using GTIDs for Failover and Scaleout

global transaction identifiers on both servers. See Section 2.3.4, “Setting Up Replication Using GTIDs”,
for more information.

Once replication is started, the new server copies the entire binary log from the source and thus
obtains all information about all GTIDs.

This method is simple and effective, but requires the replica to read the binary log from the source; it
can sometimes take a comparatively long time for the new replica to catch up with the source, so this
method is not suitable for fast failover or restoring from backup. This section explains how to avoid
fetching all of the execution history from the source by copying binary log files to the new server.

Copying data and transactions to the replica. Executing the entire transaction history can be
time-consuming when the source server has processed a large number of transactions previously, and
this can represent a major bottleneck when setting up a new replica. To eliminate this requirement,

a snapshot of the data set, the binary logs and the global transaction information the source server
contains can be imported to the new replica. The source server can be either the source or the replica,
but you must ensure that the source has processed all required transactions before copying the data.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transfered to the replica, as outlined here:

Data Set 1. Create a dump file using mysql dunp on the source server. Set
the mysql dunp option - - mast er - dat a (with the default value
of 1) to include a CHANGE MASTER TO statement with binary
logging information. Set the - - set - gt i d- pur ged option to
AUTO (the default) or ON, to include information about executed
transactions in the dump. Then use the nysql client to import
the dump file on the target server.

2. Alternatively, create a data snapshot of the source server
using raw data files, then copy these files to the target server,
following the instructions in Section 2.2.4, “Choosing a Method
for Data Snapshots”. If you use | nnoDB tables, you can use
the mysql backup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This
command records the log name and offset corresponding to
the snapshot to be used on the replica. MySQL Enterprise
Backup is a commercial product that is included as part of a
MySQL Enterprise subscription. See MySQL Enterprise Backup
Overview for detailed information.

3. Alternatively, stop both the source and target servers, copy
the contents of the source's data directory to the new replica's
data directory, then restart the replica. If you use this method,
the replica must be configured for GTID-based replication, in
other words with gt i d_node=0ON. For instructions and important
information for this method, see Section 2.2.6, “Adding Replicas
to a Replication Topology”.

Transaction History If the source server has a complete transaction history in its binary
logs (that is, the GTID set @@ELOBAL. gt i d_pur ged is empty), you
can use these methods.

1. Import the binary logs from the source server to the new replica
using nysql bi nl og, with the - -read- f rom r enpt e- server
and - -read- from r enot e- nast er options.

2. Alternatively, copy the source server's binary log files to
the replica. You can make copies from the replica using
mysqgl bi nl og with the - -read-from renot e- server and

27

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_set-gtid-purged
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server

Using GTIDs for Failover and Scaleout

- - r awoptions. These can be read into the replica by using
mysql bi nl og >fi | e (without the - - r aw option) to export
the binary log files to SQL files, then passing these files to the
mysql client for processing. Ensure that all of the binary log
files are processed using a single nysql process, rather than
multiple connections. For example:

$> nysql bi nl og copi ed- bi nl og. 000001 copi ed- bi nl og. 000002 |

For more information, see Using mysqlbinlog to Back Up Binary
Log Files.

This method has the advantage that a new server is available almost immediately; only those
transactions that were committed while the snapshot or dump file was being replayed still need to be
obtained from the existing source. This means that the replica's availability is not instantanteous, but
only a relatively short amount of time should be required for the replica to catch up with these few
remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the source in real time. However, it may not always be feasible to
move these files to the target when required, due to size or other considerations. The two remaining
methods for provisioning a new replica discussed in this section use other means to transfer
information about transactions to the new replica.

Injecting empty transactions. The source's global gt i d_execut ed variable contains the set
of all transactions executed on the source. Rather than copy the binary logs when taking a snapshot
to provision a new server, you can instead note the content of gt i d_execut ed on the server from
which the snapshot was taken. Before adding the new server to the replication chain, simply commit
an empty transaction on the new server for each transaction identifier contained in the source's

gti d_execut ed, like this:

SET GTI D_NEXT=' aaa- bbb-ccc-ddd: N ;

BEG N,
COW T,

SET GTl D_NEXT=" AUTQVATI C ;

Once all transaction identifiers have been reinstated in this way using empty transactions, you must
flush and purge the replica's binary logs, as shown here, where N is the nonzero suffix of the current
binary log file name:

FLUSH LCGS;
PURGE BI NARY LOGS TO ' sour ce-bi n. 00000N ;

You should do this to prevent this server from flooding the replication stream with false transactions in
the event that it is later promoted to source. (The FLUSH LOGS statement forces the creation of a new
binary log file; PURGE Bl NARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a source
as its binary log history converges with that of the replication stream (that is, as it catches up with the
source or sources). This outcome is similar in effect to that obtained using the remaining provisioning
method, which we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The source's global gt i d_pur ged variable contains
the set of all transactions that have been purged from the source's binary log. As with the method
discussed previously (see Injecting empty transactions), you can record the value of gt i d_execut ed
on the server from which the snapshot was taken (in place of copying the binary logs to the new
server). Unlike the previous method, there is no need to commit empty transactions (or to issue PURGE
Bl NARY LOGS); instead, you can set gti d_pur ged on the replica directly, based on the value of

gti d_execut ed on the server from which the backup or snapshot was taken.

nysql

28

-u roo

https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_raw
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_raw
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html

Restrictions on Replication with GTIDs

As with the method using empty transactions, this method creates a server that is functionally a
snapshot, but in time is able to become a source as its binary log history converges with that of the
replication source server or the group.

Restoring GTID mode replicas. When restoring a replica in a GTID based replication setup that
has encountered an error, injecting an empty transaction may not solve the problem because an event
does not have a GTID.

Use nysql bi nl og to find the next transaction, which is probably the first transaction in the next log file
after the event. Copy everything up to the COVM T for that transaction, being sure to include the SET
@ABESS| ON. GT1 D_NEXT. Even if you are not using row-based replication, you can still run binary log
row events in the command line client.

Stop the replica and run the transaction you copied. The nysql bi nl og output sets the delimiter to /
1[. s0 setit back:

nmysql > DELI M TER ;

Restart replication from the correct position automatically:

nysqgl > SET GTlI D_NEXT=aut omati c;
nysql > RESET SLAVE;
nysqgl > START SLAVE;

2.3.6 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables
using nontransactional storage engines such as Myl SAMcannot be made in the same statement or
transaction as updates to tables using transactional storage engines such as | nnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine
mixed with updates to tables that use a transactional storage engine within the same transaction can
result in multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the source and the replica use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not.
Also be aware that triggers that are defined to operate on nontransactional tables can be the cause of
these problems.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. = CREATE TABLE ... SELECT statements are not
allowed when using GTID-based replication. When bi nl og_f or mat is setto STATEMENT, a CREATE
TABLE ... SELECT statement is recorded in the binary log as one transaction with one GTID, but

if ROW format is used, the statement is recorded as two transactions with two GTIDs. If a source

used STATEMENT format and a replica used ROW format, the replica would be unable to handle the
transaction correctly, therefore the CREATE TABLE ... SELECT statement is disallowed with GTIDs
to prevent this scenario.

Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements
are not supported inside transactions, procedures, functions, and triggers when using GTIDs (that is,
when the enf orce_gti d_consi st ency system variable is set to ON). It is possible to use these
statements with GTIDs enabled, but only outside of any transaction, and only with aut oconmi t =1.

Preventing execution of unsupported statements. To prevent execution of statements that
would cause GTID-based replication to fail, all servers must be started with the - - enf or ce- gt i d-

29

https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit

Stored Function Examples to Manipulate GTIDs

consi st ency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

Note that - - enf or ce- gt i d- consi st ency only takes effect if binary logging takes place for a
statement. If binary logging is disabled on the server, or if statements are not written to the binary log
because they are removed by a filter, GTID consistency is not checked or enforced for the statements
that are not logged.

For information about other required startup options when enabling GTIDs, see Section 2.3.4, “Setting
Up Replication Using GTIDs".

Skipping transactions. sql _sl ave_ski p_count er is not supported when using GTIDs. If
you need to skip transactions, use the value of the source's gt i d_execut ed variable instead. For
instructions, see Section 2.7.3, “Skipping Transactions”.

Ignoring servers. The IGNORE_SERVER_IDS option of the CHANGE MASTER TOstatement is
deprecated when using GTIDs, because transactions that have already been applied are automatically
ignored. Before starting GTID-based replication, check for and clear all ignored server ID lists that
have previously been set on the servers involved. The SHOW SLAVE STATUS statement, which can be
issued for individual channels, displays the list of ignored server IDs if there is one. If there is no list,
the Repl i cate | gnore_Server | ds field is blank.

GTID mode and mysqgldump. Itis possible to import a dump made using nysql dunp into a
MySQL server running with GTID mode enabled, provided that there are no GTIDs in the target
server's binary log.

GTID mode and mysql_upgrade. When the server is running with global transaction identifiers
(GTIDs) enabled (gt i d_node=0N), do not enable binary logging by nysqgl _upgr ade (the--write-
bi nl og option).

2.3.7 Stored Function Examples to Manipulate GTIDs

This section provides examples of stored functions (see Stored Objects) which you can create using
some of the built-in functions provided by MySQL for use with GTID-based replication, listed here:

e GTI D_SUBSET() : Shows whether one GTID set is a subset of another.
e GTI D_SUBTRACT() : Returns the GTIDs from one GTID set that are not in another.

* WAI T_FOR_EXECUTED_GTI D_SET() : Waits until all transactions in a given GTID set have been
executed.

See Functions Used with Global Transaction Identifiers (GTIDs), more more information about the
functions just listed.

Note that in these stored functions, the delimiter command has been used to change the MySQL
statement delimiter to a vertical bar, like this:

nysqgl > delimter |

All of the stored functions shown in this section take string representations of GTID sets as arguments,
so GTID sets must always be quoted when used with them.

This function returns nonzero (true) if two GTID sets are the same set, even if they are not formatted in
the same way:

CREATE FUNCTI ON GTI D | S EQUAL(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS | NT
RETURN GTI D_SUBSET(gs1, gs2) AND GTl D _SUBSET(gs2, gsl)

This function returns nonzero (true) if two GTID sets are disjoint:

30

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-upgrade.html#option_mysql_upgrade_write-binlog
https://dev.mysql.com/doc/refman/5.7/en/mysql-upgrade.html#option_mysql_upgrade_write-binlog
https://dev.mysql.com/doc/refman/5.7/en/stored-objects.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html

Stored Function Examples to Manipulate GTIDs

CREATE FUNCTI ON GTI D_|'S DI SJO NT(gsl LONGTEXT, gs2 LONGTEXT)
RETURNS | NT
RETURN GTI D_SUBSET(gs1, GTI D_SUBTRACT(gsl, gs2))

This function returns nonzero (true) if two GTID sets are disjoint and sumis their union:

CREATE FUNCTI ON GTI D_|'S DI SJO NT_UNI ON(gs1 LONGTEXT, gs2 LONGTEXT, sum LONGTEXT)
RETURNS | NT
RETURN GTI D_I S_EQUAL(GTI D_SUBTRACT(sum gsl), gs2) AND
GTI D_| S_ EQUAL(GTI D_SUBTRACT(sum gs2), gsl)
[

This function returns a normalized form of the GTID set, in all uppercase, with no whitespace and no
duplicates, with UUIDs in alphabetic order and intervals in numeric order:

CREATE FUNCTI ON GTI D_NORMAL| ZE(gs LONGTEXT)
RETURNS LONGTEXT
RETURN GTI D_SUBTRACT(gs, '"')

This function returns the union of two GTID sets:

CREATE FUNCTI ON GTI D_UNI ON(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
RETURN GTI D_NORMALI ZE(CONCAT(gs1, ',', gs2))

This function returns the intersection of two GTID sets.

CREATE FUNCTI ON GTI D_| NTERSECTI ON(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
RETURN GTI D_SUBTRACT(gs1, GTl D SUBTRACT(gsl, gs2))

This function returns the symmetric difference between two GTID sets, that is, the GTIDs that exist in
gs1 butnotin gs2, as well as the GTIDs that exist in gs2 but notin gs1.

CREATE FUNCTI ON GTI D_SYMVETRI C_DI FFERENCE(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT

RETURN GTI D_SUBTRACT(CONCAT(gs1, ',', gs2), GTID_ | NTERSECTI ON(gsl, gs2))
[

This function removes from a GTID set all the GTIDs with the specified origin, and returns the
remaining GTIDs, if any. The UUID is the identifier used by the server where the transaction originated,
which is normally the value of ser ver _uui d.

CREATE FUNCTI ON GTI D_SUBTRACT_UUI D(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT

RETURN GTI D_SUBTRACT(gs, CONCAT(UUID, ':1-', (1 << 63) - 2))
[

This function acts as the reverse of the previous one; it returns only those GTIDs from the GTID set
that originate from the server with the specified identifier (UUID).

CREATE FUNCTI ON GTI D_I NTERSECTI ON_W TH_UUI D(gs LONGTEXT, uuid TEXT)

RETURNS LONGTEXT

RETURN GTI D_SUBTRACT(gs, GTI D_SUBTRACT UUI D(gs, uuid))
[

Example 2.1 Verifying that a replica is up to date

The built-in functions GTI D_SUBSET() and GTl D_SUBTRACT() can be used to check that a replica
has applied at least every transaction that a source has applied.

To perform this check with GTI D_SUBSET() , execute the following statement on the replica:

31

https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subtract

Stored Function Examples to Manipulate GTIDs

SELECT GTI D_SUBSET(source_gtid_executed, replica_gtid_executed);

If the returns value is O (false), this means that some GTIDs in sour ce_gti d_execut ed are not
presentinreplica_gtid _execut ed, and that the replica has not yet applied transactions that were
applied on the source, which means that the replica is not up to date.

To perform the same check with GTI D_SUBTRACT() , execute the following statement on the replica:

SELECT GTI D_SUBTRACT(source_gti d_executed, replica_gtid_executed);

This statement returns any GTIDs that are in sour ce_gti d_execut ed but not in
replica_gtid_executed. If any GTIDs are returned, the source has applied some transactions that
the replica has not applied, and the replica is therefore not up to date.

Example 2.2 Backup and restore scenario

The stored functions GTID | S EQUAL(), GTI D | S DI SJO NT(), and

GTI D IS DI SJO NT_UNI ON() can be used to verify backup and restore operations involving
multiple databases and servers. In this example scenario, ser ver 1 contains database db1, and
server 2 contains database db2. The goal is to copy database db2 to ser ver 1, and the result on
ser ver 1 should be the union of the two databases. The procedure used is to back up ser ver 2 using
nmysql dunp, then to restore this backup on ser ver 1.

Provided that mysql dunp was run with - - set - gt i d- pur ged set to ON or AUTO (the default), the
output contains a SET @a=LOBAL. gti d_pur ged statement which adds the gt i d_execut ed set
from server 2 tothe gti d_purged setonserver1.gtid purged contains the GTIDs of all the
transactions that have been committed on a given server but which do not exist in any binary log file
on the server. When database db2 is copied to ser ver 1, the GTIDs of the transactions committed
on ser ver 2, which are not in the binary log files on ser ver 1, must be added to gt i d_pur ged for
server 1 to make the set complete.

The stored functions can be used to assist with the following steps in this scenario:

* UseGTID IS EQUAL() to verify that the backup operation computed the correct GTID set for
the SET @aELOBAL. gt i d_pur ged statement. On ser ver 2, extract that statement from the
mysql dunp output, and store the GTID set into a local variable, such as $gti d_pur ged_set. Then
execute the following statement:

server2> SELECT GIID | S EQUAL($gti d_purged_set, @AaE.OBAL. gti d_executed);
If the result is 1, the two GTID sets are equal, and the set has been computed correctly.

e Use GTID IS DI SJO NT() to verify that the GTID set in the nysql dunp output does not overlap
with the gt i d_execut ed set on ser ver 1. Having identical GTIDs present on both servers
causes errors when copying database db2 to ser ver 1. To check, on ser ver 1, extract and store
gti d_purged from the output into a local variable as done previously, then execute the following
statement:

server1> SELECT GTID | S DI SJO NT($gtid_purged_set, @AaBLOBAL.gtid_executed);
If the result is 1, there is no overlap between the two GTID sets, so no duplicate GTIDs are present.

e Use GTID IS DI SJO NT_UNI ON() to verify that the restore operation resulted in the correct GTID
state on ser ver 1. Before restoring the backup, on ser ver 1, obtain the existing gt i d_execut ed
set by executing the following statement:

server1> SELECT @B OBAL. gti d_execut ed;

Store the result in a local variable $or i gi nal _gti d_execut ed, as well as the set from
gti d_purged in another local variable as described previously. When the backup from ser ver 2
has been restored onto ser ver 1, execute the following statement to verify the GTID state:

32

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_set-gtid-purged

Stored Function Examples to Manipulate GTIDs

server 1> SELECT
-> GTI D_I'S DI SJIO NT_UNI ON($ori gi nal _gti d_execut ed,
-> $gti d_purged_set,
-> @A=L OBAL. gti d_execut ed) ;

If the result is 1, the stored function has verified that the original gt i d_execut ed set from server 1
($original _gtid_executed)andthegtid_purged set that was added from ser ver 2

($gt i d_purged_set) have no overlap, and that the updated gt i d_execut ed seton server 1
now consists of the previous gt i d_execut ed set from ser ver 1 plus the gt i d_pur ged set

from ser ver 2, which is the desired result. Ensure that this check is carried out before any further
transactions take place on ser ver 1, otherwise the new transactions in gt i d_execut ed cause it to
fail.

Example 2.3 Selecting the most up-to-date replica for manual failover

The stored function GT1 D_UNI ON() can be used to identify the most up-to-date replica from a

set of replicas, in order to perform a manual failover operation after a source server has stopped
unexpectedly. If some of the replicas are experiencing replication lag, this stored function can

be used to compute the most up-to-date replica without waiting for all the replicas to apply their
existing relay logs, and therefore to minimize the failover time. The function can return the union

of gti d_execut ed on each replica with the set of transactions received by the replica, which is
recorded in the Performance Schemar epl i cati on_connecti on_st at us table. You can compare
these results to find which replica’s record of transactions is the most up to date, even if not all of the
transactions have been committed yet.

On each replica, compute the complete record of transactions by issuing the following statement:

SELECT GTI D_UNI ON(RECEI VED_TRANSACTI ON_SET, @B OBAL. gti d_execut ed)
FROM per f or mance_schena. repl i cati on_connecti on_st at us
WHERE channel _name = 'nane';

You can then compare the results from each replica to see which one has the most up-to-date record
of transactions, and use this replica as the new source.

Example 2.4 Checking for extraneous transactions on a replica

The stored function GTI D_SUBTRACT _UUI X) can be used to check whether a replica has received
transactions that did not originate from its designated source or sources. If it has, there might be an
issue with your replication setup, or with a proxy, router, or load balancer. This function works by
removing from a GTID set all the GTIDs from a specified originating server, and returning the remaining
GTIDs, if any.

For a replica with a single source, issue the following statement, giving the identifier of the originating
source, which is normally the same as ser ver _uui d:

SELECT GTI D_SUBTRACT _UUI D(@a=LOBAL. gt i d_execut ed, server_uui d_of _source);

If the result is not empty, the transactions returned are extra transactions that did not originate from the
designated source.

For a replica in a multisource topology, include the server UUID of each source in the function call, like
this:

SELECT
GTl D_SUBTRACT_UUI D(GTI D_SUBTRACT_UUI D({ @A=L OBAL. gt i d_execut ed,
server _uui d_of _source_1),
server _uui d_of _source_2);

If the result is not empty, the transactions returned are extra transactions that did not originate from any
of the designated sources.

33

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-connection-status-table.html

Changing Replication Modes on Online Servers

Example 2.5 Verifying that a server in a replication topology is read-only

The stored function GTI D_| NTERSECTI ON_W TH_UUI D() can be used to verify that a server has
not originated any GTIDs and is in a read-only state. The function returns only those GTIDs from the
GTID set that originate from the server with the specified identifier. If any of the transactions listed in
gti d_execut ed from this server use the server's own identifier, the server itself originated those
transactions. You can issue the following statement on the server to check:

SELECT GTI D_| NTERSECTI ON_W TH_UUI D{ @a5LOBAL. gt i d_execut ed, mny_server _uui d);
Example 2.6 Validating an additional replica in multisource replication

The stored function GT1 D_| NTERSECTI ON_W TH_UUI D() can be used to find out if a replica attached
to a multisource replication setup has applied all the transactions originating from one particular source.
In this scenario, sour cel and sour ce2 are both sources and replicas and replicate to each other.
sour ce2 also has its own replica. The replica also receives and applies transactions from sour cel

if sour ce2 is configured with | og_r epl i ca_updat es=0N, but it does not do so if sour ce2 uses

| og_replica_updat es=OFF. Whichever the case, we currently want only to find out if the replica

is up to date with sour ce2. In this situation, GT1 D_| NTERSECTI ON_W TH_UUI D() can be used

to identify the transactions that sour ce2 originated, discarding the transactions that sour ce2 has
replicated from sour cel. The built-in function GTI D_SUBSET() can then be used to compare the
result with the gt i d_execut ed set on the replica. If the replica is up to date with sour ce2, the

gti d_execut ed set on the replica contains all the transactions in the intersection set (the transactions
that originated from sour ce2).

To carry out this check, store the values of gt i d_execut ed and the server UUID from sour ce2 and
the value of gt i d_execut ed from the replica into user variables as follows:

sour ce2> SELECT @aOBAL. gti d_executed | NTO @ource2_gti d_execut ed;
sour ce2> SELECT @=LOBAL. server _uui d | NTO @our ce2_server _uui d;

replica> SELECT @AaBLOBAL. gtid_executed | NTO @eplica_gtid_execut ed;

Then use GTI D_| NTERSECTI ON_W TH _UUI D() and GTlI D_SUBSET() with these variables as input,
as follows:

SELECT
GTI D_SUBSET(
GTI D_I NTERSECTI ON_W TH_UUI D{ @our ce2_gti d_execut ed,
@ource2_server_uui d),
@eplica_gtid_executed);

The server identifier from sour ce2 (@our ce2_server _uui d) is used with

GT1 D_| NTERSECTI ON_W TH_UUI D() to identify and return only those GTIDs from the set of GTIDs
that originated on sour ce2, omitting those that originated on sour cel. The resulting GTID set is
then compared with the set of all executed GTIDs on the replica, using GTl D_SUBSET() . If this
statement returns nonzero (true), all the identified GTIDs from sour ce2 (the first set input) are also
found in gt i d_execut ed from the replica, meaning that the replica has received and executed all the
transactions that originated from sour ce2.

2.4 Changing Replication Modes on Online Servers

This section describes how to change the mode of replication being used without having to take the
server offline.

2.4.1 Replication Mode Concepts

To be able to safely configure the replication mode of an online server it is important to understand
some key concepts of replication. This section explains these concepts and is essential reading before
attempting to modify the replication mode of an online server.

34

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subset

Replication Mode Concepts

The modes of replication available in MySQL rely on different techniques for identifying transactions
which are logged. The types of transactions used by replication are as follows:

» GTID transactions are identified by a global transaction identifier (GTID) in the form UUI D: NUVBER.
Every GTID transaction in a log is always preceded by a G i d_| og_event . GTID transactions can
be addressed using either the GTID or using the file name and position.

» Anonymous transactions do not have a GTID assigned, and MySQL ensures that every anonymous
transaction in a log is preceded by an Anonynous_gti d_| og_event . In previous versions,
anonymous transactions were not preceded by any particular event. Anonymous transactions can
only be addressed using file name and position.

When using GTIDs you can take advantage of auto-positioning and automatic fail-over, as well as use
WAI T_FOR_EXECUTED GTI D SET(), session_track_gti ds, and monitor replicated transactions
using Performance Schema tables. With GTIDs enabled you cannot use sql _sl ave_ski p_counter,
instead use empty transactions.

Transactions in a relay log that was received from a source running a previous version of MySQL may
not be preceded by any particular event at all, but after being replayed and logged in the replica's
binary log, they are preceded with an Anonynous_gti d_| og _event.

The ability to configure the replication mode online means that the gt i d_node and
enforce_gtid_consi st ency variables are now both dynamic and can be set from a top-level
statement by an account that has privileges sufficient to set global system variables. See System
Variable Privileges. In previous versions, both of these variables could only be configured using

the appropriate option at server start, meaning that changes to the replication mode required a

server restart. In all versions gt i d_node could be set to ON or OFF, which corresponded to whether
GTIDs were used to identify transactions or not. When gt i d_node=0ON it is not possible to replicate
anonymous transactions, and when gt i d_node=0FF only anonymous transactions can be replicated.
As of MySQL 5.7.6, the gt i d_nbde variable has two additional states, OFF _PERM SSI VE and
ON_PERM SSI VE. When gt i d_node=0OFF_PERM SSI VE then new transactions are anonymous
while permitting replicated transactions to be either GTID or anonymous transactions. When

gti d_node=ON_PERM SSI VE then new transactions use GTIDs while permitting replicated
transactions to be either GTID or anonymous transactions. This means it is possible to have a
replication topology that has servers using both anonymous and GTID transactions. For example a
source with gt i d_node=ON could be replicating to a replica with gt i d_node=0ON_PERM SSI VE. The
valid values for gt i d_node are as follows and in this order:

. OFF
- OFF_PERM SSI VE
« ON_PERM SSI VE
.« ON

It is important to note that the state of gt i d_node can only be changed by one step at a time based
on the above order. For example, if gt i d_node is currently set to OFF_PERM SSI VE, it is possible

to change to OFF or ON_PERM SSI VE but not to ON. This is to ensure that the process of changing
from anonymous transactions to GTID transactions online is correctly handled by the server. When you
switch between gt i d_node=0ONand gt i d_node=0CFF, the GTID state (in other words the value of

gti d_execut ed) is persistent. This ensures that the GTID set that has been applied by the server is
always retained, regardless of changes between types of gt i d_node.

As part of the changes introduced by MySQL 5.7.6, the fields related to GTIDs have been modified
so that they display the correct information regardless of the currently selected gt i d_node.

This means that fields which display GTID sets, suchas gt i d_execut ed, gti d_pur ged,

RECEI VED TRANSACTI ON_SET inthe repl i cati on_connecti on_st at us Performance Schema
table, and the GTID related results of SHON SLAVE STATUS, now return the empty string when there
are no GTIDs present. Fields that display a single GTID, such as CURRENT _TRANSACTI ONin the

35

https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_wait-for-executed-gtid-set
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Enabling GTID Transactions Online

Performance Schemareplication_applier_status_by worker table, now display ANONYMOUS
when GTID transactions are not being used.

Replication from a source using gt i d_node=0N provides the ability to use auto-positioning, configured
using the CHANGE MASTER TO MASTER_AUTO POSI TI ON = 1; statement. The replication topology
being used impacts on whether it is possible to enable auto-positioning or not, as this feature relies on
GTIDs and is not compatible with anonymous transactions. An error is generated if auto-positioning

is enabled and an anonymous transaction is encountered. It is strongly recommended to ensure

there are no anonymous transactions remaining in the topology before enabling auto-positioning, see
Section 2.4.2, “Enabling GTID Transactions Online”. The valid combinations of gt i d_node and auto-
positioning on source and replica are shown in the following table, where the source's gt i d_node is
shown on the horizontal and the replica's gt i d_node is on the vertical:

Table 2.1 Valid Combinations of Source and Replica gtid_mode

gtid_node Source OFF Source OFF_PERM SSI VE Source ON_PERM
Replica OFF Y Y N
Replica OFF PERM SSI VE |Y Y Y
Replica ON_PERM SSI VE Y Y Y
Replica ON N N Y

In the above table, the entries are:

» Y:the gti d_node of source and replica is compatible

* N:the gti d_node of source and replica is not compatible
e *: auto-positioning can be used

The currently selected gt i d_node also impacts on the gt i d_next variable. The following table
shows the behavior of the server for the different values of gt i d_node and gti d_next.

Table 2.2 Valid Combinations of gtid_mode and gtid_next

gti d_next AUTOMATIC AUTOMATIC ANONYMOUS UUID:NUMBER
binary log on binary log off

>COFF ANONYMOUS ANONYMOUS ANONYMOUS Error

>OFF_PERM SSI VEANONYMOUS ANONYMOUS ANONYMOUS UUID:NUMBER

>ON_PERM SSI VE [New GTID ANONYMOUS ANONYMOUS UUID:NUMBER

>ON New GTID ANONYMOUS Error UUID:NUMBER

In the above table, the entries are:

» ANONYMOUS: generate an anonymous transaction.

» Error:generate an error and fail to execute SET GTl D_NEXT.

» UUI D: NUMBER: generate a GTID with the specified UUID:NUMBER.

* New GTI D: generate a GTID with an automatically generated number.

When the binary log is off and gt i d_next is set to AUTOVATI C, then no GTID is generated. This is
consistent with the behavior of previous versions.

2.4.2 Enabling GTID Transactions Online

36

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html

Enabling GTID Transactions Online

This section describes how to enable GTID transactions, and optionally auto-positioning, on servers
that are already online and using anonymous transactions. This procedure does not require taking the
server offline and is suited to use in production. However, if you have the possibility to take the servers
offline when enabling GTID transactions that process is easier.

Before you start, ensure that the servers meet the following pre-conditions:

» All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

» All servers have gt i d_node set to the default value OFF.

The following procedure can be paused at any time and later resumed where it was, or reversed by
jumping to the corresponding step of Section 2.4.3, “Disabling GTID Transactions Online”, the online
procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated issues that
may appear in the middle of the procedure can be handled as usual, and then the procedure continued
where it was left off.

Note
It is crucial that you complete every step before continuing to the next step.
To enable GTID transactions:

1. On each server, execute:

SET @aBOBAL. ENFORCE_GTI D_CONSI STENCY = WARN;

Let the server run for a while with your normal workload and monitor the logs. If this step causes
any warnings in the log, adjust your application so that it only uses GTID-compatible features and
does not generate any warnings.

Important

This is the first important step. You must ensure that no warnings are being
generated in the error logs before going to the next step.

2. On each server, execute:
SET @@B.OBAL. ENFORCE_GTI D_CONSI STENCY = ON;
3. On each server, execute:

SET @@BLOBAL. GTI D MODE = OFF_PERM SSI VE;

It does not matter which server executes this statement first, but it is important that all servers
complete this step before any server begins the next step.

4. On each server, execute:
SET @aB.OBAL. GTI D_MODE = ON_PERM SSI VE;
It does not matter which server executes this statement first.

5. On each server, wait until the status variable ONGO NG_ANONYMOUS TRANSACTI ON_COUNT is
zero. This can be checked using:

SHOW STATUS LI KE ' ONGO NG_ANONYMOUS_TRANSACTI ON_COUNT" ;
Note

On a replica, it is theoretically possible that this shows zero and then
nonzero again. This is not a problem, it suffices that it shows zero once.

37

Disabling GTID Transactions Online

6. Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without
stopping updates: the only important thing is that all anonymous transactions get replicated.

See Section 2.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking
that all anonymous transactions have replicated to all servers.

7. If you use binary logs for anything other than replication, for example point in time backup and
restore, wait until you do not need the old binary logs having transactions without GTIDs.

For instance, after step 6 has completed, you can execute FLUSH LOGS on the server where you
are taking backups. Then either explicitly take a backup or wait for the next iteration of any periodic
backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also
wait for any backup taken before step 6 to expire.

Important

This is the second important point. It is vital to understand that binary logs
containing anonymous transactions, without GTIDs cannot be used after the
next step. After this step, you must be sure that transactions without GTIDs
do not exist anywhere in the topology.

8. On each server, execute:

SET @aB_0BAL. GTI D MODE = ON;
9. On each server, add gt i d_node=0ONand enf or ce_gti d_consi st ency=0ONto ny. cnf .

You are now guaranteed that all transactions have a GTID (except transactions generated in step
5 or earlier, which have already been processed). To start using the GTID protocol so that you can
later perform automatic fail-over, execute the following on each replica. Optionally, if you use multi-
source replication, do this for each channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL ' channel '];

CHANGE MASTER TO MASTER _AUTO PCSI TION = 1 [FOR CHANNEL ' channel '];
START SLAVE [FOR CHANNEL ' channel '];

2.4.3 Disabling GTID Transactions Online

This section describes how to disable GTID transactions on servers that are already online. This
procedure does not require taking the server offline and is suited to use in production. However, if you
have the possibility to take the servers offline when disabling GTIDs mode that process is easier.

The process is similar to enabling GTID transactions while the server is online, but reversing the steps.
The only thing that differs is the point at which you wait for logged transactions to replicate.

Before you start, ensure that the servers meet the following pre-conditions:

 All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

» All servers have gt i d_node set to ON.

1. Execute the following on each replica, and if you using multi-source replication, do it for each
channel and include the FOCR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL ' channel '];

CHANGE MASTER TO MASTER AUTO POSI TION = 0, MASTER LOG FILE = file, \
MASTER LOG PCS = position [FOR CHANNEL ' channel'];

START SLAVE [FOR CHANNEL ' channel '];

2. On each server, execute:

38

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs

Verifying Replication of Anonymous Transactions

SET @ OBAL. GTI D_MODE = ON_PERM SSI VE;

3. On each server, execute:

SET @@BLOBAL. GTI D MODE = OFF_PERM SSI VE;

4. On each server, wait until the variable @ @GLOBAL.GTID_OWNED is equal to the empty string.
This can be checked using:

SELECT @aBLOBAL. GTI D_OMNED;

On a replica, it is theoretically possible that this is empty and then nonempty again. This is not a
problem, it suffices that it is empty once.

5. Wait for all transactions that currently exist in any binary log to replicate to all replicas. See
Section 2.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking that
all anonymous transactions have replicated to all servers.

6. If you use binary logs for anything else than replication, for example to do point in time backup or
restore: wait until you do not need the old binary logs having GTID transactions.

For instance, after step 5 has completed, you can execute FLUSH LOGS on the server where you
are taking the backup. Then either explicitly take a backup or wait for the next iteration of any
periodic backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 5 was completed. Also
wait for any backup taken before step 5 to expire.

Important

This is the one important point during this procedure. It is important to
understand that logs containing GTID transactions cannot be used after the
next step. Before proceeding you must be sure that GTID transactions do
not exist anywhere in the topology.

7. On each server, execute:

SET @aB_OBAL. GTI D_MODE = OFF;
8. On each server, set gt i d_node=0OFF in ny. cnf.

If you want to set enf orce_gti d_consi st ency=0FF, you can do so now. After setting it, you
should add enf orce_gti d_consi st ency=0FF to your configuration file.

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal
downgrade procedure.

2.4.4 Verifying Replication of Anonymous Transactions

This section explains how to monitor a replication topology and verify that all anonymous transactions
have been replicated. This is helpful when changing the replication mode online as you can verify that it
is safe to change to GTID transactions.

There are several possible ways to wait for transactions to replicate:

The simplest method, which works regardless of your topology but relies on timing is as follows: if you
are sure that the replica never lags more than N seconds, just wait for a bit more than N seconds. Or
wait for a day, or whatever time period you consider safe for your deployment.

A safer method in the sense that it does not depend on timing: if you only have a source with one or
more replicas, do the following:

39

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs

MySQL Multi-Source Replication

1. Onthe source, execute:

SHOW MASTER STATUS;
Note down the values in the Fi | e and Posi ti on column.

2. On every replica, use the file and position information from the source to execute:

SELECT MASTER _POS WAI T(file, position);

If you have a source and multiple levels of replicas, or in other words you have replicas of replicas,
repeat step 2 on each level, starting from the source, then all the direct replicas, then all the replicas of
replicas, and so on.

If you use a circular replication topology where multiple servers may have write clients, perform step 2
for each source-replica connection, until you have completed the full circle. Repeat the whole process
so that you do the full circle twice.

For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C ->
A. The procedure is then:

» Do step1onAand step 2 on B.
» Do step1onBandstep2onC.
» Dostep1onCandstep2onA.
» Do step 1 on A and step 2 on B.
» Do step 1onB andstep2onC.

* Do step 1 on C and step 2 on A.

2.5 MySQL Multi-Source Replication

MySQL multi-source replication enables a replica to receive transactions from multiple immediate
sources in parallel. In a multi-source replication topology, a replica creates a replication channel for
each source that it should receive transactions from. For more information on how replication channels
function, see Section 5.2, “Replication Channels”.

You might choose to implement multi-source replication to achieve goals like these:
» Backing up multiple servers to a single server.

* Merging table shards.

» Consolidating data from multiple servers to a single server.

Multi-source replication does not implement any conflict detection or resolution when applying
transactions, and those tasks are left to the application if required.

Note

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a
single source. This is because the server IDs of replicas must be unique in a
replication topology. The source distinguishes replicas only by their server IDs,
not by the names of the replication channels, so it cannot recognize different
replication channels from the same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the
sl ave_paral | el _wor ker s system variable to a value greater than 0. When you do this on a
multi-source replica, each channel on the replica has the specified number of applier threads, plus a

40

Configuring Multi-Source Replication

coordinator thread to manage them. You cannot configure the number of applier threads for individual
channels.

This section provides tutorials on how to configure sources and replicas for multi-source replication,
how to start, stop and reset multi-source replicas, and how to monitor multi-source replication.

2.5.1 Configuring Multi-Source Replication

A multi-source replication topology requires at least two sources and one replica configured. In these
tutorials, we assume you have two sources sour cel and sour ce2, and a replicar epl i cahost . The
replica replicates one database from each of the sources, db1 from sour cel and db2 from sour ce2.

Sources in a multi-source replication topology can be configured to use either GTID-based replication,
or binary log position-based replication. See Section 2.3.4, “Setting Up Replication Using GTIDs” for
how to configure a source using GTID-based replication. See Section 2.2.1, “Setting the Replication
Source Configuration” for how to configure a source using file position based replication.

Replicas in a multi-source replication topology require TABLE repositories for the connection metadata
repository and applier metadata repository, as specified by the mast er i nfo_reposi t ory and
relay | og info repository system variables. Multi-source replication is not compatible with

FI LE repositories.

To modify an existing replica that is using FlI LE repositories for the replication metadata repositories
to use TABLE repositories, you can convert the existing repositories dynamically by using the nysq|l
client to issue the following statements on the replica:

nysqgl > STOP SLAVE;
nysqgl > SET GLOBAL master_info_repository = ' TABLE' ;
nysqgl > SET GLOBAL relay_|log_info_repository = ' TABLE' ;

Create a suitable user account on all the replication source servers that the replica can use to connect.
You can use the same account on all the sources, or a different account on each. If you create an
account solely for the purposes of replication, that account needs only the REPLI CATI ON SLAVE
privilege. For example, to set up a new user, t ed, that can connect from the replicar epl i cahost,
use the nysql client to issue these statements on each of the sources:

nmysql > CREATE USER 'ted' @replicahost' |DENTIFIED BY ' password' ;
mysql > GRANT REPLI CATI ON SLAVE ON *.* TO 'ted' @replicahost';

For more details, see Section 2.2.2, “Creating a User for Replication”.

2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication

If the sources in the multi-source replication topology have existing data, it can save time to provision
the replica with the relevant data before starting replication. In a multi-source replication topology,
copying the data directory cannot be used to provision the replica with data from all of the sources,
and you might also want to replicate only specific databases from each source. The best strategy for
provisioning such a replica is therefore to use nmysql dunp to create an appropriate dump file on each
source, then use the nysql client to import the dump file on the replica.

If you are using GTID-based replication, you need to pay attention to the SET

@5 OBAL. gt i d_pur ged statement that nysql dunp places in the dump output. This statement
transfers the GTIDs for the transactions executed on the source to the replica, and the replica requires
this information. However, for any case more complex than provisioning one new, empty replica from
one source, you need to check what effect the statement has in the replica's version of MySQL, and
handle the statement accordingly. The following guidance summarizes suitable actions, but for more
details, see the nmysqgl dunp documentation.

In MySQL 5.6 and 5.7, the SET @ABLOBAL. gti d_pur ged statement written by mysql dunp replaces
the value of gt i d_pur ged on the replica. Also in those releases that value can only be changed when
the replica's record of transactions with GTIDs (the gt i d_execut ed set) is empty. In a multi-source

41

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave

Adding GTID-Based Sources to a Multi-Source Replica

replication topology, you must therefore remove the SET @aE_OBAL. gti d_pur ged statement from
the dump output before replaying the dump files, because you cannot apply a second or subsequent
dump file including this statement. As an alternative to removing the SET @ABELOBAL. gti d_pur ged
statement, if you are provisioning the replica with two partial dumps from the same source, and the
GTID set in the second dump is the same as the first (so no new transactions have been executed on
the source in between the dumps), you can set nysql dunp's - - set - gt i d- pur ged option to OFF
when you output the second dump file, to omit the statement.

For MySQL 5.6 and 5.7, these limitations mean all the dump files from the sources must be applied

in a single operation on a replica with an empty gt i d_execut ed set. You can clear a replica's GTID
execution history by issuing RESET MASTER on the replica, but if you have other, wanted transactions
with GTIDs on the replica, choose an alternative method of provisioning from those described in
Section 2.3.5, “Using GTIDs for Failover and Scaleout”.

In the following provisioning example, we assume that the SET @@L OBAL. gti d_pur ged statement
needs to be removed from the files and handled manually. We also assume that there are no wanted
transactions with GTIDs on the replica before provisioning starts.

1. To create dump files for a database named db1 on sour cel and a database named db2 on
sour ce2, run nysql dunp for sour cel as follows:

nmysql dunp - u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --dat ab
Then run nysql dunp for sour ce2 as follows:
nmysql dunp - u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --dat ab

2. Recordthe gti d_pur ged value that mysql dunp added to each of the dump files. For example,
for dump files created on MySQL 5.6 or 5.7, you can extract the value like this:

cat dunpML.sql | grep GIID PURGED | cut -f2 -d'
cat dunpM2.sql | grep GIID PURGED | cut -f2 -d'

| cut -f2 -d$'\""
| cut -f2 -d$'\""

The result in each case should be a GTID set, for example:

sourcel: 2174B383- 5441- 11E8- BOOA- CB0AA9429562: 1- 1029
source2: 224DA167- 0COC- 11E8- 8442- 00059A3C7B00: 1- 2695

3. Remove the line from each dump file that contains the SET @a5LOBAL. gt i d_pur ged statement.
For example:

sed '/ GIl D_PURCGED/ d' dunpML. sql > dunpML_nopur ge. sql
sed '/ GIl D_PURCGED/ d' dunpM.sql > dunpM2_nopur ge. sql

4. Use the nysql client to import each edited dump file into the replica. For example:

nmysql -u<user> -p<password> < dunpML_nopur ge. sql
nmysql -u<user> -p<password> < dunpM2_nopur ge. sql

5. On the replica, issue RESET MASTERto clear the GTID execution history (assuming, as explained
above, that all the dump files have been imported and that there are no wanted transactions
with GTIDs on the replica). Then issue a SET @aELOBAL. gti d_pur ged statement to set the
gti d_pur ged value to the union of all the GTID sets from all the dump files, as you recorded in
Step 2. For example:

nysql > RESET MASTER
nysql > SET @ABLOBAL. gtid_purged = "2174B383-5441- 11E8- BOOA- CB0AA9429562: 1- 1029, 224DA167- 0C0C- 11E8- 8442

If there are, or might be, overlapping transactions between the GTID sets in the dump files, you

can use the stored functions described in Section 2.3.7, “Stored Function Examples to Manipulate
GTIDs” to check this beforehand and to calculate the union of all the GTID sets.

2.5.3 Adding GTID-Based Sources to a Multi-Source Replica

42

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html

Adding a Binary Log Based Source to a Multi-Source Replica

These steps assume you have enabled GTIDs for transactions on the replication source servers using
gti d_node=0N, created a replication user, ensured that the replica is using TABLE based replication
metadata repositories, and provisioned the replica with data from the sources if appropriate.

Use the CHANGE MASTER TOstatement to configure a replication channel for each source on the
replica (see Section 5.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the
channel. For GTID-based replication, GTID auto-positioning is used to synchronize with the source
(see Section 2.3.3, “GTID Auto-Positioning”). The MASTER_AUTO_PQCSI TI ON option is set to specify
the use of auto-positioning.

For example, to add sour cel and sour ce2 as sources to the replica, use the nysql client to issue
the CHANGE MASTER TOstatement twice on the replica, like this:

nmysqgl > CHANGE MASTER TO MASTER HOST="sour cel", MASTER USER="ted", \
MASTER PASSWORD=" passwor d", MASTER AUTO POSI TI ON=1 FOR CHANNEL "source_1";
nmysqgl > CHANGE MASTER TO MASTER HOST="sour ce2", MASTER USER="ted", \
MASTER PASSWORD=" passwor d", MASTER AUTO POSI TI ON=1 FOR CHANNEL "source_2";

For the full syntax of the CHANGE MASTER TO statement and other available options, see CHANGE
MASTER TO Statement.

2.5.4 Adding a Binary Log Based Source to a Multi-Source Replica

These steps assume that you have enabled binary logging on the replication source server using

- -1 0g- bi n, the replica is using TABLE based replication metadata repositories, and that you have
enabled a replication user and noted the current binary log position. You need to know the current
MASTER _LOG FI LE and MASTER_LOG_POSI Tl ON.

Use the CHANGE MASTER TOstatement to configure a replication channel for each source on the
replica (see Section 5.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the
channel. For example, to add sour cel and sour ce2 as sources to the replica, use the mysqgl client
to issue the CHANGE MASTER TO statement twice on the replica, like this:

nysqgl > CHANGE MASTER TO MASTER HOST="sourcel", MASTER USER="ted", MASTER PASSWORD="password", \
MASTER LOG FI LE=' sour cel- bi n. 000006', MASTER LOG POS=628 FOR CHANNEL "source_1";
nysqgl > CHANGE MASTER TO MASTER HOST="source2", MASTER USER="ted", MASTER PASSWORD="password", \
MASTER LOG FI LE=' sour ce2- bi n. 000018', MASTER LOG POS=104 FOR CHANNEL "source_2";

For the full syntax of the CHANGE MASTER TO statement and other available options, see CHANGE
MASTER TO Statement.

2.5.5 Starting Multi-Source Replicas

Once you have added channels for all of the sources, issue a START SLAVE statement to start
replication. When you have enabled multiple channels on a replica, you can choose to either start all
channels, or select a specific channel to start. For example, to start the two channels separately, use
the mysql client to issue the following statements:

nmysqgl > START SLAVE FOR CHANNEL "source_1";
nmysqgl > START SLAVE FOR CHANNEL "source_2";

For the full syntax of the START SLAVE command and other available options, see START SLAVE
Statement.

To verify that both channels have started and are operating correctly, you can issue SHON SLAVE
STATUS statements on the replica, for example:

nysql > SHOW SLAVE STATUS FOR CHANNEL "source 1"\ G
nysql > SHOW SLAVE STATUS FOR CHANNEL "source 2"\ G

2.5.6 Stopping Multi-Source Replicas

43

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Resetting Multi-Source Replicas

The STOP SLAVE statement can be used to stop a multi-source replica. By default, if you use the STOP
SLAVE statement on a multi-source replica all channels are stopped. Optionally, use the FOR CHANNEL
channel clause to stop only a specific channel.

» To stop all currently configured replication channels:

STOP SLAVE;

» To stop only a named channel, use a FOR CHANNEL channel clause:

STOP SLAVE FOR CHANNEL "source_1";

For the full syntax of the STOP SLAVE command and other available options, see STOP SLAVE
Statement.

2.5.7 Resetting Multi-Source Replicas

The RESET SLAVE statement can be used to reset a multi-source replica. By default, if you use the
RESET SLAVE statement on a multi-source replica all channels are reset. Optionally, use the FOR
CHANNEL channel clause to reset only a specific channel.

» To reset all currently configured replication channels:

RESET SLAVE;

e To reset only a named channel, use a FOR CHANNEL channel clause:

RESET SLAVE FOR CHANNEL "source_1";

For GTID-based replication, note that RESET SLAVE has no effect on the replica’'s GTID execution
history. If you want to clear this, issue RESET MASTER on the replica.

RESET SLAVE makes the replica forget its replication position, and clears the relay log, but it does not
change any replication connection parameters, such as the source's host name. If you want to remove
these for a channel, issue RESET SLAVE ALL.

For the full syntax of the RESET SLAVE command and other available options, see RESET SLAVE
Statement.

2.5.8 Multi-Source Replication Monitoring

To monitor the status of replication channels the following options exist:

 Using the replication Performance Schema tables. The first column of these tables is
Channel _Nane. This enables you to write complex queries based on Channel _Nane as a key. See
Performance Schema Replication Tables.

* Using SHOW SLAVE STATUS FOR CHANNEL channel . By default, if the FOR CHANNEL channel
clause is not used, this statement shows the replica status for all channels with one row per channel.
The identifier Channel _nane is added as a column in the result set. If a FOR CHANNEL channel
clause is provided, the results show the status of only the named replication channel.

Note

The SHOW VARI ABLES statement does not work with multiple replication
channels. The information that was available through these variables has been
migrated to the replication performance tables. Using a SHOWV VARI ABLES
statement in a topology with multiple channels shows the status of only the
default channel.

2.5.8.1 Monitoring Channels Using Performance Schema Tables

44

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-variables.html

Replication and Binary Logging Options and Variables

This section explains how to use the replication Performance Schema tables to monitor channels. You
can choose to monitor all channels, or a subset of the existing channels.

To monitor the connection status of all channels:

nmysqgl > SELECT * FROM replication_connection_status\G
khkkhkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkkkkkkkk* 1 r ow khkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkkkkkkkk*%
CHANNEL_NAME: source_1

GROUP_NAME:

SOURCE_UUI D: 046e41f 8- a223- 11e4- a975- 0811960cc264

THREAD_| D: 24

SERVI CE_STATE: ON

COUNT_RECEI VED_HEARTBEATS: 0

LAST_HEARTBEAT_TI MESTAMP: 0000- 00- 00 00: 00: 00

RECEI VED_TRANSACTI ON_SET: 046e41f 8- a223-11e4-a975-0811960cc264: 4- 37
LAST_ERROR NUMBER: 0

LAST_ERROR_MESSAGE:

LAST_ERROR TI MESTAMP: 0000- 00- 00 00: 00: 00
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkk*k* 2 r ow khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkkkkkkkkkkk*%x
CHANNEL_NAME: source_2

GROUP_NAME:

SOURCE_UUI D: 7475e474- a223- 11e4- a978- 0811960cc264

THREAD_| D: 26

SERVI CE_STATE: ON

COUNT_RECEI VED_HEARTBEATS: 0

LAST_HEARTBEAT_TI MESTAMP: 0000- 00- 00 00: 00: 00

RECEI VED_TRANSACTI ON_SET: 7475e474-a223-11e4-a978-0811960cc264: 4- 6
LAST_ERROR NUMBER: 0

LAST_ERROR_MESSAGE:

LAST_ERROR TI MESTAMP: 0000- 00- 00 00: 00: 00

2 rows in set (0.00 sec)

In the above output there are two channels enabled, and as shown by the CHANNEL _NAME field they
are called source_1 and source_2.

The addition of the CHANNEL _NANME field enables you to query the Performance Schema tables
for a specific channel. To monitor the connection status of a named channel, use a WHERE
CHANNEL _NANME=channel clause:

nmysqgl > SELECT * FROM replication_connection_status WHERE CHANNEL_NAME=' source_1'\G
khkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk* l r ow khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkk*x
CHANNEL_NAME: source_1

GROUP_NAME:

SOURCE_UUI D: 046e41f 8- a223- 11e4- a975- 0811960cc264

THREAD_| D: 24

SERVI CE_STATE: ON

COUNT_RECEI VED_HEARTBEATS: 0

LAST_HEARTBEAT_TI MESTAMP: 0000- 00- 00 00: 00: 00

RECEI VED_TRANSACTI ON_SET: 046e41f 8- a223-11e4-a975-0811960cc264: 4- 37
LAST_ERROR NUMBER: 0

LAST_ERROR MESSAGE:

LAST_ERROR TI MESTAMP: 0000- 00- 00 00: 00: 00

1 rowin set (0.00 sec)

Similarly, the WHERE CHANNEL NAME=channel clause can be used to monitor the other replication
Performance Schema tables for a specific channel. For more information, see Performance Schema
Replication Tables.

2.6 Replication and Binary Logging Options and Variables

The following sections contain information about mysql d options and server variables that are used

in replication and for controlling the binary log. Options and variables for use on sources and replicas
are covered separately, as are options and variables relating to binary logging and global transaction
identifiers (GTIDs). A set of quick-reference tables providing basic information about these options and
variables is also included.

Of particular importance is the server _i d system variable.

45

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-tables.html

Replication and Binary Logging Options and Variables

Command-Line Format

--server-id=#

System Variable server_id
Scope Global
Dynamic Yes

Type Integer
Default Value 0

Minimum Value 0

Maximum Value 4294967295

This variable specifies the server ID. In MySQL 5.7, ser ver _i d must be specified if binary logging is

enabled, otherwise the server is not allowed to start.

server _i d is set to 0 by default. On a replication source server and each replica, you must specify
server _i d to establish a unique replication ID in the range from 1 to 2% -1, “Unique”, means that
each ID must be different from every other ID in use by any other source or replica in the replication
topology. For additional information, see Section 2.6.2, “Replication Source Options and Variables”,
and Section 2.6.3, “Replica Server Options and Variables”.

If the server ID is set to 0, binary logging takes place, but a source with a server ID of O refuses any
connections from replicas, and a replica with a server ID of O refuses to connect to a source. Note
that although you can change the server ID dynamically to a nonzero value, doing so does not enable
replication to start immediately. You must change the server ID and then restart the server to initialize

the replica.

For more information, see Section 2.2.5.1, “Setting the Replica Configuration”.

server _uuid

In MySQL 5.7, the server generates a true UUID in addition to the ser ver _i d value supplied by the
user. This is available as the global, read-only ser ver _uui d system variable.

Note

The presence of the ser ver _uui d system variable in MySQL 5.7 does not
change the requirement for setting a unique ser ver i d value for each MySQL
server as part of preparing and running MySQL replication, as described earlier

in this section.

System Variable

server _uuid

Scope Global
Dynamic No
Type String

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file dat a_di r/ aut 0. cnf (where data dir is

the server's data directory).

2. Ifdata _dir/auto. cnf is not found, generate a new UUID and save it to this file, creating the file

if necessary.

The aut 0. cnf file has a format similar to that used for my. cnf or ny. i ni files. In MySQL 5.7,
aut o. cnf has only a single [aut 0] section containing a single ser ver _uui d setting and value; the

file's contents appear similar to what is shown here:

[aut o]

46

Replication and Binary Logging Option and Variable Reference

server _uui d=8a94f 357- aab4- 11df - 86ab- c80aa9429562
Important

The aut 0. cnf file is automatically generated; do not attempt to write or modify
this file.

When using MySQL replication, sources and replicas know each other's UUIDs. The value of a
replica's UUID can be seen in the output of SHOW SLAVE HOSTS. Once START SLAVE has been
executed, the value of the source's UUID is available on the replica in the output of SHOV SLAVE
STATUS.

Note

Issuing a STOP SLAVE or RESET SLAVE statement does not reset the source's
UUID as used on the replica.

A server's server _uui d is also used in GTIDs for transactions originating on that server. For more
information, see Section 2.3, “Replication with Global Transaction Identifiers”.

When starting, the replication I/O thread generates an error and aborts if its source's UUID is equal to
its own unless the - - r epl i cat e- sane- server - i d option has been set. In addition, the replication I/
O thread generates a warning if either of the following is true:

» No source having the expected ser ver _uui d exists.

* The source's ser ver _uui d has changed, although no CHANGE NMASTER TO statement has ever
been executed.

2.6.1 Replication and Binary Logging Option and Variable Reference

The following two sections provide basic information about the MySQL command-line options and
system variables applicable to replication and the binary log.

Replication Options and Variables

The command-line options and system variables in the following list relate to replication source servers
and replicas. Section 2.6.2, “Replication Source Options and Variables” provides more detailed
information about options and variables relating to replication source servers. For more information
about options and variables relating to replicas, see Section 2.6.3, “Replica Server Options and
Variables”.

» abort-sl ave- event - count : Option used by mysql-test for debugging and testing of replication.
e auto_increnent _increnent: AUTO_INCREMENT columns are incremented by this value.
» auto_i ncrenent _of f set : Offset added to AUTO_INCREMENT columns.

* Com change_mast er : Count of CHANGE REPLICATION SOURCE TO and CHANGE MASTER
TO statements.

e Com show nmst er _st at us: Count of SHOW MASTER STATUS statements.
* Com show_sl| ave_host s: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

« Com show sl ave_st at us: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

e Com sl ave_start: Count of START REPLICA and START SLAVE statements.

» Com sl ave_st op: Count of STOP REPLICA and STOP SLAVE statements.

47

https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx

Replication and Binary Logging Option and Variable Reference

di sconnect - sl ave- event - count : Option used by mysql-test for debugging and testing of
replication.

enforce_gtid_consi st ency: Prevents execution of statements that cannot be logged in
transactionally safe manner.

expi re_| ogs_days: Purge binary logs after this many days.

gti d_execut ed: Global: All GTIDs in binary log (global) or current transaction (session). Read-
only.

gti d_execut ed_conpressi on_peri od: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled.

gti d_node: Controls whether GTID based logging is enabled and what type of transactions logs
can contain.

gti d_next : Specifies GTID for subsequent transaction or transactions; see documentation for
details.

gti d_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only.

gti d_pur ged: Set of all GTIDs that have been purged from binary log.
i ni t_sl ave: Statements that are executed when replica connects to source.

| og bin_trust _function_creators:Ifequal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does
not break binary logging.

log builtin_as_identified_by password: Whether to log CREATE/ALTER USER, GRANT
in backward-compatible fashion.

| og_statenents_unsafe_ for_binl og: Disables error 1592 warnings being written to error log.

mast er-i nf o-fi |l e: Location and name of file that remembers source and where 1/O replication
thread is in source's binary log.

mast er - r et ry- count : Number of tries replica makes to connect to source before giving up.

mast er _i nf o_reposi t ory: Whether to write connection metadata repository, containing source
information and replication 1/O thread location in source's binary log, to file or table.

max_rel ay_| og_si ze: If nonzero, relay log is rotated automatically when its size exceeds this
value. If zero, size at which rotation occurs is determined by value of max_binlog_size.

rel ay_| og: Location and base name to use for relay logs.
rel ay_l og_basenamne: Complete path to relay log, including file name.
rel ay_l og_i ndex: Location and name to use for file that keeps list of last relay logs.

relay |l og info_fil e:File name for applier metadata repository in which replica records
information about relay logs.

rel ay | og_i nfo_repository: Whether to write location of replication SQL thread in relay logs to
file or table.

rel ay_l og_pur ge: Determines whether relay logs are purged.

relay | og_recovery: Whether automatic recovery of relay log files from source at startup is
enabled; must be enabled for crash-safe replica.

48

Replication and Binary Logging Option and Variable Reference

relay | og_space_l i m t: Maximum space to use for all relay logs.

repl i cat e- do- db: Tells replication SQL thread to restrict replication to specified database.
replicat e-do-tabl e: Tells replication SQL thread to restrict replication to specified table.
replicat e-i gnore-db: Tells replication SQL thread not to replicate to specified database.
replicate-ignore-tabl e: Tells replication SQL thread not to replicate to specified table.
replicate-rewite-db: Updates to database with different name from original.
replicate-same-server-id: Inreplication, if enabled, do not skip events having our server id.

replicate-wld-do-tabl e: Tells replication SQL thread to restrict replication to tables that
match specified wildcard pattern.

replicate-wld-ignore-table: Tells replication SQL thread not to replicate to tables that
match given wildcard pattern.

replication_optinize for_static_plugin_config: Shared locks for semisynchronous
replication.

replication_sender_observe conmit_onl y: Limited callbacks for semisynchronous
replication.

report_host : Host name or IP of replica to be reported to source during replica registration.

report _passwor d: Arbitrary password which replica server should report to source; not same as
password for replication user account.

report _port: Port for connecting to replica reported to source during replica registration.

report _user: Arbitrary user name which replica server should report to source; not same as name
used for replication user account.

Rpl _sem _sync_mast er_clients: Number of semisynchronous replicas.
rpl _sem _sync_mmast er _enabl ed: Whether semisynchronous replication is enabled on source.

Rpl _sem sync_nmmster_net _avg wait _tine: Average time source has waited for replies from
replica.

Rpl _sem sync_master_net wait _tine: Total time source has waited for replies from replica.

Rpl _sem _sync_nast er _net _wai t s: Total number of times source waited for replies from
replica.

Rpl _sem _sync_master_no_ti nes: Number of times source turned off semisynchronous
replication.

Rpl _sem _sync_nmast er _no_t x: Number of commits not acknowledged successfully.
Rpl _sem _sync_nmst er _st at us: Whether semisynchronous replication is operational on source.

Rpl _sem _sync_naster_timefunc_fail ures: Number of times source failed when calling time
functions.

rpl _sem _sync_nast er _ti nmeout : Number of milliseconds to wait for replica acknowledgment.

rpl _sem _sync_master_trace_| evel : Semisynchronous replication debug trace level on
source.

Rpl _sem sync_nmster _tx_avg wait _ti nme: Average time source waited for each transaction.

49

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_avg_wait_time
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_wait_time
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_waits
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_times
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_timefunc_failures
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_avg_wait_time

Replication and Binary Logging Option and Variable Reference

Rpl _sem sync_nmster _tx_wait_tine: Total time source waited for transactions.
Rpl _seni _sync_nmast er _t x_wai t s: Total number of times source waited for transactions.

rpl _sem _sync_master_wait_for_slave_ count: Number of replica acknowledgments source
must receive per transaction before proceeding.

rpl _sem sync_master_wait_no_sl ave: Whether source waits for timeout even with no
replicas.

rpl _sem _sync_master_wait_poi nt: Wait point for replica transaction receipt
acknowledgment.

Rpl _sem _sync_mmaster wait _pos_backtraver se: Total number of times source has waited
for event with binary coordinates lower than events waited for previously.

Rpl _sem _sync_nast er _wai t _sessi ons: Number of sessions currently waiting for replica
replies.

Rpl _sem _sync_mast er_yes_t x: Number of commits acknowledged successfully.

rpl _sem _sync_sl ave_enabl ed: Whether semisynchronous replication is enabled on replica.
Rpl _sem _sync_sl ave_st at us: Whether semisynchronous replication is operational on replica.
rpl _sem _sync_sl ave_trace_| evel : Semisynchronous replication debug trace level on replica.

rpl _stop_slave_ti nmeout: Number of seconds that STOP REPLICA or STOP SLAVE waits
before timing out.

server _uui d: Server's globally unique ID, automatically (re)generated at server start.

show- sl ave- aut h- i nf o: Show user name and password in SHOW REPLICAS and SHOW
SLAVE HOSTS on this source.

ski p- sl ave- st art : If set, replication is not autostarted when replica server starts.

sl ave- ski p- errors: Tells replication thread to continue replication when query returns error from
provided list.

sl ave_checkpoi nt _gr oup: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

sl ave_checkpoi nt _peri od: Update progress status of multithreaded replica and flush relay log
info to disk after this number of milliseconds. Not supported by NDB Cluster.

sl ave_conpressed_pr ot ocol : Use compression of source/replica protocol.

sl ave_exec_node: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

Sl ave_heart beat peri od: Replica's replication heartbeat interval, in seconds.

Sl ave_| ast _heart beat : Shows when latest heartbeat signal was received, in TIMESTAMP
format.

sl ave_| oad_t npdi r: Location where replica should put its temporary files when replicating LOAD
DATA statements.

sl ave_nmax_al | owed_packet : Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

50

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_wait_time
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_waits
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_pos_backtraverse
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_sessions
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_heartbeat_period
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_last_heartbeat

Replication and Binary Logging Option and Variable Reference

e sl ave_net ti meout: Number of seconds to wait for more data from source/replica connection
before aborting read.

» Sl ave_open_t enp_t abl es: Number of temporary tables that replication SQL thread currently has
open.

e slave_parall el type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partioning (DATABASE) to parallelize transactions.

» slave_parall el _workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation.

» sl ave_pendi ng_j obs_si ze_max: Maximum size of replica worker queues holding events not yet
applied.

* sl ave_preserve_conm t _or der: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads.

» Sl ave_recei ved_heart beat s: Number of heartbeats received by replica since previous reset.

» Slave_retried_transacti ons: Total number of times since startup that replication SQL thread
has retried transactions.

» Slave_rows_| ast_search_al gorit hm used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan).

* slave_rows_search_al gorit hns: Determines search algorithms used for replica update
batching. Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.

» Sl ave_runni ng: State of this server as replica (replication I/O thread status).

e slave_transaction_retries: Number of times replication SQL thread retries transaction in
case it failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

* sl ave_t ype_conver si ons: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

e sgl _| og_bi n: Controls binary logging for current session.

» sgl _sl ave_ski p_count er : Number of events from source that replica should skip. Not
compatible with GTID replication.

* sync_nast er _i nf o: Synchronize source information after every #th event.
* sync_rel ay_| og: Synchronize relay log to disk after every #th event.
* sync_rel ay_I| og_i nf o: Synchronize relay.info file to disk after every #th event.

e transaction wite_ set extracti on: Defines algorithm used to hash writes extracted during
transaction.

For a listing of all command-line options, system variables, and status variables used with nysql d, see
Server Option, System Variable, and Status Variable Reference.

Binary Logging Options and Variables

The command-line options and system variables in the following list relate to the binary log.

Section 2.6.4, “Binary Logging Options and Variables”, provides more detailed information about
options and variables relating to binary logging. For additional general information about the binary log,
see The Binary Log.

* bi nl og- checksum Enable or disable binary log checksums.

51

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_received_heartbeats
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_retried_transactions
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_rows_last_search_algorithm_used
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_running
https://dev.mysql.com/doc/refman/5.7/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html

Replication and Binary Logging Option and Variable Reference

bi nl og- do- db: Limits binary logging to specific databases.

bi nl og-i gnor e- db: Tells source that updates to given database should not be written to binary
log.

bi nl og- r ow- event - max- si ze: Binary log max event size.

Bi nl og_cache_di sk_use: Number of transactions which used temporary file instead of binary log
cache.

bi nl og_cache_si ze: Size of cache to hold SQL statements for binary log during transaction.
Bi nl og_cache_use: Number of transactions that used temporary binary log cache.
bi nl og_checksum Enable or disable binary log checksums.

bi nl og_di rect _non_transacti onal _updat es: Causes updates using statement format to
nontransactional engines to be written directly to binary log. See documentation before using.

bi nl og_error_acti on: Controls what happens when server cannot write to binary log.
bi nl og_f or mat : Specifies format of binary log.

bi nl og_group_conmit_sync_del ay: Sets number of microseconds to wait before synchronizing
transactions to disk.

bi nl og_group_conmit_sync_no_del ay_count : Sets maximum number of transactions to wait
for before aborting current delay specified by binlog_group_commit_sync_delay.

bi nl og_gti d_si npl e_recovery: Controls how binary logs are iterated during GTID recovery.
bi nl og_nmax_fl ush_queue_ti ne: How long to read transactions before flushing to binary log.
bi nl og_or der _conmi t s: Whether to commit in same order as writes to binary log.

bi nl og_r ow_i nmage: Use full or minimal images when logging row changes.

bi nl og_rows_query_I| og_event s: When enabled, enables logging of rows query log events
when using row-based logging. Disabled by default..

Bi nl og_stnt _cache_di sk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache.

bi nl og_stnt _cache_si ze: Size of cache to hold nontransactional statements for binary log
during transaction.

Bi nl og_st nt _cache_use: Number of statements that used temporary binary log statement cache.

bi nl og_transacti on_dependency_hi st ory_si ze: Number of row hashes kept for looking up
transaction that last updated some row.

bi nl og_transacti on_dependency_tracki ng: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier.

Com show bi nl og_event s: Count of SHOW BINLOG EVENTS statements.
Com show_bi nl ogs: Count of SHOW BINLOGS statements.

| 0g- bi n: Base name for binary log files.

| og- bi n-i ndex: Name of binary log index file.

| og_bi n: Whether binary log is enabled.

52

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_cache_disk_use
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_cache_use
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Com_xxx

Replication Source Options and Variables

e | og_bi n_basenane: Path and base name for binary log files.
* log_bin_use_vl row events: Whether server is using version 1 binary log row events.

* | og_sl ave_updat es: Whether replica should log updates performed by its replication SQL thread
to its own binary log.

 master _verify_checksum Cause source to examine checksums when reading from binary log.
» max- bi nl og- dunp- event s: Option used by mysql-test for debugging and testing of replication.

» max_bi nl og_cache_si ze: Can be used to restrict total size in bytes used to cache multi-
statement transactions.

* max_bi nl og_si ze: Binary log is rotated automatically when size exceeds this value.

* max_binl og_stnt_cache_si ze: Can be used to restrict total size used to cache all
nontransactional statements during transaction.

» slave-sql -veri fy-checksum Cause replica to examine checksums when reading from relay
log.

» slave_sql _verify_checksum Cause replica to examine checksums when reading from relay
log.

» spor adi c- bi nl og- dunp- f ai | : Option used by mysql-test for debugging and testing of
replication.

e sync_bi nl og: Synchronously flush binary log to disk after every #th event.

For a listing of all command-line options, system and status variables used with nysql d, see Server
Option, System Variable, and Status Variable Reference.

2.6.2 Replication Source Options and Variables

This section describes the server options and system variables that you can use on replication source
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the source and each replica, you must set the ser ver i d system variable to establish a unigue
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 2 2
-1, and each ID must be different from every other ID in use by any other source or replica in the
replication topology. Example: ser ver - i d=3.

For options used on the source for controlling binary logging, see Section 2.6.4, “Binary Logging
Options and Variables”.

Startup Options for Replication Source Servers

The following list describes startup options for controlling replication source servers. Replication-related
system variables are discussed later in this section.

e --show sl ave-aut h-info

Command-Line Format --show sl ave- aut h-i nf o[={ OFF| ON}]
Type Boolean
Default Value OFF

Display replica user names and passwords in the output of SHOW SLAVE HOSTS on the source
server for replicas started with the - - r eport - user and - - r eport - passwor d options.

53

https://dev.mysql.com/doc/refman/5.7/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.7/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.7/en/command-line-options.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html

Replication Source Options and Variables

System Variables Used on Replication Source Servers

The following system variables are used to control sources:

e auto_increnent _increnent

Command-Line Format --auto-increnent-increnment =#
System Variable aut o_i ncrement _i ncrenent
Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

aut o_i ncrenent i ncrenent and aut o_i ncrenent _of f set are intended for use with source-
to-source replication, and can be used to control the operation of AUTO | NCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set

to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
aut o_i ncrenent i ncrenent orauto_i ncrenent _of f set to a noninteger value produces an
error, and the actual value of the variable remains unchanged.

Note
aut o_i ncrement _i ncrenent is also supported for use with NDB tables.

When Group Replication is started on a server, the value of aut o_i ncrenent _i ncrenent is
changed to the value of gr oup_replication_auto_increnent i ncrenent, which defaults

to 7, and the value of aut o_i ncr enent _of f set is changed to the server ID. The changes

are reverted when Group Replication is stopped. These changes are only made and reverted if

aut o_i ncrenent i ncrenent and aut o_i ncrenent _of f set each have their default value of 1.
If their values have already been modified from the default, Group Replication does not alter them.

auto_increnent i ncrenent and aut o_i ncrenent _of f set affect AUTO | NCREMENT column
behavior as follows:

e auto_increnment i ncrenent controls the interval between successive column values. For
example:

nysqgl > SHOW VARI ABLES LI KE 'auto_i nc% ;

| auto_increnent _i ncrenent
| auto_increnent _of f set

2 rows in set (0.00 sec)
nysqgl > CREATE TABLE aut oi ncl
-> (col I NT NOT NULL AUTO | NCREMENT PRI MARY KEY) ;
Query OK, 0 rows affected (0.04 sec)

nysql > SET @@aut o_i ncrenent _i ncr enent =10;
Query OK, 0 rows affected (0.00 sec)

nysqgl > SHOW VARI ABLES LI KE 'auto_inc% ;

54

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/group-replication-system-variables.html#sysvar_group_replication_auto_increment_increment

Replication Source Options and Variables

| auto_increnent_increnment | 10 |
| auto_increnent_of f set | 1 |

2 rows in set (0.01 sec)

nmysql > | NSERT | NTO aut oi nc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 0

nmysql > SELECT col FROM aut oi ncl;

4 rows in set (0.00 sec)

e auto_increnent of f set determines the starting point for the AUTO | NCREMENT column
value. Consider the following, assuming that these statements are executed during the same
session as the example given in the description for aut o_i ncrenent i ncrenent:

nmysql > SET @@ut o_i ncrenent _of f set =5;
Query OK, O rows affected (0.00 sec)

mysql > SHOW VARI ABLES LI KE 'auto_i nc% ;

e doioiooo- +
| Vari abl e_name | Val ue |
e doioiooo- +
| auto_increnent_increnment | 10 |
| auto_increnent_of f set | 5 |
e doioiooo- +

2 rows in set (0.00 sec)
nmysql > CREATE TABLE aut oi nc2
-> (col INT NOT NULL AUTO_ | NCREMENT PRI MARY KEY);
Query OK, O rows affected (0.06 sec)
nmysql > | NSERT | NTO aut oi nc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: O

nmysql > SELECT col FROM aut oi nc2;

4 rows in set (0.02 sec)

When the value of aut o_i ncr enent _of f set is greater than that of
aut o_i ncrenent _i ncrenent, the value of aut o_i ncrenment _of f set is ignored.

If either of these variables is changed, and then new rows inserted into a table containing

an AUTO _| NCREMENT column, the results may seem counterintuitive because the series of

AUTO | NCREMENT values is calculated without regard to any values already present in the column,
and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO | NCREMENT column. The series is calculated like this:

auto_increnment _of fset + Nxauto_i ncrenent _i ncrenent

where Nis a positive integer value in the series [1, 2, 3, ...]. For example:

nysql > SHOW VARI ABLES LI KE ' auto_inc%:;

55

Replication Source Options and Variables

| auto_increnment _i ncrenment
| auto_increnment_of f set

2 rows in set (0.00 sec)

nmysql > SELECT col FROM aut oi ncl;

4 rows in set (0.00 sec)

nmysql > | NSERT | NTO aut oi nc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: O

nmysql > SELECT col FROM aut oi ncl;

| |
| |
| |
| |
| 35|
| |
| 55|
| |

+
8 rows in set (0.00 sec)

The values shown for aut o_i ncrenment _i ncrenent and aut o_i ncrenent _of f set generate
the series 5 + N x 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column
prior to the | NSERT is 31, and the next available value in the AUTO | NCREMENT series is 35, so the
inserted values for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control
the behavior of all AUTO_| NCREMENT columns in all tables on the MySQL server. If the global

value of either variable is set, its effects persist until the global value is changed or overridden by
setting the session value, or until nysql d is restarted. If the local value is set, the new value affects
AUTO _| NCREMENT columns for all tables into which new rows are inserted by the current user for the
duration of the session, unless the values are changed during that session.

The default value of aut o_i ncrenment _i ncrenent is 1. See Section 4.1.1, “Replication and
AUTO_INCREMENT".

e auto_increnent of fset

Command-Line Format --auto-increnent -of fset =#
System Variable auto_i ncrenent _of f set
Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

56

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/select.html

Replication Source Options and Variables

Maximum Value 65535

This variable has a default value of 1. If it is left with its default value, and Group Replication is

started on the server, it is changed to the server ID. For more information, see the description for
auto_i ncrenment i ncrenent.

Note
aut o_i ncrenment _of f set is also supported for use with NDB tables.

rpl _sem _sync_master_enabl ed

Command-Line Format --rpl-sem -sync-naster-
enabl ed[={ OFF| ON\}]
System Variable rpl _sem _sync_master_enabl ed
Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

Controls whether semisynchronous replication is enabled on the source. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the source-side semisynchronous replication plugin is installed.

e rpl _sem _sync_nmmster _tineout

Command-Line Format --rpl-sem-sync-master-tinmeout=#
System Variable rpl _sem _sync_master_tineout
Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

A value in milliseconds that controls how long the source waits on a commit for acknowledgment

from a replica before timing out and reverting to asynchronous replication. The default value is 10000
(10 seconds).

This variable is available only if the source-side semisynchronous replication plugin is installed.

e rpl _sem sync _naster_trace_| evel

Command-Line Format --rpl-sem-sync-master-trace-1|evel =#
System Variable rpl _sem sync _naster_trace_| evel
Scope Global

Dynamic Yes

Type Integer

Default Value 32

Minimum Value 0

57

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

Replication Source Options and Variables

Maximum Value

‘4294967295

The semisynchronous replication debug trace level on the source. Four levels are defined:

¢ 1 =general level (for example, time function failures)

» 16 = detail level (more verbose information)

* 32 = net wait level (more information about network waits)

« 64 = function level (information about function entry and exit)

This variable is available only if the source-side semisynchronous replication plugin is installed.

rpl _sem _sync_master_wait_for_slave_count

Command-Line Format

--rpl-sem-sync-nmaster-wait-for-
sl ave- count =#

System Variable

rpl _sem sync_master_wait_for_slave ¢

Scope Global
Dynamic Yes
Type Integer
Default Value 1
Minimum Value 1
Maximum Value 65535

The number of replica acknowledgments the source must receive per transaction before
proceeding. By default r pl _sem sync_master_wait_for_slave_count is 1, meaning that
semisynchronous replication proceeds after receiving a single replica acknowledgment. Performance

is best for small values of this variable.

For example, if rpl _sem _sync_master_wait_for_slave count is 2, then 2 replicas

must acknowledge receipt of the transaction before the timeout period configured by

rpl _sem _sync_master_tineout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal

replication.

Note

This behavior also depends onrpl _sem _sync_naster_wait_no_sl ave

This variable is available only if the source-side semisynchronous replication plugin is installed.

rpl _sem _sync_master_wait_no_sl ave

Command-Line Format

--rpl-sem -sync-master-wait-no-
sl ave[={ OFF| ON}]

System Variable

rpl _sem _sync_master_wait_no_sl ave

Scope Global
Dynamic Yes
Type Boolean
Default Value ON

Controls whether the source waits for the timeout period configured by

58

rpl _sem sync_nmster _tineout toexpire, even if the replica count drops to less than the

ount

Replication Source Options and Variables

number of replicas configured by rpl _sem sync_naster _wait_for_slave_count during the
timeout period.

When the value of r pl _sem sync_master _wait_no_sl ave is ON (the default), it is permissible
for the replica count to drop to less than r pl _seni _sync_naster _wai t _for_slave count
during the timeout period. As long as enough replicas acknowledge the transaction before the
timeout period expires, semisynchronous replication continues.

When the value of r pl _sem _sync_naster_wait_no_sl ave is OFF, if the replica count drops
to less than the number configured inrpl _senmi _sync_naster _wait for_slave count at
any time during the timeout period configured by r pl _sem _sync_mast er _ti neout, the source
reverts to normal replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

rpl _sem sync_nmaster _wait_point

Command-Line Format

--rpl-sem-sync-master-wait-
poi nt =val ue

System Variable

rpl _sem _sync_master_wait_point

Scope Global
Dynamic Yes

Type Enumeration
Default Value AFTER_SYNC
Valid Values AFTER_SYNC

AFTER COWM T

This variable controls the point at which a semisynchronous source waits for replica acknowledgment
of transaction receipt before returning a status to the client that committed the transaction. These
values are permitted:

e AFTER _SYNC (the default): The source writes each transaction to its binary log and the replica,
and syncs the binary log to disk. The source waits for replica acknowledgment of transaction
receipt after the sync. Upon receiving acknowledgment, the source commits the transaction to the
storage engine and returns a result to the client, which then can proceed.

« AFTER _COWM T: The source writes each transaction to its binary log and the replica, syncs
the binary log, and commits the transaction to the storage engine. The source waits for replica
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
source returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

« With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients
see the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to
the replica (saved to its relay log). An unexpected exit of the source and failover to the replica is
lossless because the replica is up to date. Note, however, that the source cannot be restarted
in this scenario and must be discarded, because its binary log might contain uncommitted
transactions that would cause a conflict with the replica when externalized after binary log
recovery.

« With AFTER _COW T, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before

59

Replica Server Options and Variables

replica acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the replica does not process the transaction, then in the event
of an unexpected source exit and failover to the replica, it is possible for such clients to see a loss
of data relative to what they saw on the source.

This variable is available only if the source-side semisynchronous replication plugin is installed.

rpl _sem sync_master wait_poi nt was added in MySQL 5.7.2. For older versions,
semisynchronous source behavior is equivalent to a setting of AFTER_COVM T.

This change introduces a version compatibility constraint because it increments the
semisynchronous interface version: Servers for MySQL 5.7.2 and up do not work with
semisynchronous replication plugins from older versions, nor do servers from older versions work
with semisynchronous replication plugins for MySQL 5.7.2 and up.

2.6.3 Replica Server Options and Variables

This section explains the server options and system variables that apply to replicas and contains the
following:

 Startup Options for Replicas
» Options for Logging Replica Status to Tables

» System Variables Used on Replicas

Specify the options either on the command line or in an option file. Many of the options can be set while
the server is running by using the CHANGE MASTER TOstatement. Specify system variable values
using SET.

Server ID. On the source and each replica, you must set the ser ver _i d system variable to
establish a unique replication ID in the range from 1 to 232 1. “Unique” means that each ID must be
different from every other ID in use by any other source or replica in the replication topology. Example
ny. cnf file:

[mysgl d]
server-id=3

Startup Options for Replicas

This section explains startup options for controlling replica servers. Many of these options can be
set while the server is running by using the CHANGE MASTER TO statement. Others, such as the - -
replicate-* options, can be set only when the replica server starts. Replication-related system
variables are discussed later in this section.

e --]log-warnings[=level]

Command-Line Format

- -1 og- war ni ngs[=#]

Deprecated

Yes

System Variable

| og_war ni ngs

Scope Global
Dynamic Yes
Type Integer
Default Value 2
Minimum Value 0

60

https://dev.mysql.com/doc/refman/5.7/en/command-line-options.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-warnings
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_warnings

Replica Server Options and Variables

Maximum Value (64-bit platforms) 18446744073709551615
Maximum Value (32-bit platforms) 4294967295
Note

The |l og_error_verbosity system variable is preferred over,

and should be used instead of, the - - | og- war ni ngs option or

| og_war ni ngs system variable. For more information, see the descriptions
ofl og_error_verbosity and| og war ni ngs. The - -| og- war ni ngs
command-line option and | og_war ni ngs system variable are deprecated;
expect them to be removed in a future MySQL release.

Causes the server to record more messages to the error log about what it is doing. With respect

to replication, the server generates warnings that it succeeded in reconnecting after a network or
connection failure, and provides information about how each replication thread started. This variable
is set to 2 by default. To disable it, set it to 0. The server logs messages about statements that

are unsafe for statement-based logging if the value is greater than 0. Aborted connections and
access-denied errors for new connection attempts are logged if the value is greater than 1. See
Communication Errors and Aborted Connections.

Note

The effects of this option are not limited to replication. It affects diagnostic
messages across a spectrum of server activities.

e --master-info-file=file_name

Command-Line Format --master-info-file=file_name
Type File name
Default Value master.info

The name to use for the file in which the replica records information about the source. The default
name is mast er . i nf o in the data directory. For information about the format of this file, see
Section 5.4.2, “Replication Metadata Repositories”.

e --master-retry-count =count

Command-Line Format --master-retry-count =#
Deprecated Yes

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615
Maximum Value (32-bit platforms) 4294967295

The number of times that the replica tries to reconnect to the source before giving up. The default
value is 86400 times. A value of 0 means “infinite”, and the replica attempts to connect forever.
Reconnection attempts are triggered when the replica reaches its connection timeout (specified by
the sl ave_net _ti nmeout system variable) without receiving data or a heartbeat signal from the
source. Reconnection is attempted at intervals set by the MASTER _CONNECT _RETRY option of the
CHANGE MASTER TOstatement (which defaults to every 60 seconds).

This option is deprecated; expect it to be removed in a future MySQL release. Use the
MASTER RETRY_COUNT option of the CHANGE MASTER TOstatement instead.

o --max-rel ay-1 og-si ze=si ze

61

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-warnings
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_warnings
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_warnings
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-warnings
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_warnings
https://dev.mysql.com/doc/refman/5.7/en/communication-errors.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Replica Server Options and Variables

Command-Line Format --max-rel ay-| og-si ze=#
System Variable max_rel ay_| og_si ze
Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay
log is rotated automatically when its size exceeds this value. If this value is zero (the default), the
size at which relay log rotation occurs is determined by the value of max_bi nl og_si ze. For more
information, see Section 5.4.1, “The Relay Log".

--rel ay-1og-purge={0| 1}

Command-Line Format --rel ay-1 og-purge[={ OFF| ON}]
System Variable relay | og _purge

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay | og purge = N. Disabling purging of relay logs when enabling the - - r el ay- | og-
recovery option puts data consistency at risk.

--rel ay-1og-space-linit=size

Command-Line Format --relay-1og-space-linmt=#
System Variable relay | og_space limt
Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

This option places an upper limit on the total size in bytes of all relay logs on the replica. A value

of 0 means “no limit”. This is useful for a replica server host that has limited disk space. When the
limit is reached, the replication 1/O thread stops reading binary log events from the source until the
replication SQL thread has caught up and deleted some unused relay logs. Note that this limit is not
absolute: There are cases where the SQL thread needs more events before it can delete relay logs.
In that case, the I/O thread exceeds the limit until it becomes possible for the SQL thread to delete
some relay logs because not doing so would cause a deadlock. You should not set - - r el ay- | og-

62

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Replica Server Options and Variables

space-|imt toless than twice the value of - - nax-rel ay-| og-si ze (or - - max- bi nl og-si ze
if - - max-rel ay-1 og-si ze is 0). In that case, there is a chance that the 1/O thread waits for free
space because - -r el ay- | og-space-|i mt is exceeded, but the SQL thread has no relay log to
purge and is unable to satisfy the 1/0 thread. This forces the 1/O thread to ignore - - r el ay- | og-
space-| i mt temporarily.

--replicate-do-db=db_nane

Command-Line Format --replicate-do-db=nane

Type String

Creates a replication filter using the name of a database. Such filters can also be created using
CHANGE REPLI CATI ON FI LTER REPLI CATE DO DB. The precise effect of this filtering depends
on whether statement-based or row-based replication is in use, and are described in the next several
paragraphs.

Important

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some
servers would make the group unable to reach agreement on a consistent
state.

Statement-based replication. Tell the replication SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_nane. To specify more than
one database, use this option multiple times, once for each database; however, doing so does not
replicate cross-database statements such as UPDATE sone_db. sone_t abl e SET foo=' bar'
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list is treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the replica is started with - - r epl i cat e- do- db=sal es and you issue the following statements on
the source, the UPDATE statement is not replicated:

USE pri ces;
UPDATE sal es. j anuary SET anpunt =anpunt +1000;

The main reason for this “check just the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Row-based replication. Tells the replication SQL thread to restrict replication to database
db_nane. Only tables belonging to db_nane are changed; the current database has no effect
on this. Suppose that the replica is started with - - r epl i cat e- do- db=sal es and row-based
replication is in effect, and then the following statements are run on the source:

USE pri ces;
UPDATE sal es. february SET anpunt =anpunt +100;

The f ebr uar y table in the sal es database on the replica is changed in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, issuing the
following statements on the source has no effect on the replica when using row-based replication
and - -repl i cat e- do- db=sal es:

USE pri ces;

63

https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/use.html

Replica Server Options and Variables

UPDATE pri ces. march SET anmpunt =anount - 25;

Even if the statement USE pri ces were changed to USE sal es, the UPDATE statement's effects
would still not be replicated.

Another important difference in how - - r epl i cat e- do- db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple
databases. Suppose that the replica is started with - - r epl i cat e- do- db=db1, and the following
statements are executed on the source:

USE db1;
UPDATE dbl.tabl el, db2.table2 SET dbl.tablel.coll = 10, db2.table2.col2 = 20;

If you are using statement-based replication, then both tables are updated on the replica. However,
when using row-based replication, only t abl el is affected on the replica; since t abl e2 isin a
different database, t abl e2 on the replica is not changed by the UPDATE. Now suppose that, instead
of the USE db1l statement, a USE db4 statement had been used:

USE db4;
UPDATE dbl. tabl el, db2.table2 SET dbl.tablel.coll = 10, db2.tabl e2.col2 = 20;

In this case, the UPDATE statement would have no effect on the replica when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change t abl el on
the replica, but not t abl e2—in other words, only tables in the database named by - - repl i cat e-
do- db are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use - - r epl i cat e-wi | d- do-t abl e=db_nane. %
instead. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that - - bi nl og- do- db
affects binary logging, and the effects of the replication format on how - -
repl i cat e- do- db affects replication behavior are the same as those of the
logging format on the behavior of - - bi nl og- do- db.

This option has no effect on BEG N, COVM T, or ROLLBACK statements.

--replicate-ignore-db=db_nane

Command-Line Format --replicate-ignore-db=nane

Type String

Creates a replication filter using the name of a database. Such filters can also be created using
CHANGE REPLI CATI ON FI LTER REPLI CATE_| GNORE_DB. As with - -r epl i cat e- do- db, the
precise effect of this filtering depends on whether statement-based or row-based replication is in use,
and are described in the next several paragraphs.

Important

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some

64

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html

Replica Server Options and Variables

servers would make the group unable to reach agreement on a consistent
state.

Statement-based replication. Tells the replication SQL thread not to replicate any statement

where the default database (that is, the one selected by USE) is db_nane.

Row-based replication. Tells the replication SQL thread not to update any tables in the database
db_nane. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the replica is started with - - r epl i cat e-i gnor e- db=sal es and you issue the
following statements on the source:

USE pri ces;
UPDATE sal es. j anuary SET anpunt =anount +1000;

The UPDATE statement is replicated in such a case because - - r epl i cat e- i gnor e- db applies
only to the default database (determined by the USE statement). Because the sal es database

was specified explicitly in the statement, the statement has not been filtered. However, when using
row-based replication, the UPDATE statement's effects are not propagated to the replica, and the
replica’'s copy of the sal es. j anuar y table is unchanged; in this instance, - - r epl i cat e- i gnor e-
db=sal es causes all changes made to tables in the source's copy of the sal es database to be
ignored by the replica.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list is
treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use - -repl i cat e-wi | d-i gnor e-t abl e=db_nane.
%instead. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that - - bi nl og-i gnor e-
db affects binary logging, and the effects of the replication format on how - -
replicate-i gnore- db affects replication behavior are the same as those

of the logging format on the behavior of - - bi nl og-i gnor e- db.

This option has no effect on BEG N, COVM T, or ROLLBACK statements.

--replicate-do-tabl e=db_nane. t bl _nane

Command-Line Format --replicate-do-tabl e=nane
Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to a given table.
To specify more than one table, use this option multiple times, once for each table. This works for
both cross-database updates and default database updates, in contrastto - - r epl i cat e- do- db.
See Section 5.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a
filter by issuing a CHANGE REPLI CATI ON FI LTER REPLI CATE DO TABLE statement.

Important

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some

65

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html

Replica Server Options and Variables

I servers would make the group unable to reach agreement on a consistent
state.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the - -repl i cat e- *- db options.

--replicate-ignore-tabl e=db_nane.tbl _nane

Command-Line Format --replicate-ignore-tabl e=nane

Type String

Creates a replication filter by telling the replication SQL thread not to replicate any statement that
updates the specified table, even if any other tables might be updated by the same statement. To
specify more than one table to ignore, use this option multiple times, once for each table. This works
for cross-database updates, in contrast to - - r epl i cat e- i gnor e- db. See Section 5.5, “How
Servers Evaluate Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE
REPLI CATI ON FI LTER REPLI CATE | GNORE TABLE statement.

Note

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some
servers would make the group unable to reach agreement on a consistent
state.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the - - r epl i cat e- *- db options.

--replicate-rewite-db=fromnane->to_nane

Command-Line Format --replicate-rewite-db=ol d_nane-
>new_nane
Type String

Tells the replica to create a replication filter that translates the specified database tot o_nane if it
was f r om _nane on the source. Only statements involving tables are affected, not statements such
as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE.

To specify multiple rewrites, use this option multiple times. The server uses the first one with a

f r om nane value that matches. The database name translation is done before the - - repl i cat e-
* rules are tested. You can also create such a filter by issuing a CHANGE REPLI CATI ON FI LTER
REPLI CATE_REWRI TE_DB statement.

If you use the - -replicate-rewite-db option onthe command line and the > character is
special to your command interpreter, quote the option value. For example:

$> nysqgld --replicate-rewite-db="ol ddb- >newdb"

The effect of the - -repl i cat e-rew i t e- db option differs depending on whether statement-
based or row-based binary logging format is used for the query. With statement-based format, DML
statements are translated based on the current database, as specified by the USE statement. With
row-based format, DML statements are translated based on the database where the modified table

66

https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/alter-database.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/use.html

Replica Server Options and Variables

exists. DDL statements are always filtered based on the current database, as specified by the USE
statement, regardless of the binary logging format.

To ensure that rewriting produces the expected results, particularly in combination with other
replication filtering options, follow these recommendations when you use the - - repl i cat e-
rew ite-db option:

e Create the f rom nane and t o_nane databases manually on the source and the replica with
different names.

« If you use statement-based or mixed binary logging format, do not use cross-database queries,
and do not specify database names in queries. For both DDL and DML statements, rely on the
USE statement to specify the current database, and use only the table name in queries.

« If you use row-based binary logging format exclusively, for DDL statements, rely on the USE
statement to specify the current database, and use only the table name in queries. For DML
statements, you can use a fully qualified table name (db.t abl e) if you want.

If these recommendations are followed, it is safe to use the - -repl i cate-rew it e-db optionin
combination with table-level replication filtering options such as - - r epl i cat e- do-t abl e.

Note

Global replication filters cannot be used on a MySQL server instance that
is configured for Group Replication, because filtering transactions on some
servers would make the group unable to reach agreement on a consistent
state.

--replicate-sane-server-id

Command-Line Format --replicate-sane-server-id[={ OFF|
ON}]

Type Boolean

Default Value OFF

To be used on replica servers. Usually you should use the default setting of 0, to prevent infinite
loops caused by circular replication. If set to 1, the replica does not skip events having its own server
ID. Normally, this is useful only in rare configurations. Cannot be setto 1 if | og_sl ave_updat es

is enabled. By default, the replication 1/O thread does not write binary log events to the relay log if
they have the replica's server ID (this optimization helps save disk usage). If you want to use - -
replicate-same-server-id, be sure to start the replica with this option before you make the
replica read its own events that you want the replication SQL thread to execute.

--replicate-w | d-do-tabl e=db_nane. t bl _name

Command-Line Format --replicate-wld-do-tabl e=nane

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to statements
where any of the updated tables match the specified database and table name patterns. Patterns
can contain the %and _ wildcard characters, which have the same meaning as for the LI KE pattern-
matching operator. To specify more than one table, use this option multiple times, once for each
table. This works for cross-database updates. See Section 5.5, “How Servers Evaluate Replication

67

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like

Replica Server Options and Variables

Filtering Rules”. You can also create such a filter by issuing a CHANGE REPLI CATI ON FI LTER
REPL| CATE_W LD_DO TABLE statement.

Note

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some
servers would make the group unable to reach agreement on a consistent
state.

This option applies to tables, views, and triggers. It does not apply to stored procedures and
functions, or events. To filter statements operating on the latter objects, use one or more of the - -
replicate-*-db options.

As an example, - -repl i cat e-wi | d- do-t abl e=f 00% bar %replicates only updates that use a
table where the database name starts with f 0o and the table name starts with bar .

If the table name pattern is % it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if
you use - -repl i cate-wi | d-do-t abl e=f 00% % database-level statements are replicated if the
database name matches the pattern f 00%

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that

are implicitly updated by the query. For example, a GRANT statement, which
updates the nysql . user system table but does not mention that table, is not
affected by a filter that specifies nysql . %as the wildcard pattern.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named ny _own%b, but not
replicate tables from the ny 1ownAABCdb database, you should escape the _ and %characters like
this: - -replicate-w | d-do-tabl e=my\ _own\ %lb. If you use the option on the command line,
you might need to double the backslashes or quote the option value, depending on your command
interpreter. For example, with the bash shell, you would need to type - -repl i cat e-w | d- do-

t abl e=ny\\ _own\\ %b.

--replicate-wld-ignore-tabl e=db_nane. t bl _name

Command-Line Format --replicate-wld-ignore-tabl e=nane

Type String

Creates a replication filter which keeps the replication SQL thread from replicating a statement

in which any table matches the given wildcard pattern. To specify more than one table to ignore,
use this option multiple times, once for each table. This works for cross-database updates. See
Section 5.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a filter by
issuing a CHANGE REPLI CATI ON FI LTER REPLI CATE_W LD | GNORE_TABLE statement.

Important

Replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some

68

https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/alter-database.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html

Replica Server Options and Variables

servers would make the group unable to reach agreement on a consistent
state.

As an example, - -repl i cate-wi | d-ignore-tabl e=f 00% bar %does not replicate updates that

use a table where the database name starts with f 0o and the table name starts with bar .

For information about how matching works, see the description of the - -repl i cat e-wi | d- do-
t abl e option. The rules for including literal wildcard characters in the option value are the same as
for--replicate-wld-ignore-tableaswell

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that

are implicitly updated by the query. For example, a GRANT statement, which
updates the nysql . user system table but does not mention that table, is not
affected by a filter that specifies nysql . %as the wildcard pattern.

If you need to filter out GRANT statements or other administrative statements, a possible workaround
isto use the - -repl i cat e-i gnor e- db filter. This filter operates on the default database that is
currently in effect, as determined by the USE statement. You can therefore create a filter to ignore
statements for a database that is not replicated, then issue the USE statement to switch the default
database to that one immediately before issuing any administrative statements that you want to
ignore. In the administrative statement, name the actual database where the statement is applied.

For example, if - - r epl i cat e- i gnor e- db=nonr epl i cat ed is configured on the replica server,
the following sequence of statements causes the GRANT statement to be ignored, because the
default database nonr epl i cat ed is in effect:

USE nonr epl i cat ed;
GRANT SELECT, INSERT ON replicated.t1l TO ' soneuser' @ sonehost"';

--ski p-slave-start

Command-Line Format --ski p-slave-start[={OFF| ON}]
System Variable skip_slave_start

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Tells the replica server not to start the replication threads when the server starts. To start the threads
later, use a START SLAVE statement.

e --slave-skip-errors=[err_codel,err_code2,...|all]|ddl _exist_errors]

Command-Line Format

--sl ave-ski p- error s=nane

System Variable

sl ave_skip_errors

Scope Global
Dynamic No
Type String
Default Value OFF
Valid Values OFF

[list of error codes]

69

https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

al |

ddl _exist _errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This option causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in replicas becoming
hopelessly out of synchrony with the source, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in the replica's error
log and in the output of SHOW SLAVE STATUS. Error Messages and Common Problems, lists server
error codes.

The shorthand value ddl _exi st _error s is equivalent to the error code list
1007, 1008, 1050, 1051, 1054, 1060, 1061, 1068, 1094, 1146.

You can also (but should not) use the very nonrecommended value of al | to cause the replica to
ignore all error messages and keeps going regardless of what happens. Needless to say, if you use
al |, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the replica's data is not anywhere close to what it is on the source. You have
been warned.

This option does not work in the same way when replicating between NDB Clusters, due to the
internal NDB mechanism for checking epoch sequence numbers; as soon as NDB detects an epoch
number that is missing or otherwise out of sequence, it immediately stops the replica applier thread.

Examples:
--sl ave-ski p-errors=1062, 1053

--sl ave- ski p-errors=al
--sl ave-ski p-errors=ddl _exi st_errors

e --slave-sqgl -verify-checksun={ 0] 1}

Command-Line Format --slave-sql -verify-checksuni ={ OFF|
ON}]

Type Boolean

Default Value ON

When this option is enabled, the replica examines checksums read from the relay log,. In the event
of a mismatch, the replica stops with an error.

The following options are used internally by the MySQL test suite for replication testing and debugging.
They are not intended for use in a production setting.

e --abort-slave-event -count

Command-Line Format --abort-sl ave- event - count =#
Type Integer

Default Value 0

Minimum Value 0

When this option is set to some positive integer val ue other than 0 (the default) it affects replication
behavior as follows: After the replication SQL thread has started, val ue log events are permitted

70

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/error-handling.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

Replica Server Options and Variables

to be executed; after that, the replication SQL thread does not receive any more events, just as

if the network connection from the source were cut. The replication SQL thread continues to run,
and the output from SHOW SLAVE STATUS displays Yes in both the Sl ave | O Runni ng and the
Sl ave _SQL_Runni ng columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

e --di sconnect - sl ave- event - count

Command-Line Format --di sconnect - sl ave- event - count =#
Type Integer
Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

Options for Logging Replica Status to Tables

MySQL 5.7 supports logging of replication metadata to tables rather than files. Writing of the replica's
connection metadata repository and applier metadata repository can be configured separately using
these two system variables:

e naster _info_repository
e relay_log_info_repository
For information about these variables, see Section 2.6.3, “Replica Server Options and Variables”.

These variables can be used to make a replica resilient to unexpected halts. See Section 3.2,
“Handling an Unexpected Halt of a Replica”, for more information.

The info log tables and their contents are considered local to a given MySQL Server. They are not
replicated, and changes to them are not written to the binary log.

For more information, see Section 5.4, “Relay Log and Replication Metadata Repositories”.
System Variables Used on Replicas

The following list describes system variables for controlling replica servers. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used with replicas are
listed earlier in this section.

* init_slave

Command-Line Format --init-slave=nane
System Variable init_slave

Scope Global

Dynamic Yes

Type String

This variable is similarto i ni t _connect , butis a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as forthe i nit _connect
variable. The setting of this variable takes effect for subsequent START SLAVE statements.

Note

The replication SQL thread sends an acknowledgment to the client before it
executes i ni t _sl ave. Therefore, it is not guaranteed that i ni t _sl ave has

71

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

I been executed when START SLAVE returns. See START SLAVE Statement,

for more information.

* |l og_slow sl ave_statenents

Command-Line Format

- -1 og- sl ow sl ave- st at enent s[={ OFF|

ON}]

System Variable

| og_sl ow sl ave_statenents

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

When the slow query log is enabled, this variable enables logging for queries that have taken more
than | ong_query_ti me seconds to execute on the replica. Note that if row-based replication

is in use (bi nl og_f or mat =ROW, | og_sl ow_sl ave_st at enent s has no effect. Queries are
only added to the replica's slow query log when they are logged in statement format in the binary
log, that is, when bi nl og_f or mat =STATENMENT is set, or when bi nl og_f or mat =M XED s set
and the statement is logged in statement format. Slow queries that are logged in row format when
bi nl og_f or mat =M XEDis set, or that are logged when bi nl og_f or mat =ROWis set, are not
added to the replica's slow query log, even if | og_sl ow_sl ave_st at enent s is enabled.

Setting | og_sl ow sl ave_st at enent s has no immediate effect. The state of the variable
applies on all subsequent START SLAVE statements. Also note that the global setting for
 ong_query_tine applies for the lifetime of the SQL thread. If you change that setting, you must
stop and restart the replication SQL thread to implement the change there (for example, by issuing
STOP SLAVE and START SLAVE statements with the SQL_ THREAD option).

master _info repository

Command-Line Format

--mast er-info-repository={Fl LE|
TABLE}

System Variable

master _info_repository

Scope Global
Dynamic Yes
Type String
Default Value FI LE
Valid Values FI LE
TABLE

The setting of this variable determines whether the replica records metadata about the source,
consisting of status and connection information, to an | nnoDB table in the mysql system database,

72

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

or as a file in the data directory. For more information on the connection metadata repository, see
Section 5.4, “Relay Log and Replication Metadata Repositories”.

The default setting is FI LE. As a file, the replica's connection metadata repository is named
mast er . i nf o by default. You can change this name using the - - nast er -i nf o-fi | e option.

The alternative setting is TABLE. As an | nnoDB table, the replica's connection metadata repository
is named nysql . sl ave_nast er i nf o. The TABLE setting is required when multiple replication
channels are configured.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels, you cannot set the value back to FI LE.

The setting for the location of the connection metadata repository has a direct influence on the effect
had by the setting of the sync_nast er _i nf o system variable. You can change the setting only
when no replication threads are executing.

max_relay | og_size

Command-Line Format --max-rel ay-| og-si ze=#
System Variable max_rel ay_| og_si ze
Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write by a replica to its relay log causes the current log file size to exceed the value of this
variable, the replica rotates the relay logs (closes the current file and opens the next one). If
max_rel ay | og_sizeis 0, the server uses nax_bi nl og_si ze for both the binary log and
the relay log. If max_r el ay_| og_si ze is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_r el ay_| og_si ze
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 5.3,
“Replication Threads”.

relay_ | og

Command-Line Format --relay-1og=fil e_nane
System Variable relay_ | og

Scope Global

Dynamic No

Type File name

The base name for relay log files. For the default replication channel, the default base name for relay
logs is host _nane-r el ay- bi n. For non-default replication channels, the default base name for

73

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Replica Server Options and Variables

relay logs is host _nane-r el ay- bi n- channel , where channel is the name of the replication
channel recorded in this relay log.

The server writes the file in the data directory unless the base name is given with a leading absolute
path name to specify a different directory. The server creates relay log files in sequence by adding a
numeric suffix to the base name.

Due to the manner in which MySQL parses server options, if you specify this variable at server
startup, you must supply a value; the default base name is used only if the option is not actually
specified. If you specify the r el ay | og system variable at server startup without specifying a value,
unexpected behavior is likely to result; this behavior depends on the other options used, the order in
which they are specified, and whether they are specified on the command line or in an option file. For
more information about how MySQL handles server options, see Specifying Program Options.

If you specify this variable, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
rel ay | og i ndex system variable.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path. If it does, the relative part of the path is replaced with the absolute path set using the

rel ay | og system variable. An absolute path remains unchanged; in such a case, the index must
be edited manually to enable the new path or paths to be used.

You may find the r el ay_| og system variable useful in performing the following tasks:
» Creating relay logs whose names are independent of host names.

« If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease nax_r el ay | og_si ze.

« To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the r el ay | og_basenane system variable.

relay | og basenane

System Variable rel ay_| og_basenane

Scope Global

Dynamic No

Type File name

Default Value datadir + '/' + hostnane + '-relay-
bi n'

Holds the base name and complete path to the relay log file. The maximum variable length is 256.
This variable is set by the server and is read only.

 relay_| og i ndex

Command-Line Format --relay-1og-index=fil e_nane

System Variable

relay | og index

Scope Global
Dynamic No
Type File name

74

https://dev.mysql.com/doc/refman/5.7/en/program-options.html

Replica Server Options and Variables

Default Value *host _name*-rel ay- bi n. i ndex

The name for the relay log index file. The maximum variable length is 256. For the default replication
channel, the default name is host _nane-r el ay- bi n. i ndex. For non-default replication channels,
the default name is host _name-r el ay- bi n- channel . i ndex, where channel is the name of the
replication channel recorded in this relay log index.

The server writes the file in the data directory unless the name is given with a leading absolute path
name to specify a different directory. name.

Due to the manner in which MySQL parses server options, if you specify this variable at server
startup, you must supply a value; the default base name is used only if the option is not actually
specified. If you specify ther el ay | og i ndex system variable at server startup without specifying
a value, unexpected behavior is likely to result; this behavior depends on the other options used,
the order in which they are specified, and whether they are specified on the command line or in an
option file. For more information about how MySQL handles server options, see Specifying Program
Options.

relay _log info file

Command-Line Format --relay-log-info-file=file_nane
System Variable relay log info file

Scope Global

Dynamic No

Type File name

Default Value relay-log.info

The name of the file in which the replica records information about the relay logs, when

relay log info repository=FILE. Ifrelay | og info_repository=TABLE, itisthe

file name that would be used in case the repository was changed to FI LE). The default name is
rel ay-1 og. i nf o in the data directory. For information about the applier metadata repository, see
Section 5.4.2, “Replication Metadata Repositories”.

relay |l og info repository

Command-Line Format --relay-1og-info-repository=val ue
System Variable relay |l og_ info_repository
Scope Global
Dynamic Yes
Type String
Default Value FI LE
Valid Values FI LE
TABLE

The setting of this variable determines whether the replica server stores its applier metadata
repository as an | nnoDB table in the nysql system database, or as a file in the data directory. For

75

https://dev.mysql.com/doc/refman/5.7/en/program-options.html
https://dev.mysql.com/doc/refman/5.7/en/program-options.html

Replica Server Options and Variables

more information on the applier metadata repository, see Section 5.4, “Relay Log and Replication
Metadata Repositories”.

The default setting is FI LE. As a file, the replica's applier metadata repository is named r el ay-
| 0og. i nf o by default, and you can change this name usingtherel ay | og info fil e system
variable.

With the setting TABLE, as an | nnoDB table, the replica's applier metadata repository is named
nysql . sl ave_rel ay | og_i nfo. The TABLE setting is required when multiple replication
channels are configured. The TABLE setting for the replica's applier metadata repository is also
required to make replication resilient to unexpected halts. See Section 3.2, “Handling an Unexpected
Halt of a Replica” for more information.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels then you cannot set the value back to FI LE.

The setting for the location of the applier metadata repository has a direct influence on the effect
had by the setting of the sync_rel ay_| og_i nf o system variable. You can change the setting only
when no replication threads are executing.

relay | og purge

Command-Line Format --rel ay-1 og- purge[={ OFF| ON\}]
System Variable rel ay_| og_purge

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

relay | og _recovery

Command-Line Format --rel ay-1og-recovery[={ OFF| ON}]
System Variable relay | og _recovery

Scope Global

Dynamic No

Type Boolean

Default Value OFF

If enabled, this variable enables automatic relay log recovery immediately following server startup.
The recovery process creates a new relay log file, initializes the SQL thread position to this new relay
log, and initializes the 1/O thread to the SQL thread position. Reading of the relay log from the source
then continues.

This global variable is read-only at runtime. Its value can be set with the - -r el ay-1 og-r ecovery
option at replica server startup, which should be used following an unexpected halt of a replica to
ensure that no possibly corrupted relay logs are processed, and must be used in order to guarantee
a crash-safe replica. The default value is 0 (disabled). For information on the combination of settings

76

Replica Server Options and Variables

on a replica that is most resilient to unexpected halts, see Section 3.2, “Handling an Unexpected Halt

of a Replica”.

This variable also interacts with the r el ay | og_pur ge variable, which controls purging of logs
when they are no longer needed. Enablingrel ay | og recovery whenrel ay | og purgeis
disabled risks reading the relay log from files that were not purged, leading to data inconsistency.

For a multithreaded replica (where sl ave_par al | el _wor ker s is greater than 0), from MySQL

5.7.13, settingrel ay | og_recovery =

ON automatically handles any inconsistencies and

gaps in the sequence of transactions that have been executed from the relay log. These gaps

can occur when file position based replication is in use. (For more details, see Section 4.1.32,
“Replication and Transaction Inconsistencies”.) The relay log recovery process deals with gaps
using the same method as the START SLAVE UNTI L SQ.L_AFTER _MI'S GAPS statement would.
When the replica reaches a consistent gap-free state, the relay log recovery process goes on to
fetch further transactions from the source beginning at the replication SQL thread position. In MySQL
versions prior to MySQL 5.7.13, this process was not automatic and required starting the server with

rel ay | og recovery=0, starting the replica with START SLAVE UNTI L SQL AFTER MIS GAPS

to fix any transaction inconsistencies, and then restarting the replica withrel ay | og recovery=1.
When GTID-based replication is in use, from MySQL 5.7.28 a multithreaded replica checks first
whether MASTER_AUTO POSI Tl ONis set to ON, and if it is, omits the step of calculating the
transactions that should be skipped or not skipped, so that the old relay logs are not required for the

recovery process.

Note

This variable does not affect the following Group Replication channels:

e group_replication_applier

e group_replication_recovery

Any other channels running on a group are affected, such as a channel which
is replicating from an outside source or another group.

e relay_l og_space_limt

Command-Line Format

--relay-1og-space-lint=#

System Variable

relay | og space limt

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615
Unit bytes

The maximum amount of space to use for all relay logs.

e replication optimze for _static_plugin_config

Command-Line Format

--replication-optimze-for-static-
pl ugi n- confi g[={ OFF| ON\}]

Introduced

5.7.33

System Variable

replication_optimze for_static_pl ugi

Scape
=

Global

b |
i

n_conf

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

Dynamic Yes
Type Boolean
Default Value OFF

Use shared locks, and avoid unnecessary lock acquisitions, to improve performance for
semisynchronous replication. While this system variable is enabled, the semisynchronous replication
plugin cannot be uninstalled, so you must disable the system variable before the uninstall can
complete.

This system variable can be enabled before or after installing the semisynchronous replication
plugin, and can be enabled while replication is running. Semisynchronous replication source servers
can also get performance benefits from enabling this system variable, because they use the same
locking mechanisms as the replicas.

replication_optimze for_static_plugin_config can be enabled when Group
Replication is in use on a server. In that scenario, it might benefit performance when there is
contention for locks due to high workloads.

replication_sender_observe commit_only

Command-Line Format --replication-sender-observe-commt-
onl y[={ OFF| ON}]

Introduced 5.7.33

System Variable replication_sender_observe conmmt_onl

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Limit callbacks to improve performance for semisynchronous replication. This system variable can be
enabled before or after installing the semisynchronous replication plugin, and can be enabled while
replication is running. Semisynchronous replication source servers can also get performance benefits
from enabling this system variable, because they use the same locking mechanisms as the replicas.

report _host

Command-Line Format --report - host =host _nane
System Variable report host

Scope Global

Dynamic No

Type String

The host name or IP address of the replica to be reported to the source during replica registration.
This value appears in the output of SHOW SLAVE HOSTS on the source server. Leave the value
unset if you do not want the replica to register itself with the source.

Note

It is not sufficient for the source to simply read the IP address of the replica
from the TCP/IP socket after the replica connects. Due to NAT and other
routing issues, that IP may not be valid for connecting to the replica from the
source or other hosts.

https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html

Replica Server Options and Variables

e report_password

Command-Line Format

--report - passwor d=nane

System Variable

report _password

Scope Global
Dynamic No
Type String

The replication user account password of the replica to be reported to the source during replica
registration. This value appears in the output of SHOW SLAVE HOSTS on the source server if the
source was started with - - show sl ave- aut h-i nf o.

Although the name of this variable might imply otherwise, r eport _passwor d is not connected to
the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the

password for the MySQL replication user account.

s report_port

Command-Line Format

--report-port=port_num

System Variable

report_port

Scope Global
Dynamic No

Type Integer

Default Value [sl ave_port]
Minimum Value 0

Maximum Value 65535

The TCP/IP port number for connecting to the replica, to be reported to the source during replica
registration. Set this only if the replica is listening on a nondefault port or if you have a special tunnel
from the source or other clients to the replica. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the replica. This is also the

default value displayed by SHOW SLAVE HOSTS.

s report_user

Command-Line Format

--report-user=nane

System Variable

report_user

Scope Global
Dynamic No
Type String

The account user name of the replica to be reported to the source during replica registration. This
value appears in the output of SHOW SLAVE HOSTS on the source server if the source was started
with - - show- sl ave- aut h-i nf o.

Although the name of this variable might imply otherwise, r eport _user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name
of the MySQL replication user account.

79

https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html

Replica Server Options and Variables

e rpl _sem _sync_sl ave_enabl ed

Command-Line Format

--rpl-sem -sync-sl ave- enabl ed[={ OFF|

ON}]

System Variable

rpl _sem _sync_sl ave_enabl ed

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

Controls whether semisynchronous replication is enabled on the replica. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

* rpl _sem _sync_sl ave_trace_| evel

Command-Line Format

--rpl-sem -sync-sl ave-trace-| evel =#

System Variable

rpl _sem sync_slave trace | evel

Scope Global
Dynamic Yes

Type Integer
Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the replica. See
rpl _sem sync _naster _trace_ | evel forthe permissible values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

 rpl _stop_slave_tinmeout

Command-Line Format

--rpl-stop-slave-ti meout =#

System Variable

rpl _stop_slave_ti neout

Scope Global
Dynamic Yes

Type Integer
Default Value 31536000
Minimum Value 2
Maximum Value 31536000

80

Replica Server Options and Variables

Unit ‘seconds

You can control the length of time (in seconds) that STOP SLAVE waits before timing out by setting
this variable. This can be used to avoid deadlocks between STOP SLAVE and other SQL statements
using different client connections to the replica.

The maximum and default value of r pl _st op_sl ave_ti neout is 31536000 seconds (1 year). The
minimum is 2 seconds. Changes to this variable take effect for subsequent STOP SLAVE statements.

This variable affects only the client that issues a STOP SLAVE statement. When the timeout

is reached, the issuing client returns an error message stating that the command execution is
incomplete. The client then stops waiting for the replication threads to stop, but the replication
threads continue to try to stop, and the STOP SLAVE instruction remains in effect. Once the
replication threads are no longer busy, the STOP SLAVE statement is executed and the replica
stops.

sl ave_checkpoi nt _group

Command-Line Format --sl ave-checkpoi nt - gr oup=#
System Variable sl ave_checkpoi nt _group
Scope Global

Dynamic Yes

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

Block Size 8

Sets the maximum number of transactions that can be processed by a multithreaded replica before
a checkpoint operation is called to update its status as shown by SHOWV SLAVE STATUS. Setting this
variable has no effect on replicas for which multithreading is not enabled. Setting this variable has no
immediate effect. The state of the variable applies on all subsequent START SLAVE commands.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which
silently ignores the setting for this variable. See Known Issues in NDB Cluster
Replication, for more information.

This variable works in combination with the sl ave_checkpoi nt _peri od system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using - DW TH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

» sl ave_checkpoi nt _period

Command-Line Format --sl ave-checkpoi nt - peri od=#
System Variable sl ave_checkpoi nt _peri od
Scope Global

Dynamic Yes

81

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_with_debug

Replica Server Options and Variables

Type Integer
Default Value 300
Minimum Value 1

Maximum Value 4294967295
Unit milliseconds

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is
called to update the status of a multithreaded replica as shown by SHON SLAVE STATUS. Setting
this variable has no effect on replicas for which multithreading is not enabled. Setting this variable
takes effect for all replication channels immediately, including running channels.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which
silently ignores the setting for this variable. See Known Issues in NDB Cluster
Replication, for more information.

This variable works in combination with the sl ave _checkpoi nt _gr oup system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using - DW TH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is
300 milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7
days).

* sl ave_conpressed_protocol

Command-Line Format --sl ave- conpr essed- prot ocol [={ OFF|
ON}]

System Variable sl ave_conpressed_pr ot ocol

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether to use compression of the source/replica protocol if both source and replica support it. If
this variable is disabled (the default), connections are uncompressed. Changes to this variable take
effect on subsequent connection attempts; this includes after issuing a START SLAVE statement,
as well as reconnections made by a running replication I/O thread (for example, after setting the
MASTER RETRY_COUNT option for the CHANGE NMASTER TOstatement). See also Connection
Compression Control.

» sl ave_exec_node

Command-Line Format - -sl ave- exec- node=node
System Variable sl ave_exec_node
Scope Global
Dynamic Yes
Type Enumeration
Default Value | DEMPOTENT (NDB)
STRI CT (Other)

82

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_with_debug
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/5.7/en/connection-compression-control.html

Replica Server Options and Variables

Valid Values STRI CT

| DEMPOTENT

Controls how a replication thread resolves conflicts and errors during replication. | DEMPOTENT mode
causes suppression of duplicate-key and no-key-found errors; STRI CT means no such suppression
takes place.

| DEMPOTENT mode is intended for use in multi-source replication, circular replication, and some
other special replication scenarios for NDB Cluster Replication. (See NDB Cluster Replication:
Bidirectional and Circular Replication, and NDB Cluster Replication Conflict Resolution, for more
information.) NDB Cluster ignores any value explicitly set for sl ave_exec_node, and always treats
it as | DEMPOTENT.

In MySQL Server 5.7, STRI CT mode is the default value.
For storage engines other than NDB, | DEMPOTENT mode should be used only when you are
absolutely sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant

to be used in fail-over scenarios for NDB Cluster where multi-source replication or circular replication
is employed, and is not recommended for use in other cases.

slave_ | oad_tnpdir

Command-Line Format --sl ave-1 oad-tnpdir=dir_nane
System Variable slave_| oad_tnpdir

Scope Global

Dynamic No

Type Directory name

Default Value Val ue of --tnpdir

The name of the directory where the replica creates temporary files. Setting this variable takes effect
for all replication channels immediately, including running channels. The variable value is by default
equal to the value of the t npdi r system variable, or the default that applies when that system
variable is not specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to
use this option to tell the replica to put temporary files in a directory located in some file system that
has a lot of available space. In that case, the relay logs are huge as well, so you might also want to
settherel ay_| og system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) so that the temporary files used to replicate LOAD DATA statements can survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process. However, replication can now continue after a restart if the temporary
files have been removed.

sl ave_nmax_al | owed_packet

Command-Line Format --sl ave- max- al | owed- packet =#
System Variable sl ave_nmax_al | owed_packet
Scope Global

Dynamic Yes

Type Integer

83

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Replica Server Options and Variables

Default Value 1073741824
Minimum Value 1024
Maximum Value 1073741824
Unit bytes
Block Size 1024

This variable sets the maximum packet size for the replication SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_al | owed packet . Setting this variable takes effect for all replication channels immediately,
including running channels.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting sl ave_nmax_al | owed packet to 0 causes 1024 to be used. (A truncation warning

is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

e slave _net tinmeout

Command-Line Format --slave-net-tineout =#
System Variable sl ave_net ti neout
Scope Global

Dynamic Yes

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data or a heartbeat signal from the source before the replica
considers the connection broken, aborts the read, and tries to reconnect. Setting this variable has no
immediate effect. The state of the variable applies on all subsequent START SLAVE commands.

The first retry occurs immediately after the timeout. The interval between retries is controlled by

the MASTER_CONNECT _RETRY option for the CHANGE MASTER TOstatement, and the number of
reconnection attempts is limited by the MASTER RETRY_COUNT option for the CHANGE MASTER TO
statement.

The heartbeat interval, which stops the connection timeout occurring in the absence of data

if the connection is still good, is controlled by the MASTER_HEARTBEAT_PERI CD option

for the CHANGE MASTER TOstatement. The heartbeat interval defaults to half the value of

sl ave_net _tineout, and itis recorded in the replica's connection metadata repository and shown
inthereplication_connection_confi gurati on Performance Schema table. Note that a
change to the value or default setting of sl ave_net ti meout does not automatically change the
heartbeat interval, whether that has been set explicitly or is using a previously calculated default. If
the connection timeout is changed, you must also issue CHANGE MASTER TOto adjust the heartbeat
interval to an appropriate value so that it occurs before the connection timeout.

e slave_parallel type

Command-Line Format --slave-parall el -type=val ue
System Variable sl ave_parall el type
Scope Global

84

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-connection-configuration-table.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Replica Server Options and Variables

Dynamic Yes

Type Enumeration
Default Value DATABASE
Valid Values DATABASE

LOE CAL_CLOCK

When using a multithreaded replica (sl ave_par al | el _wor ker s is greater than 0), this variable

specifies the policy used to decide which transactions are allowed to execute in parallel on the
replica. The variable has no effect on replicas for which multithreading is not enabled. The possible

values are:

e LOG CAL_CLOCK: Transactions that are part of the same binary log group commit on a source

are applied in parallel on a replica. The dependencies between transactions are tracked based on

their timestamps to provide additional parallelization where possible. When this value is set, the

bi nl og_transacti on_dependency_tracki ng system variable can be used on the source to
specify that write sets are used for parallelization in place of timestamps, if a write set is available
for the transaction and gives improved results compared to timestamps.

« DATABASE: Transactions that update different databases are applied in parallel. This value is only

appropriate if data is partitioned into multiple databases which are being updated independently

and concurrently on the source. There must be no cross-database constraints, as such constraints

may be violated on the replica.

When sl ave _preserve_conm t_order=1is set, you can only use LOG CAL_CLOCK.

If your replication topology uses multiple levels of replicas, LOG CAL_CLOCK may achieve less
parallelization for each level the replica is away from the source. You can reduce this effect by using
bi nl og_transacti on_dependency_tracki ng on the source to specify that write sets are used
instead of timestamps for parallelization where possible.

sl ave_paral |l el _workers

Command-Line Format

--slave-parall el -workers=#

System Variable

sl ave_paral |l el _workers

Scope Global
Dynamic Yes
Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1024

Sets the number of applier threads for executing replication transactions in parallel. Setting this
variable to a number greater than O creates a multithreaded replica with this number of applier
threads. When set to 0 (the default) parallel execution is disabled and the replica uses a single

85

Replica Server Options and Variables

applier thread. Setting sl ave_paral | el _wor ker s has no immediate effect. The state of the
variable applies on all subsequent START SLAVE statements.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which
silently ignores the setting for this variable. See Known Issues in NDB Cluster
Replication, for more information.

A multithreaded replica provides parallel execution by using a coordinator thread and the number

of applier threads configured by this variable. The way which transactions are distributed among
applier threads is configured by sl ave paral | el _t ype. The transactions that the replica applies
in parallel may commit out of order, unless sl ave_preserve_conm t _order =1. Therefore,
checking for the most recently executed transaction does not guarantee that all previous transactions
from the source have been executed on the replica. This has implications for logging and recovery
when using a multithreaded replica. For example, on a multithreaded replica the START SLAVE

UNTI L statement only supports using SQL_ AFTER MI'S_GAPS.

In MySQL 5.7, retrying of transactions is supported when multithreading is enabled on a replica.
In previous versions, sl ave_transacti on_retri es was treated as equal to 0 when using
multithreaded replicas.

Multithreaded replicas are not currently supported by NDB Cluster. See Known Issues in NDB
Cluster Replication, for more information about how NDB handles settings for this variable.

» sl ave_pendi ng_j obs_si ze nmax

Command-Line Format - - sl ave- pendi ng-j obs-si ze- max=#
System Variable sl ave_pendi ng_j obs_si ze_max
Scope Global

Dynamic Yes

Type Integer

Default Value 16M

Minimum Value 1024

Maximum Value 16Ei B

Unit bytes

Block Size 1024

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available
to worker queues holding events not yet applied. Setting this variable has no effect on replicas for
which multithreading is not enabled. Setting this variable has no immediate effect. The state of the
variable applies on all subsequent START SLAVE commands.

The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible
value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are
rounded down to the next-highest multiple of 1024 prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues,
and then processed. All subsequent transactions are held until the large transaction has been
completed.

* sl ave_preserve_conmt_order

Command-Line Format --slave-preserve-comi t-order [={ OFF|

ON}]

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

System Variable sl ave_preserve_conmt_order
Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

For multithreaded replicas, the setting 1 for this variable ensures that transactions are externalized
on the replica in the same order as they appear in the replica's relay log, and prevents gaps in the
sequence of transactions that have been executed from the relay log. This variable has no effect on
replicas for which multithreading is not enabled. Note that sl ave preserve commt_order =1
does not preserve the order of non-transactional DML updates, so these might commit before
transactions that precede them in the relay log, which might result in gaps.

sl ave _preserve _conmt_order=1requiresthat--1o0g-binand--Iog-slave-updates are
enabled on the replica, and sl ave paral | el _typeissettoLOG CAL_ CLOCK. Before changing
this variable, all replication threads (for all replication channels if you are using multiple replication
channels) must be stopped.

With sl ave _preserve commit _order enabled, the executing thread waits until all previous
transactions are committed before committing. While the thread is waiting for other workers to
commit their transactions it reports its status as Vi ti ng for preceding transaction to
conmi t . (Prior to MySQL 5.7.8, this was shownas Vi ting for its turn to comit.)
Enabling this mode on a multithreaded replica ensures that it never enters a state that the source
was not in. This supports the use of replication for read scale-out. See Section 3.4, “Using
Replication for Scale-Out”.

If sl ave_preserve_conmi t _or der =0 is set, the transactions that the replica applies in parallel
may commit out of order. Therefore, checking for the most recently executed transaction does not
guarantee that all previous transactions from the source have been executed on the replica. There
is a chance of gaps in the sequence of transactions that have been executed from the replica's relay
log. This has implications for logging and recovery when using a multithreaded replica. Note that the
setting sl ave _preserve_conm t_order =1 prevents gaps, but does not prevent source binary
log position lag (where Exec_mast er | og_pos is behind the position up to which transactions
have been executed). See Section 4.1.32, “Replication and Transaction Inconsistencies” for more
information.

» slave_rows_search_al gorithns

Command-Line Format --sl ave-rows-search-al gorit hns=val ue
System Variable sl ave_rows_search_al gorithns
Scope Global
Dynamic Yes
Type Set
Default Value TABLE_SCAN, | NDEX_SCAN
Valid Values TABLE_SCAN, | NDEX_SCAN
| NDEX_SCAN, HASH_SCAN
TABLE_SCAN, HASH SCAN

87

Replica Server Options and Variables

TABLE_SCAN, | NDEX_SCAN, HASH_SCAN
(equivalent to INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this variable controls how
the rows are searched for matches, in particular whether hash scans are used. Setting this variable
takes effect for all replication channels immediately, including running channels.

Specify a comma-separated list of the following combinations of 2 values from the list | NDEX_SCAN,
TABLE_SCAN, HASH_SCAN. The value is expected as a string, so if set at runtime rather than at
server startup, the value must be quoted. In addition, the value must not contain any spaces. The
recommended combinations (lists) and their effects are shown in the following table:

Index used / option value | NDEX_SCAN, HASH_SCAN | NDEX_SCAN, TABLE_SCAN
Primary key or unique key Index scan Index scan
(Other) Key Hash scan over index Index scan
No index Hash scan Table scan

« The default value is | NDEX_SCAN, TABLE SCAN, which means that all searches that can use
indexes do use them, and searches without any indexes use table scans.

« To use hashing for any searches that do not use a primary or unique key, set
| NDEX_SCAN, HASH SCAN. Specifying | NDEX_SCAN, HASH SCAN has the same effect as
specifying | NDEX_SCAN, TABLE SCAN, HASH SCAN, which is allowed.

* Do not use the combination TABLE_SCAN, HASH_SCAN. This setting forces hashing for all
searches. It has no advantage over | NDEX SCAN, HASH SCAN, and it can lead to “record not
found” errors or duplicate key errors in the case of a single event containing multiple updates to
the same row, or updates that are order-dependent.

The order in which the algorithms are specified in the list makes no difference to the order in which
they are displayed by a SELECT or SHOW VARI ABLES statement.

It is possible to specify a single value, but this is not optimal, because setting a single value limits
searches to using only that algorithm. In particular, setting | NDEX_SCAN alone is not recommended,
as in that case searches are unable to find rows at all if no index is present.

sl ave_skip_errors

Command-Line Format --sl ave-ski p-errors=nane
System Variable sl ave_skip_errors

Scope Global

Dynamic No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

al |

ddl _exist _errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

88

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/show-variables.html

Replica Server Options and Variables

* slave_sql _verify_checksum

Command-Line Format --slave-sql -verify-checksun{ ={ OFF|
ON}]

System Variable sl ave_sql _verify_checksum

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Cause the replication SQL thread to verify data using the checksums read from the relay log. In
the event of a mismatch, the replica stops with an error. Setting this variable takes effect for all
replication channels immediately, including running channels.

Note

The replication I/O thread always reads checksums if possible when
accepting events from over the network.

 slave transaction retries

Command-Line Format --slave-transaction-retri es=#
System Variable sl ave_transaction_retries
Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If a replication SQL thread fails to execute a transaction because of an | nnoDB deadlock or
because the transaction's execution time exceeded | nnoDB's i nnodb_| ock_wait _ti neout
or NDB's Tr ansact i onDeadl ockDet ecti onTi neout or Transacti onl nacti veTi neout ,
it automatically retries sl ave_t ransacti on_retri es times before stopping with an error.
Transactions with a non-temporary error are not retried.

The default value for sl ave _transaction_retri es is 10. Setting the variable to O disables
automatic retrying of transactions. Setting the variable takes effect for all replication channels
immediately, including running channels.

As of MySQL 5.7.5, retrying of transactions is supported when multithreading is enabled on a replica.

In previous versions, sl ave _transacti on_retries was treated as equal to 0 when using
multithreaded replicas.

The Performance Schematable repl i cati on_applier st at us shows the number of retries that

took place on each replication channel, in the COUNT_TRANSACTI ONS_RETRI ES column.

* sl ave_type_conversions

Command-Line Format --sl ave-type-conver si ons=set

System Variable sl ave_t ype_conversions

Scope Global

89

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactioninactivetimeout
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-table.html

Replica Server Options and Variables

Dynamic Yes

Type Set

Default Value

Valid Values ALL LOSSY

ALL_NON_LOSSY
ALL_SI GNED

ALL_UNSI GNED

Controls the type conversion mode in effect on the replica when using row-based replication. In
MySQL 5.7.2 and higher, its value is a comma-delimited set of zero or more elements from the list:
ALL LOSSY, ALL_NON LOSSY, ALL_SI GNED, ALL_UNSI GNED. Set this variable to an empty string
to disallow type conversions between the source and the replica. Setting this variable takes effect for
all replication channels immediately, including running channels.

ALL_SI GNED and ALL__UNSI GNED were added in MySQL 5.7.2 (Bug#15831300). For additional
information on type conversion modes applicable to attribute promotion and demotion in row-based
replication, see Row-based replication: attribute promotion and demotion.

sql _sl ave_ski p_counter

System Variable sql _sl ave_ski p_counter
Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

The number of events from the source that a replica should skip. Setting the option has no
immediate effect. The variable applies to the next START SLAVE statement; the next START SLAVE
statement also changes the value back to 0. When this variable is set to a nonzero value and there
are multiple replication channels configured, the START SLAVE statement can only be used with the
FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero
value when gt i d_node=0ON. If you need to skip transactions when employing GTIDs, use
gti d_execut ed from the source instead. See Section 2.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause
the replica to begin in the middle of an event group, the replica continues to
skip until it finds the beginning of the next event group and begins from that
point. For more information, see Section 2.7.3, “Skipping Transactions”.

e sync_nmster_info

Command-Line Format --sync- master-i nf o=#
System Variable sync_master _info
Scope Global

Dynamic Yes

90

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Replica Server Options and Variables

Type Integer
Default Value 10000
Minimum Value 0

Maximum Value 4294967295

The effects of this variable on a replica depend on whether the replica's
nmaster _info_repository issettoFl LE or TABLE, as explained in the following paragraphs.

master_info_repository = FILE. If the value of sync_nmast er _i nf o is greater than 0,

the replica synchronizes its nast er . i nf o file to disk (using f dat async()) after every
sync_nast er i nf o events. Ifitis 0, the MySQL server performs no synchronization of the
mast er . i nf o file to disk; instead, the server relies on the operating system to flush its contents
periodically as with any other file.

master_info_repository = TABLE. If the value of sync_nmst er _i nf o is greater than 0, the
replica updates its connection metadata repository table after every sync_nmast er _i nf o events. If
it is 0, the table is never updated.

The default value for sync_nmast er i nf o is 10000. Setting this variable takes effect for all
replication channels immediately, including running channels.

e sync_relay_ | og

Command-Line Format --sync-rel ay-1 og=#
System Variable sync_relay_| og
Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk
(using f dat async()) after every sync_r el ay | og events are written to the relay log. Setting this
variable takes effect for all replication channels immediately, including running channels.

Setting sync_r el ay_| og to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of an unexpected halt you lose at most one
event from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed
cache, which makes synchronization very fast). For information on the combination of settings on a
replica that is most resilient to unexpected halts, see Section 3.2, “Handling an Unexpected Halt of a
Replica”.

* sync_relay_log_info

Command-Line Format --sync-rel ay-1og-inf o=#

System Variable sync_relay log_info

Scope Global

Dynamic Yes

Type Integer

Befatit-Value 16666 o

Binary Logging Options and Variables

Minimum Value 0

Maximum Value 4294967295

The default value for sync_r el ay_| og_i nf o is 10000. Setting this variable takes effect for all
replication channels immediately, including running channels.

The effects of this variable on the replica depend on the server'srel ay | og_i nfo_repository
setting (FI LE or TABLE). If the setting is TABLE, the effects of the variable also depend on
whether the storage engine used by the relay log info table is transactional (such as | nnoDB)

or not transactional (Myl1 SAM). The effects of these factors on the behavior of the server for
sync_rel ay_| og_i nf o values of zero and greater than zero are as follows:

sync_relay log info =0 « Ifrelay | og info repository issettoFl LE, the MySQL
server performs no synchronization of the r el ay-1 og. i nfo
file to disk; instead, the server relies on the operating system to
flush its contents periodically as with any other file.

e Ifrelay | og info repository issetto TABLE, and
the storage engine for that table is transactional, the table is
updated after each transaction. (The sync_relay | og_info
setting is effectively ignored in this case.)

e Ifrelay |l og_info repository issetto TABLE, and the
storage engine for that table is not transactional, the table is
never updated.

sync_relay log_info = N « Ifrelay |log info_repository issettoFl LE, the
>0 replica synchronizes its r el ay- 1 og. i nf o file to disk (using
f dat async()) after every N transactions.

e Ifrelay | og info_repository issetto TABLE, and
the storage engine for that table is transactional, the table is
updated after each transaction. (The sync_relay | og _info
setting is effectively ignored in this case.)

e Ifrelay |l og_info repository issetto TABLE, and the
storage engine for that table is not transactional, the table is
updated after every N events.

2.6.4 Binary Logging Options and Variables
 Startup Options Used with Binary Logging
» System Variables Used with Binary Logging

You can use the nysql d options and system variables that are described in this section to affect

the operation of the binary log as well as to control which statements are written to the binary log.

For additional information about the binary log, see The Binary Log. For additional information about
using MySQL server options and system variables, see Server Command Options, and Server System
Variables.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System
variables used with binary logging are discussed later in this section.

e --binlog-row event - max- si ze=N

Command-Line Format --bi nl og-r ow event - max- si ze=#

92

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

Binary Logging Options and Variables

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615
Maximum Value (32-bit platforms) 4294967295

Unit bytes

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 8192. See
Section 5.1, “Replication Formats”.

- -1 0g- bi n[=base_nane]

Command-Line Format --log-bin=file_nane
Type File name

Enables binary logging. With binary logging enabled, the server logs all statements that change data
to the binary log, which is used for backup and replication. The binary log is a sequence of files with
a base name and numeric extension. For information on the format and management of the binary
log, see The Binary Log.

If you supply a value for the - - | og- bi n option, the value is used as the base name for the log
sequence. The server creates binary log files in sequence by adding a numeric suffix to the base
name. In MySQL 5.7, the base name defaults to host _nane- bi n, using the name of the host
machine. It is recommended that you specify a base name, so that you can continue to use the same
binary log file names regardless of changes to the default name.

The default location for binary log files is the data directory. You can use the - - | og- bi n option

to specify an alternative location, by adding a leading absolute path name to the base name to
specify a different directory. When the server reads an entry from the binary log index file, which
tracks the binary log files that have been used, it checks whether the entry contains a relative path.

If it does, the relative part of the path is replaced with the absolute path set using the - - | og- bi n
option. An absolute path recorded in the binary log index file remains unchanged; in such a case,
the index file must be edited manually to enable a new path or paths to be used. (In older versions of
MySQL, manual intervention was required whenever relocating the binary log or relay log files.) (Bug
#11745230, Bug #12133)

Setting this option causes the | og_bi n system variable to be set to ON (or 1), and not to
the base name. The binary log file base name and any specified path are available as the
| og_bi n_basenane system variable.

If you specify the - - | 0og- bi n option without also specifying the server i d system variable, the
server is not allowed to start. (Bug #11763963, Bug #56739)

When GTIDs are in use on the server, if binary logging is not enabled when restarting the server
after an abnormal shutdown, some GTIDs are likely to be lost, causing replication to fail. In a normal
shutdown, the set of GTIDs from the current binary log file is saved in the nysql . gti d_execut ed
table. Following an abnormal shutdown where this did not happen, during recovery the GTIDs are
added to the table from the binary log file, provided that binary logging is still enabled. If binary
logging is disabled for the server restart, the server cannot access the binary log file to recover

the GTIDs, so replication cannot be started. Binary logging can be disabled safely after a normal
shutdown.

If you want to disable binary logging for a server start but keep the - - | 0og- bi n setting intact, you
can specify the - - ski p- 1 0g- bi n or - - di sabl e-| og- bi n option at startup. Specify the option

93

https://dev.mysql.com/doc/refman/5.7/en/binary-log.html

Binary Logging Options and Variables

after the - - | 0g- bi n option, so that it takes precedence. When binary logging is disabled, the
| og_bi n system variable is set to OFF.

- -1 0g- bi n-i ndex[=fi | e_nane]

Command-Line Format

--10g-bin-index=file_nane

System Variable

| og_bi n_i ndex

Scope Global
Dynamic No
Type File name

The name for the binary log index file, which contains the names of the binary log files. By default,
it has the same location and base name as the value specified for the binary log files using the - -

| 0g- bi n option, plus the extension . i ndex. If you do not specify - - | 0og- bi n, the default binary
log index file name is bi nl og. i ndex. If you omit the file name and do not specify one with - - | og-
bi n, the default binary log index file name is host _nane- bi n. i ndex, using the name of the host
machine.

For information on the format and management of the binary log, see The Binary Log.

Statement selection options. The options in the following list affect which statements are written
to the binary log, and thus sent by a replication source server to its replicas. There are also options for
replica servers that control which statements received from the source should be executed or ignored.
For details, see Section 2.6.3, “Replica Server Options and Variables”.

e --binl og-do- db=db_nane

Command-Line Format - - bi nl 0og- do- db=nane

Type String

This option affects binary logging in a manner similar to the way that - - r epl i cat e- do- db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is

in use, in the same way that the effects of - - r epl i cat e- do- db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of bi nl og_f or mat .

For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
- - bi nl og- do- db always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_nane. To specify more than one database,

use this option multiple times, once for each database; however, doing so does not cause cross-
database statements such as UPDATE sone_db. sonme_t abl e SET foo='bar' to be logged
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list is treated as the
name of a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with - - bi nl og- do- db=sal es and you issue the following statements, the UPDATE
statement is not logged:

USE pri ces;

https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Binary Logging Options and Variables

UPDATE sal es. january SET anmpunt =anmount +1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though
it was not specified when setting the option. If the server is started with - - bi nl og- do- db=sal es,
the following UPDATE statement is logged even though pri ces was not included when setting - -

bi nl og- do- db:

USE sal es;
UPDATE pri ces. di scounts SET percentage = percentage + 10;

Because sal es is the default database when the UPDATE statement is issued, the UPDATE is
logged.

Row-based logging. Logging is restricted to database db_nane. Only changes to tables
belonging to db_nane are logged; the default database has no effect on this. Suppose that the
server is started with - - bi nl og- do- db=sal es and row-based logging is in effect, and then the
following statements are executed:

USE pri ces;
UPDATE sal es. f ebruary SET anpunt =anpunt +100;

The changes to the f ebr uar y table in the sal es database are logged in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, when using
the row-based logging format and - - bi nl og- do- db=sal es, changes made by the following
UPDATE are not logged:

USE pri ces;
UPDATE pri ces. march SET anmpunt =anount - 25;

Even if the USE pri ces statement were changed to USE sal es, the UPDATE statement's effects
would still not be written to the binary log.

Another important difference in - - bi nl og- do- db handling for statement-based logging as opposed
to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose
that the server is started with - - bi nl og- do- db=db1, and the following statements are executed:

USE db1;
UPDATE dbl.tabl el, db2.table2 SET dbl.tablel.coll = 10, db2.table2.col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to t abl el are logged; t abl e2 isin a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE dbl
statement, a USE db4 statement had been used:

USE db4;
UPDATE dbl.tabl el, db2.table2 SET dbl.tablel.coll = 10, db2.tabl e2.col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based
logging. However, when using row-based logging, the change to t abl el is logged, but not that to
t abl e2—in other words, only changes to tables in the database named by - - bi nl og- do- db are
logged, and the choice of default database has no effect on this behavior.

* --binlog-ignore-db=db_namne

Command-Line Format --bi nl og-i gnor e- db=nane

95

https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Binary Logging Options and Variables

Type String

This option affects binary logging in a manner similar to the way that - - r epl i cat e-i gnor e-db
affects replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of - - r epl i cat e- i gnor e- db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of bi nl og_f or nat .

For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
- - bi nl og-i gnor e- db always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database
(that is, the one selected by USE) is db_nane.

Prior to MySQL 5.7.2, this option caused any statements containing fully qualified table names not to
be logged if there was no default database specified (that is, when SELECT DATABASE() returned
NULL). In MySQL 5.7.2 and higher, when there is no default database, no - - bi nl og-i gnor e- db
options are applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_nane.
The current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with - - bi nl og-i gnor e- db=sal es and you issue the following
statements:

USE pri ces;
UPDATE sal es. j anuary SET anpunt =anpunt +1000;

The UPDATE statement is logged in such a case because - - bi nl og-i gnor e- db applies only

to the default database (determined by the USE statement). Because the sal es database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based logging, the UPDATE statement's effects are not written to the binary log, which means that no
changes to the sal es. j anuary table are logged; in this instance, - - bi nl og-i gnor e- db=sal es
causes all changes made to tables in the source's copy of the sal es database to be ignored for
purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list is treated as the name of a single database if
you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL supports reading and writing of binary log checksums. These are
enabled using the two options listed here:

* --binl og- checksun={ NONE| CRC32}

Command-Line Format - - bi nl og- checksumrt ype
Type String
Default Value CRC32
Valid Values NONE
CRC32

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_database
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Binary Logging Options and Variables

Enabling this option causes the source to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default. You cannot change the setting for this

option within a transaction.

To control reading of checksums by the replica (from the relay log), use the - - sl ave- sql - veri fy-

checksumoption.

Testing and debugging options.

The following binary log options are used in replication testing

and debugging. They are not intended for use in normal operations.

e --max- bi nl og- dunp- event s=N

Command-Line Format

- - max- bi nl og- dunp- event s=#

Type

Integer

Default Value

0

This option is used internally by the MySQL test suite for replication testing and debugging.

e --sporadi c-bi nl og- dunp-fai l

Command-Line Format

--spor adi c- bi nl og- dunp- f ai | [={ OFF]|
ON}]

Type

Boolean

Default Value

OFF

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary

logging are listed earlier in this section.

* binlog _cache_si ze

Command-Line Format

- - bi nl og- cache- si ze=#

System Variable

bi nl og_cache_si ze

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520
Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the cache to hold changes to the binary log during a transaction.

A binary log cache is allocated for each client if the server supports any transactional storage
engines and if the server has the binary log enabled (- - | og- bi n option). If you often use large
transactions, you can increase this cache size to get better performance. The Bi nl og_cache_use

97

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_cache_use

Binary Logging Options and Variables

and Bi nl og_cache_di sk_use status variables can be useful for tuning the size of this variable.

See The Binary Log.

bi nl og_cache_si ze sets the size for the transaction cache only; the size of the statement cache
is governed by the bi nl og_stnm cache_si ze system variable.

bi nl og_checksum

Command-Line Format

- - bi nl og- checksun¥t ype

System Variable

bi nl og_checksum

Scope Global
Dynamic Yes
Type String
Default Value CRC32
Valid Values NONE
CRC32

When enabled, this variable causes the source to write a checksum for each event in the binary log.
bi nl og_checksumsupports the values NONE (disabled) and CRC32. The default is CRC32. You
cannot change the value of bi nl og_checksumwithin a transaction.

When bi nl og_checksumis disabled (value NONE), the server verifies that it is writing only complete

events to the binary log by writing and checking the event length (rather than a checksum) for each

event.

Changing the value of this variable causes the binary log to be rotated; checksums are always
written to an entire binary log file, and never to only part of one.

Setting this variable on the source to a value unrecognized by the replica causes the replica to set
its own bi nl og_checksumvalue to NONE, and to stop replication with an error. (Bug #13553750,

Bug #61096) If backward compatibility with older replicas is a concern, you may want to set the value

explicitly to NONE.

bi nl og_di rect _non_transacti onal _updates

Command-Line Format

--binl og-direct-non-transactional -
updat es[={ OFF| ON}]

System Variable

bi nl og_direct _non_transacti onal _updat

Scope Global, Session
Dynamic Yes

Type Boolean
Default Value OFF

Due to concurrency issues, a replica can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of
a transaction become immediately visible to other connections because these changes may not be

written immediately into the binary log.

The bi nl og_di rect _non_transacti onal _updat es variable offers one
possible workaround to this issue. By default, this variable is disabled. Enabling

98

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_cache_disk_use
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html

Binary Logging Options and Variables

bi nl og _direct _non_transacti onal updat es causes updates to nontransactional tables to
be written directly to the binary log, rather than to the transaction cache.

bi nl og _direct _non_transacti onal updat es works only for statements that are replicated
using the statement-based binary logging format; that is, it works only when the value of

bi nl og_f or mat is STATEMENT, or when bi nl og_f or mat is M XED and a given statement is
being replicated using the statement-based format. This variable has no effect when the binary log
format is ROW or when bi nl og_f or mat is setto M XED and a given statement is replicated using
the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an
example of such a dependency would be the statement | NSERT | NTO
myi sam tabl e SELECT * FROM i nnodb_t abl e. Otherwise, such
statements are likely to cause the replica to diverge from the source.

This variable has no effect when the binary log format is ROWNor M XED.

 binlog error_action

Command-Line Format --binlog-error-action[=val ue]
System Variable bi nl og_error _action
Scope Global
Dynamic Yes
Type Enumeration
Default Value ABORT_SERVER
Valid Values | GNORE_ERROR
ABORT_SERVER

Controls what happens when the server encounters an error such as not being able to write to, flush
or synchronize the binary log, which can cause the source's binary log to become inconsistent and
replicas to lose synchronization.

In MySQL 5.7.7 and higher, this variable defaults to ABORT SERVER, which makes the server halt
logging and shut down whenever it encounters such an error with the binary log. On restart, recovery
proceeds as in the case of an unexpected server halt (see Section 3.2, “Handling an Unexpected
Halt of a Replica”).

When bi nl og_error_acti onis setto | GNORE_ERROR, if the server encounters such an error

it continues the ongoing transaction, logs the error then halts logging, and continues performing
updates. To resume binary logging | og_bi n must be enabled again, which requires a server restart.
This setting provides backward compatibility with older versions of MySQL.

In previous releases this variable was named bi nl oggi ng_i npossi bl e_node.

* binl og_f or mat

Command-Line Format - - bi nl og- f or mat =f or mat
System Variable bi nl og_f or mat

Scope Global, Session

Dynamic Yes

Type Enumeration

99

Binary Logging Options and Variables

Default Value ROW

Valid Values M XED
STATENMENT
ROW

This system variable sets the binary logging format, and can be any one of STATEMENT, ROW or

M XED. See Section 5.1, “Replication Formats”. The setting takes effect when binary logging is
enabled on the server, which is the case when the | og_bi n system variable is set to ON. In MySQL
5.7, binary logging is not enabled by default, and you enable it using the - - | og- bi n option.

bi nl og_f or mat can be set at startup or at runtime, except that under some conditions, changing
this variable at runtime is not possible or causes replication to fail, as described later.

Prior to MySQL 5.7.7, the default format was STATEMENT. In MySQL 5.7.7 and higher, the default is
ROW Exception: In NDB Cluster, the default is M XED; statement-based replication is not supported
for NDB Cluster.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See System Variable Privileges.

The rules governing when changes to this variable take effect and how long the effect lasts are
the same as for other MySQL server system variables. For more information, see SET Syntax for
Variable Assignment.

When M XED is specified, statement-based replication is used, except for cases where only
row-based replication is guaranteed to lead to proper results. For example, this happens when
statements contain loadable functions or the UUI D() function.

For details of how stored programs (stored procedures and functions, triggers, and events) are
handled when each binary logging format is set, see Stored Program Binary Logging.

There are exceptions when you cannot switch the replication format at runtime:
» From within a stored function or a trigger.
« If the session is currently in row-based replication mode and has open temporary tables.

¢ From within a transaction.
Trying to switch the format in those cases results in an error.

Changing the logging format on a replication source server does not cause a replica to change

its logging format to match. Switching the replication format while replication is ongoing can

cause issues if a replica has binary logging enabled, and the change results in the replica using
STATEMENT format logging while the source is using RONor M XED format logging. A replica is not
able to convert binary log entries received in ROMogging format to STATEMENT format for use in its

100

https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html

Binary Logging Options and Variables

own binary log, so this situation can cause replication to fail. For more information, see Setting The
Binary Log Format.

The binary log format affects the behavior of the following server options:

* --replicate-do-db

* --replicate-ignore-db

e --Dbinlog-do-db

» --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

bi nl og_group_conm t_sync_del ay

Command-Line Format - - bi nl og- group-conmm t - sync- del ay=#
System Variable bi nl og_group_comit_sync_del ay
Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Controls how many microseconds the binary log commit waits before synchronizing the binary log
file to disk. By default bi nl og_group_conmmi t _sync_del ay is set to 0, meaning that there is

no delay. Setting bi nl og_gr oup_conmi t _sync_del ay to a microsecond delay enables more
transactions to be synchronized together to disk at once, reducing the overall time to commit a group
of transactions because the larger groups require fewer time units per group.

When sync_bi nl og=0 or sync_bi nl og=1 is set, the delay specified by

bi nl og_group_conmi t _sync_del ay is applied for every binary log commit group before
synchronization (or in the case of sync_bi nl 0og=0, before proceeding). When sync_bi nl og is set
to a value n greater than 1, the delay is applied after every n binary log commit groups.

Setting bi nl og_group_conmit_sync_del ay can increase the number of parallel committing
transactions on any server that has (or might have after a failover) a replica, and therefore can
increase parallel execution on the replicas. To benefit from this effect, the replica servers must
have sl ave_paral | el _type=LOG CAL_CLOCK set, and the effect is more significant when

bi nl og_transacti on_dependency_tracki ng=COVM T_CRDERs also set. It is important to
take into account both the source's throughput and the replicas' throughput when you are tuning the
setting for bi nl og_group_conmi t _sync_del ay.

Setting bi nl og_group_conmit _sync_del ay can also reduce the number of f sync() calls to the
binary log on any server (source or replica) that has a binary log.

Note that setting bi nl og_gr oup_conmi t _sync_del ay increases the latency of transactions on
the server, which might affect client applications. Also, on highly concurrent workloads, it is possible
for the delay to increase contention and therefore reduce throughput. Typically, the benefits of setting
a delay outweigh the drawbacks, but tuning should always be carried out to determine the optimal
setting.

101

https://dev.mysql.com/doc/refman/5.7/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-setting.html

Binary Logging Options and Variables

e binlog group_commt_sync_no_del ay_count

Command-Line Format

- - bi nl og- gr oup-conmi t - sync- no- del ay-
count =#

System Variable

bi nl og_group_conmit_sync_no_del ay_cou

Scope Global
Dynamic Yes
Type Integer
Default Value 0
Minimum Value 0
Maximum Value 100000

The maximum number of transactions to wait for before aborting the current delay as specified by
bi nl og_group_conm t _sync_del ay. If bi nl og_group_comm t _sync_del ay is set to 0, then

this option has no effect.

e binlog max_flush_queue_tine

Command-Line Format

- - bi nl og- max-fl ush- queue-ti ne=#

Deprecated

Yes

System Variable

bi nl og_max_fl ush_queue_tine

Scope Global
Dynamic Yes
Type Integer
Default Value 0
Minimum Value 0
Maximum Value 100000

Unit

microseconds

Formerly, this controlled the time in microseconds to continue reading transactions from the flush
queue before proceeding with group commit. In MySQL 5.7, this variable no longer has any effect.

bi nl og_max_fl ush_queue_ti ne is deprecated as of MySQL 5.7.9, and is marked for eventual

removal in a future MySQL release.

* binlog order_comits

Command-Line Format

- - bi nl og- order -comm t s[={ OFF| ON}]

System Variable

bi nl og_order_comm ts

Scope Global
Dynamic Yes
Type Boolean
Default Value ON

When this variable is enabled on a replication source server (which is the default), transaction
commit instructions issued to storage engines are serialized on a single thread, so that transactions
are always committed in the same order as they are written to the binary log. Disabling this variable
permits transaction commit instructions to be issued using multiple threads. Used in combination with

102

Binary Logging Options and Variables

binary log group commit, this prevents the commit rate of a single transaction being a bottleneck to
throughput, and might therefore produce a performance improvement.

Transactions are written to the binary log at the point when all the storage engines involved

have confirmed that the transaction is prepared to commit. The binary log group commit

logic then commits a group of transactions after their binary log write has taken place. When

bi nl og_order _conm t s is disabled, because multiple threads are used for this process,
transactions in a commit group might be committed in a different order from their order in the binary
log. (Transactions from a single client always commit in chronological order.) In many cases this
does not matter, as operations carried out in separate transactions should produce consistent
results, and if that is not the case, a single transaction ought to be used instead.

If you want to ensure that the transaction history on the source and on a multithreaded replica
remains identical, set sl ave _preserve_conmmi t _order =1 on the replica.

bi nl og_row i mage

Command-Line Format --bi nl og-row i mage=i nage_t ype
System Variable bi nl og_row_i mage

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value full

Valid Values full (Log all columns)

m ni mal (Log only changed columns, and
columns needed to identify rows)

nobl ob (Log all columns, except for unneeded
BLOB and TEXT columns)

For MySQL row-based replication, this variable determines how row images are written to the binary
log.

In MySQL row-based replication, each row change event contains two images, a “before” image
whose columns are matched against when searching for the row to be updated, and an “after” image
containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and
after images. However, it is not strictly necessary to include every column in both images, and we
can often save disk, memory, and network usage by logging only those columns which are actually
required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row,
only the after image is logged, since there is no existing row to be matched.
Only when updating a row are both the before and after images required, and
both written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely
identify rows is logged. If the table containing the row has a primary key, then only the primary key
column or columns are written to the binary log. Otherwise, if the table has a unique key all of whose
columns are NOT NULL, then only the columns in the unique key need be logged. (If the table has
neither a primary key nor a unique key without any NULL columns, then all columns must be used in

103

Binary Logging Options and Variables

the before image, and logged.) In the after image, it is necessary to log only the columns which have
actually changed.

You can cause the server to log full or minimal rows using the bi nl og_r ow i mage system variable.
This variable actually takes one of three possible values, as shown in the following list:

« full:Log all columns in both the before image and the after image.

e m ni mal : Log only those columns in the before image that are required to identify the row to
be changed; log only those columns in the after image where a value was specified by the SQL
statement, or generated by auto-increment.

« nobl ob: Log all columns (same as f ul |), except for BLOB and TEXT columns that are not
required to identify rows, or that have not changed.

Note

This variable is not supported by NDB Cluster; setting it has no effect on the
logging of NDB tables.

The default value is f ul | .

When using mi ni nal or nobl ob, deletes and updates are guaranteed to work correctly for a given
table if and only if the following conditions are true for both the source and destination tables:

< All columns must be present and in the same order; each column must use the same data type as
its counterpart in the other table.

« The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part
of the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination
table may prove insufficient to provide a unique match for a delete or update. In this event, no
warning or error is issued; the source and replica silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMVENT. When
bi nl og_f or mat is M XED, the setting for bi nl og_r ow_i nmage is applied to changes that are
logged using row-based format, but this setting has no effect on changes logged as statements.

Setting bi nl og_r ow_i nage on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

bi nl og_rows_query_| og_events

Command-Line Format - - bi nl og-rows- query-1| og-
event s[={ OFF| ON}]

System Variable bi nl og_rows_query_| og_events

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This system variable affects row-based logging only. When enabled, it causes the server to write
informational log events such as row query log events into its binary log. This information can be

104

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

Binary Logging Options and Variables

used for debugging and related purposes, such as obtaining the original query issued on the source
when it cannot be reconstructed from the row updates.

These informational events are normally ignored by MySQL programs reading the binary log and
S0 cause no issues when replicating or restoring from backup. To view them, increase the verbosity
level by using mysqlbinlog's - - ver bose option twice, either as - vv or - - ver bose --verbose.

bi nl og_stnt _cache_size

Command-Line Format

--binl og-stnt -cache-si ze=#

System Variable

bi nl og_stnt_cache_si ze

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520
Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

This variable determines the size of the cache for the binary log to hold nontransactional statements

issued during a transaction.

Separate binary log transaction and statement caches are allocated for each client if the server
supports any transactional storage engines and if the server has the binary log enabled (- -

| og- bi n option). If you often use large nontransactional statements during transactions, you

can increase this cache size to get better performance. The Bi nl og_stnt _cache_use and

Bi nl og_stnt _cache_di sk_use status variables can be useful for tuning the size of this variable.

See The Binary Log.

The bi nl og_cache_si ze system variable sets the size for the transaction cache.

e binlog transacti on_dependency_tracking

Command-Line Format

--bi nl og-transacti on- dependency-
tracki ng=val ue

Introduced

5.7.22

System Variable

bi nl og_transacti on_dependency_trackin

Scope Global
Dynamic Yes
Type Enumeration

Default Value

COW T_ORDER

Valid Values

COWM T_ORDER

W\RI TESET

105

https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html

Binary Logging Options and Variables

WRI TESET_SESSI ON

The source of dependency information that the source uses to determine which transactions can be
executed in parallel by the replica's multithreaded applier. This variable can take one of the three
values described in the following list:

« COW T_ORDER: Dependency information is generated from the source's commit timestamps. This
is the default.

* ARl TESET: Dependency information is generated from the source's write set, and any transactions
which write different tuples can be parallelized.

* WRI TESET_SESSI ON: Dependency information is generated from the source's write set, and any
transactions that write different tuples can be parallelized, with the exception that no two updates
from the same session can be reordered.

In V\RI TESET or WRI TESET_SESSI ON mode, transactions can commit out of order unless you also
setsl ave_preserve_commit_order=1.

For some transactions, the V\RI TESET and V\RI TESET_SESSI ON modes cannot improve on the
results that would have been returned in COVM T_CORDER mode. This is the case for transactions that
have empty or partial write sets, transactions that update tables without primary or unique keys, and
transactions that update parent tables in a foreign key relationship. In these situations, the source
uses COVM T_ORDER mode to generate the dependency information instead.

The value of this variable cannot be set to anything other than COVMM T_ ORDER if

transaction wite set extractionis OFF. You should also note that the value
oftransaction_wite_set_ extraction cannot be changed if the current value of

bi nl og_transacti on_dependency_tracki ngis WRI TESET or WRI TESET_SESSI ON. If you
change the value, the new value does not take effect on replicas until after the replica has been
stopped and restarted with STOP SLAVE and START SLAVE statements.

The number of row hashes to be kept and checked for the latest transaction to have changed a given
row is determined by the value of bi nl og_t ransacti on_dependency_hi story_si ze.

bi nl og_transacti on_dependency_hi story_si ze

Command-Line Format --bi nl og-transacti on- dependency-
hi story-si ze=#
Introduced 5.7.22
System Variable bi nl og_transacti on_dependency_hi story,
Scope Global
Dynamic Yes
Type Integer
Default Value 25000
Minimum Value 1
Maximum Value 1000000

Sets an upper limit on the number of row hashes which are kept in memory and used for looking up
the transaction that last modified a given row. Once this number of hashes has been reached, the
history is purged.

* expire_|l ogs_days

Command-Line Format --expire-1ogs-days=#

106

| Si ze

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Binary Logging Options and Variables

System Variable expire_| ogs_days
Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 99

Unit days

The number of days for automatic binary log file removal. The default is 0, which means “no
automatic removal.” Possible removals happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in MySQL Server Logs.

To remove binary log files manually, use the PURGE Bl NARY LOGS statement. See PURGE
BINARY LOGS Statement.

[og_bin

System Variable [og_bin
Scope Global
Dynamic No

Type Boolean

Whether the binary log is enabled. If the - - | 0og- bi n option is used, then the value of this variable
is ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or
disabled); it does not actually report the value to which - - | og- bi n is set.

See The Binary Log.

| og_bi n_basenane

System Variable | og_bi n_basenane
Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log files, which can be set with the - - | 0g- bi n server
option. The maximum variable length is 256. In MySQL 5.7, the default base name is the name of the
host machine with the suffix - bi n. The default location is the data directory.

| og_bi n_i ndex

Command-Line Format --10g-bin-index=fil e_nane
System Variable | og_bi n_i ndex

Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log index file, which can be set with the - - | og- bi n-
i ndex server option. The maximum variable length is 256.

107

https://dev.mysql.com/doc/refman/5.7/en/server-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html

Binary Logging Options and Variables

e log_bin_trust_function_creators

Command-Line Format

--log-bin-trust-function-
creators[={ OFF| ON}]

System Variable

l og _bin_trust_function_creators

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

This variable applies when binary logging is enabled. It controls whether stored function creators
can be trusted not to create stored functions that causes unsafe events to be written to the binary
log. If set to O (the default), users are not permitted to create or alter stored functions unless they
have the SUPER privilege in addition to the CREATE ROUTI NE or ALTER ROUTI NE privilege. A
setting of 0 also enforces the restriction that a function must be declared with the DETERM NI STI C
characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. This variable also applies to
trigger creation. See Stored Program Binary Logging.

* log_bin_use_ vl row events

Command-Line Format

- -1 0g- bi n-use-vl-row event s[={ OFF|

ON}]

System Variable

| og_bin_use vl row events

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

Whether Version 2 binary logging is in use. If this variable is 0 (disabled, the default), Version 2
binary log events are in use. If this variable is 1 (enabled), the server writes the binary log using
Version 1 logging events (the only version of binary log events used in previous releases), and thus
produces a binary log that can be read by older replicas.

MySQL 5.7 uses Version 2 binary log row events by default. However, Version 2 events cannot be
read by MySQL Server releases prior to MySQL 5.6.6. Enabling | og_bi n_use_v1 row events
causes nmysql d to write the binary log using Version 1 logging events.

This variable is read-only at runtime. To switch between Version 1 and Version 2 binary event binary
logging, it is necessary to set| og_bi n_use_v1 row events at server startup.

Other than when performing upgrades of NDB Cluster Replication, | og_bi n_use _v1 row events
is chiefly of interest when setting up replication conflict detection and resolution using NDB
$EPOCH_TRANS() as the conflict detection function, which requires Version 2 binary log row events.
Thus, this variable and - - ndb- | og-transacti on-i d are not compatible.

Note
MySQL NDB Cluster 7.5 uses Version 2 binary log row events by default.
You should keep this mind when planning upgrades or downgrades, and for

setups using NDB Cluster Replication.

For more information, see NDB Cluster Replication Conflict Resolution.

108

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-id
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-conflict-resolution.html

Binary Logging Options and Variables

e log_builtin_as_identified by password

Command-Line Format --log-builtin-as-identified-by-
passwor d[={ OFF| ON}]

System Variable log builtin_as identified by password

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable affects binary logging of user-management statements. When enabled, the variable has
the following effects:

 Binary logging for CREATE USER statements involving built-in authentication plugins rewrites the
statements to include an | DENTI FI ED BY PASSWORD clause.

 SET PASSWORD statements are logged as SET PASSWORD statements, rather than being rewritten
to ALTER USER statements.

« SET PASSWORD statements are changed to log the hash of the password instead of the supplied
cleartext (unencrypted) password.

Enabling this variable ensures better compatibility for cross-version replication with 5.6 and pre-5.7.6
replicas, and for applications that expect this syntax in the binary log.

* | og_sl ave_updates

Command-Line Format - -1 0g- sl ave- updat es[={ OFF| ON}]
System Variable | og_sl ave_updates

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether updates received by a replica server from a source server should be logged to the replica's
own binary log.

Normally, a replica does not log to its own binary log any updates that are received from a source
server. Enabling this variable causes the replica to write the updates performed by its replication
SQL thread to its own binary log. For this option to have any effect, the replica must also be started
with the - - | 0g- bi n option to enable binary logging. See Section 2.6, “Replication and Binary
Logging Options and Variables”.

| og_sl ave_updat es is enabled when you want to chain replication servers. For example, you
might want to set up replication servers using this arrangement:

A->B->C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this
to work, B must be both a source and a replica. You must start both A and B with - - | og- bi n to
enable binary logging, and Bwith | og_sl ave_updat es enabled so that updates received from A
are logged by B to its binary log.

109

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html

Binary Logging Options and Variables

* | og_statenents_unsafe_for_binlog

Command-Line Format

- -1 og- st at enent s- unsaf e-f or -
bi nl og[={ OFF| ON}]

Introduced

5.7.11

System Variable

| og_statenents_unsafe_for_binlog

Scope Global
Dynamic Yes
Type Boolean
Default Value ON

If error 1592 is encountered, controls whether the generated warnings are added to the error log or

not.

e master _verify checksum

Command-Line Format

--master-verify-checksuni ={ OFF| ON}]

System Variable

master _verify checksum

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

Enabling this variable causes the source to verify events read from the binary log by examining
checksums, and to stop with an error in the event of a mismatch. nast er _verify checksum
is disabled by default; in this case, the source uses the event length from the binary log to verify
events, so that only complete events are read from the binary log.

e max_binl og_cache_si ze

Command-Line Format

- - max- bi nl og- cache-si ze=#

System Variable

max_bi nl og_cache_si ze

Scope Global

Dynamic Yes

Type Integer

Default Value (64-bit platforms) 18446744073709547520
Default Value (32-bit platforms) 4294967295

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520
Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

If a transaction requires more than this many bytes, the server generates a Mul ti - st at enent
transaction required nore than 'max_binl og_cache_si ze' bytes of storage

error. When gt i d_node is not ON, the maximum recommended value is 4GB, due to the fact that, in

110

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Binary Logging Options and Variables

this case, MySQL cannot work with binary log positions greater than 4GB; when gt i d_node is ON,
this limitation does not apply, and the server can work with binary log positions of arbitrary size.

If, because gt i d_node is not ON, or for some other reason, you need to guarantee that the binary
log does not exceed a given size maxsi ze, you should set this variable according to the formula
shown here:

max_bi nl og_cache_si ze <
(((maxsi ze - max_binl og_size) / max_connections) - 1000) / 1.2

This calculation takes into account the following conditions:

« The server writes to the binary log as long as the size before it begins to write is less than
mex_bi nl og_si ze.

e The server does not write single transactions, but rather groups of transactions. The maximum
possible number of transactions in a group is equal to max_connect i ons.

* The server writes data that is not included in the cache. This includes a 4-byte checksum for
each event; while this adds less than 20% to the transaction size, this amount is non-negible. In
addition, the server writesa G i d_| og_event for each transaction; each of these events can add
another 1 KB to what is written to the binary log.

max_bi nl og_cache_si ze sets the size for the transaction cache only; the upper limit for the
statement cache is governed by the max_bi nl og_st nt _cache_si ze system variable.

The visibility to sessions of max_bi nl og_cache_si ze matches that of the bi nl og_cache_si ze
system variable; in other words, changing its value affects only new sessions that are started after
the value is changed.

e max_binl og_si ze

Command-Line Format - - max- bi nl og- si ze=#
System Variable max_bi nl og_si ze
Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 4096

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). The minimum value is
4096 bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several
binary logs. Therefore, if you have big transactions, you might see binary log files larger than
max_bi nl og_si ze.

If max_relay | og_sizeis 0, the value of max_bi nl og_si ze applies to relay logs as well.

 max_binl og_stnt _cache_si ze

Command-Line Format - - max- bi nl og- st nt - cache-si ze=#

111

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Binary Logging Options and Variables

System Variable max_bi nl og_stnt _cache_si ze
Scope Global

Dynamic Yes

Type Integer

Default Value 18446744073709547520
Minimum Value 4096

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB
on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_bi nl og_stnt _cache_si ze sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_bi nl og _cache_si ze system variable.

sql _log_bin

System Variable sql _log _bin
Scope Session
Dynamic Yes

Type Boolean
Default Value ON

This variable controls whether logging to the binary log is enabled for the current session (assuming
that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for
the current session, set the session sql _| og_bi n variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to
the source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See System Variable Privileges.

It is not possible to set the session value of sql _| og_bi n within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If
you are using GTIDs for replication, this means that even when binary logging is later enabled again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime, so in effect those transactions are lost.

The global sgl _I og_bi n variable is read only and cannot be modified. The global scope is
deprecated; expect it to be removed in a future MySQL release.

e sync_bi nl og

Command-Line Format --sync- bi nl og=#
System Variable sync_bi nl og
Scope Global

Dynamic Yes

Type Integer

112

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html

Binary Logging Options and Variables

Default Value 1
Minimum Value 0
Maximum Value 4294967295

Controls how often the MySQL server synchronizes the binary log to disk.

e sync_bi nl og=0: Disables synchronization of the binary log to disk by the MySQL server.
Instead, the MySQL server relies on the operating system to flush the binary log to disk from time
to time as it does for any other file. This setting provides the best performance, but in the event of
a power failure or operating system crash, it is possible that the server has committed transactions
that have not been synchronized to the binary log.

« sync_bi nl og=1: Enables synchronization of the binary log to disk before transactions are
committed. This is the safest setting but can have a negative impact on performance due to
the increased number of disk writes. In the event of a power failure or operating system crash,
transactions that are missing from the binary log are only in a prepared state. This permits the
automatic recovery routine to roll back the transactions, which guarantees that no transaction is
lost from the binary log.

e sync_bi nl og=N, where Nis a value other than 0 or 1: The binary log is synchronized to disk
after N binary log commit groups have been collected. In the event of a power failure or operating
system crash, it is possible that the server has committed transactions that have not been flushed
to the binary log. This setting can have a negative impact on performance due to the increased
number of disk writes. A higher value improves performance, but with an increased risk of data
loss.

For the greatest possible durability and consistency in a replication setup that uses | nnoDB with
transactions, use these settings:

e sync_bi nl og=1.
e innodb flush I og at trx_commt=1.
Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqgl d that the flush has taken place, even though
it has not. In this case, the durability of transactions is not guaranteed even
with the recommended settings, and in the worst case, a power outage can
corrupt | nnoDB data. Using a battery-backed disk cache in the SCSI disk
controller or in the disk itself speeds up file flushes, and makes the operation
safer. You can also try to disable the caching of disk writes in hardware
caches.

e transaction wite_set _extraction

Command-Line Format --transaction-wite-set-
extraction[=val ue]

System Variable transaction_wite_set_extraction

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values (= 5.7.14) OFF
MURMUR32

113

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Global Transaction ID System Variables

XXHASH64

Valid Values (£ 5.7.13) OFF

MURMUR32

Defines the algorithm used to generate a hash identifying the writes associated with a transaction.

If you are using Group Replication, the hash value is used for distributed conflict detection and
handling. On 64-bit systems running Group Replication, we recommend setting this to XXHASH64

in order to avoid unnecessary hash collisions which result in certification failures and the roll back

of user transactions. See Group Replication Requirements. bi nl og_f or mat must be set to ROV
to change the value of this variable. If you change the value, the new value does not take effect on
replicas until after the replica has been stopped and restarted with STOP SLAVE and START SLAVE
statements.

Note

When WRI TESET or WRI TESET_SESSI ONis set as the value

for bi nl og_transacti on_dependency_tracki ng,
transaction_wite_set extracti on mustbe setto
specify an algorithm (not set to OFF). While the current value of
bi nl og_transacti on_dependency_tracki ngis WRI TESET
or \RI TESET_SESSI OV, you cannot change the value of
transaction_wite set _extraction.

2.6.5 Global Transaction ID System Variables

The MySQL Server system variables described in this section are used to monitor and control Global
Transaction Identifiers (GTIDs). For additional information, see Section 2.3, “Replication with Global
Transaction Identifiers”.

e binlog gtid sinple_recovery

Command-Line Format --binl og-gtid-sinpl e-recovery[={ OFF|
ON}]

System Variable bi nl og_gti d_si npl e_recovery

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable controls how binary log files are iterated during the search for GTIDs when MySQL
starts or restarts.

When bi nl og_gti d_si npl e_r ecover y=TRUE, which is the default, the values of

gtid executedandgtid purged are computed at startup based on the values of

Previ ous_gtids | og_event inthe most recent and oldest binary log files. For a description of
the computation, see The gt i d_pur ged System Variable. This setting accesses only two binary

log files during server restart. If all binary logs on the server were generated using MySQL 5.7.8 or
later and you are using MySQL 5.7.8 or later, bi nl og_gti d_si npl e_recover y=TRUE can always
safely be used.

With bi nl og_gtid_sinpl e_recovery=TRUE, gti d_execut ed and gti d_pur ged might be
initialized incorrectly in the following two situations:

< The newest binary log was generated by MySQL 5.7.5 or earlier, and gt i d_node was ON for
some hinary logs but OFF for the newest binary log.

114

https://dev.mysql.com/doc/refman/5.7/en/group-replication-requirements.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Global Transaction ID System Variables

e ASET @a=LOBAL. gti d_pur ged statement was issued on MySQL 5.7.7 or earlier, and the
binary log that was active at the time of the SET @AaELOBAL. gt i d_pur ged statement has not yet
been purged.

If an incorrect GTID set is computed in either situation, it remains incorrect even if the server is

later restarted with bi nl og_gti d_si npl e_recover y=FALSE. If either of these situations applies
on the server, set bi nl og_gti d_si npl e_r ecover y=FALSE before starting or restarting the
server. To check for the second situation, if you are using MySQL 5.7.7 or earlier, after issuing a
SET @a=LOBAL. gti d_pur ged statement note down the current binary log file name, which can be
checked using SHOW MASTER STATUS. If the server is restarted before this file has been purged,
then you should set bi nl og _gtid_si npl e _recover y=FALSE.

When bi nl og_gti d_sinpl e_recover y=FALSE is set, the method of computing
gtid _executedandgtid purged as described in The gti d_pur ged System Variable is
changed to iterate the binary log files as follows:

« Instead of using the value of Previ ous_gti ds_| og_event and GTID log events from the
newest binary log file, the computation for gt i d_execut ed iterates from the newest binary log
file, and uses the value of Previ ous_gtids | og event and any GTID log events from the first
binary log file where it finds a Previ ous_gti ds_| og_event value. If the server's most recent
binary log files do not have GTID log events, for example if gt i d_node=0ONwas used but the
server was later changed to gt i d_node=0FF, this process can take a long time.

« Instead of using the value of Previ ous_gti ds_| og_event from the oldest binary log file,
the computation for gt i d_pur ged iterates from the oldest binary log file, and uses the value
of Previ ous_gtids_| og_event from the first binary log file where it finds either a nonempty
Previ ous_gtids_| og_event value, or at least one GTID log event (indicating that the use of
GTIDs starts at that point). If the server's older binary log files do not have GTID log events, for
example if gt i d_node=0ONwas only set recently on the server, this process can take a long time.

In MySQL version 5.7.5, this variable was added as si npl i fi ed_binl og_gtid_recovery andin
MySQL version 5.7.6 it was renamed to bi nl og_gti d_si npl e_recovery.

enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=val ue]
System Variable enforce_gtid_consi stency
Scope Global
Dynamic Yes
Type Enumeration
Default Value OFF
Valid Values OFF
ON
WARN

Depending on the value of this variable, the server enforces GTID consistency by allowing execution
of only statements that can be safely logged using a GTID. You must set this variable to ON before
enabling GTID based replication.

The values that enf orce_gti d_consi st ency can be configured to are:
« OFF: all transactions are allowed to violate GTID consistency.

* ON: no transaction is allowed to violate GTID consistency.

115

https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html

Global Transaction ID System Variables

« WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this
case. WARN was added in MySQL 5.7.6.

Only statements that can be logged using GTID safe statements can be logged when
enforce_gtid_consi stency is set to O\, so the operations listed here cannot be used with this
option:

¢ CREATE TABLE ... SELECT statements
* CREATE TEMPORARY TABLE or DROP TEMPORARY TABLE statements inside transactions

« Transactions or statements that update both transactional and nontransactional tables. There is an
exception that nontransactional DML is allowed in the same transaction or in the same statement
as transactional DML, if all nontransactional tables are temporary.

--enforce-gtid-consi st ency only takes effect if binary logging takes place for a statement.

If binary logging is disabled on the server, or if statements are not written to the binary log because
they are removed by a filter, GTID consistency is not checked or enforced for the statements that are
not logged.

For more information, see Section 2.3.6, “Restrictions on Replication with GTIDs".

Prior to MySQL 5.7.6, the boolean enf orce_gti d_consi st ency defaulted to OFF. To maintain
compatibility with previous releases, in MySQL 5.7.6 the enumeration defaults to OFF, and setting
--enforce-gtid-consi st ency without a value is interpreted as setting the value to ON. The
variable also has multiple textual aliases for the values: 0=OFF=FALSE, 1=0ON=TRUE,2=WARN.
This differs from other enumeration types but maintains compatibility with the boolean type used
in previous versions. These changes impact on what is returned by the variable. Using SELECT
@OENFORCE_GTI D_CONSI STENCY, SHOW VARI ABLES LI KE ' ENFORCE_GTI D_CONSI STENCY' ,
and SELECT * FROM | NFORVATI ON_SCHEMA. VARI ABLES WHERE ' VARI ABLE_NAME' =

" ENFORCE_GTI D_CONSI STENCY" , all return the textual form, not the numeric form. This is an
incompatible change, since @AENFORCE_GTI D_CONSI STENCY returns the numeric form for
booleans but returns the textual form for SHOWand the Information Schema.

e gtid _executed

System Variable gtid_executed
Scope Global

Dynamic No

Type String

Unit set of GTIDs

When used with global scope, this variable contains a representation of the set of all transactions
executed on the server and GTIDs that have been set by a SET gt i d_pur ged statement. This
is the same as the value of the Execut ed_G i d_Set column in the output of SHOW MASTER
STATUS and SHOW SLAVE STATUS. The value of this variable is a GTID set, see GTID Sets for
more information.

When the server starts, @A=L OBAL. gt i d_execut ed is initialized. See
bi nl og_gti d_si npl e_recovery for more information on how binary logs are iterated to populate

116

https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Global Transaction ID System Variables

gti d_execut ed. GTIDs are then added to the set as transactions are executed, or if any SET
gti d_pur ged statement is executed.

The set of transactions that can be found in the binary logs at any given time is equal to
GTl D_SUBTRACT(@A=LOBAL. gti d_execut ed, @AGELOBAL. gti d_pur ged) ;thatis, to all
transactions in the binary log that have not yet been purged.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be
reset to an empty string. GTIDs are not otherwise removed from this set other than when the set is
cleared due to RESET NMASTER.

Prior to MySQL 5.7.7, this variable could also be used with session scope, where it contained a
representation of the set of transactions that are written to the cache in the current session. The
session scope was deprecated in MySQL 5.7.7.

e gtid_executed_conpression_period

Command-Line Format --gtid-execut ed-conpressi on- peri od=#
System Variable gti d_execut ed _conpression_period
Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967295

Compress the nysql . gt i d_execut ed table each time this many transactions have been
processed. When binary logging is enabled on the server, this compression method is not used,
and instead the mysql . gt i d_execut ed table is compressed on each binary log rotation.

When binary logging is disabled on the server, the compression thread sleeps until the specified
number of transactions have been executed, then wakes up to perform compression of the

nysql . gti d_execut ed table. Setting the value of this system variable to 0 means that the thread
never wakes up, so this explicit compression method is not used. Instead, compression occurs
implicitly as required.

See mysql.gtid_executed Table Compression for more information.

This variable was added in MySQL version 5.7.5 as execut ed_gti ds_conpr essi on_peri od
and renamed in MySQL version 5.7.6to gt i d_execut ed_conpr essi on_peri od.

e gtid_nopde

Command-Line Format --gtid- nrode=MODE

System Variable gtid_node

Scope Global

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF
OFF_PERM SSI VE
ON_PERM SSI VE
ON

117

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html

Global Transaction ID System Variables

Controls whether GTID based logging is enabled and what type of transactions the logs can contain.
Prior to MySQL 5.7.6, this variable was read-only and was set using - - gt i d- node at server startup
only. Prior to MySQL 5.7.5, starting the server with - - gt i d- node=0ON required that the server also
be started with the - - | og- bi n and - - | 0og- sl ave- updat es options. As of MySQL 5.7.5, this is no
longer a requirement. See mysql.gtid_executed Table.

MySQL 5.7.6 enables this variable to be set dynamically. You must have privileges sufficient to set
global system variables. See System Variable Privileges. enforce_gti d_consi st ency must
be set to ON before you can set gt i d_node=0ON. Before modifying this variable, see Section 2.4,
“Changing Replication Modes on Online Servers”.

Transactions logged in MySQL 5.7.6 and higher can be either anonymous or use GTIDs.
Anonymous transactions rely on binary log file and position to identify specific transactions. GTID
transactions have a unique identifier that is used to refer to transactions. The OFF_PERM SSI VE
and ON_PERM SSI VE modes added in MySQL 5.7.6 permit a mix of these transaction types in the
topology. The different modes are now:

* OFF: Both new and replicated transactions must be anonymous.

* OFF_PERM SSI VE: New transactions are anonymous. Replicated transactions can be either
anonymous or GTID transactions.

« ON_PERM SSI VE: New transactions are GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.

* ON: Both new and replicated transactions must be GTID transactions.

Changes from one value to another can only be one step at a time. For example, if gt i d_node is
currently set to OFF_PERM SSI VE, it is possible to change to OFF or ON_PERM SSI VE but not to ON.

In MySQL 5.7.6 and higher, the values of gt i d_pur ged and gti d_execut ed are persistent
regardless of the value of gt i d_node. Therefore even after changing the value of gt i d_node,
these variables contain the correct values. In MySQL 5.7.5 and earlier, the values of gt i d_pur ged
and gt i d_execut ed are not persistent while gt i d_node=0FF. Therefore, after changing

gti d_node to OFF, once all binary logs containing GTIDs are purged, the values of these variables
are lost.

e gtid_next

System Variable gtid_next

Scope Session

Dynamic Yes

Type Enumeration

Default Value AUTOVATI C

Valid Values AUTOVATI C
ANONYMOUS

118

https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html

Global Transaction ID System Variables

<UUl D>: <NUMBER>

This variable is used to specify whether and how the next GTID is obtained.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See System Variable Privileges.

gti d_next can take any of the following values:
« AUTOVATI C: Use the next automatically-generated global transaction ID.

« ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position
only.

¢ A global transaction ID in UUI D:NUVBER format.

Exactly which of the above options are valid depends on the setting of gt i d_node, see
Section 2.4.1, “Replication Mode Concepts” for more information. Setting this variable has no effect if
gti d_node is OFF.

After this variable has been set to UUl D:NUVMBER, and a transaction has been committed or rolled
back, an explicit SET GTl D_NEXT statement must again be issued before any other statement.

In MySQL 5.7.5 and higher, DROP TABLE or DROP TEMPORARY TABLE fails with an explicit
error when used on a combination of nontemporary tables with temporary tables, or of temporary
tables using transactional storage engines with temporary tables using nontransactional storage
engines. Prior to MySQL 5.7.5, when GTIDs were enabled but gt i d_next was not AUTOVATI C,
DROP TABLE did not work correctly when used with either of these combinations of tables. (Bug
#17620053)

In MySQL 5.7.1, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE,
STOP SLAVE, REPAI R TABLE, OPTI M ZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE
SERVER, ALTER SERVER, DROP SERVER, CACHE | NDEX, LOAD | NDEX | NTO CACHE, FLUSH, or
RESET when gt i d_next is set to any value other than AUTOVATI C; in such cases, the statement
fails with an error. Such statements are not disallowed in MySQL 5.7.2 and later. (Bug #16062608,
Bug #16715809, Bug #69045) (Bug #16062608)

gtid_owned

System Variable gti d_owned
Scope Global, Session
Dynamic No

Type String

Unit set of GTIDs

This read-only variable is primarily for internal use. Its contents depend on its scope.

« When used with global scope, gt i d_owned holds a list of all the GTIDs that are currently in use
on the server, with the IDs of the threads that own them. This variable is mainly useful for a multi-
threaded replica to check whether a transaction is already being applied on another thread. An
applier thread takes ownership of a transaction's GTID all the time it is processing the transaction,
so @l obal . gti d_owned shows the GTID and owner for the duration of processing. When
a transaction has been committed (or rolled back), the applier thread releases ownership of the
GTID.

* When used with session scope, gt i d_owned holds a single GTID that is currently in use by
and owned by this session. This variable is mainly useful for testing and debugging the use of

119

https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-server.html
https://dev.mysql.com/doc/refman/5.7/en/create-server.html
https://dev.mysql.com/doc/refman/5.7/en/alter-server.html
https://dev.mysql.com/doc/refman/5.7/en/drop-server.html
https://dev.mysql.com/doc/refman/5.7/en/cache-index.html
https://dev.mysql.com/doc/refman/5.7/en/load-index.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/reset.html

Global Transaction ID System Variables

GTIDs when the client has explicitly assigned a GTID for the transaction by setting gt i d_next .

In this case, @®essi on. gt i d_owned displays the GTID all the time the client is processing

the transaction, until the transaction has been committed (or rolled back). When the client has
finished processing the transaction, the variable is cleared. If gt i d_next =AUTOVATI Cis used for
the session, gt i d_owned is only populated briefly during the execution of the commit statement
for the transaction, so it cannot be observed from the session concerned, although it is listed if
@l obal . gti d_owned is read at the right point. If you have a requirement to track the GTIDs
that are handled by a client in a session, you can enable the session state tracker controlled by the
session_track gtids system variable.

e gtid _purged

System Variable gtid_purged
Scope Global
Dynamic Yes

Type String

Unit set of GTIDs

The global value of the gt i d_pur ged system variable (@@=LOBAL. gt i d_pur ged) is a GTID
set consisting of the GTIDs of all the transactions that have been committed on the server, but do
not exist in any binary log file on the server. gt i d_pur ged is a subset of gt i d_execut ed. The
following categories of GTIDs are in gt i d_pur ged:

* GTIDs of replicated transactions that were committed with binary logging disabled on the replica.
» GTIDs of transactions that were written to a binary log file that has now been purged.

* GTIDs that were added explicitly to the set by the statement SET @a5LOBAL. gt i d_pur ged.

When the server starts or restarts, the global value of gt i d_pur ged is initialized to a set of

GTIDs. For information on how this GTID set is computed, see The gt i d_pur ged System

Variable. If binary logs from MySQL 5.7.7 or older are present on the server, you might need to set
bi nl og_gti d_si npl e_recover y=FALSE in the server's configuration file to produce the correct
computation. See the description for bi nl og_gti d_si npl e_recovery for details of the situations
in which this setting is needed.

Issuing RESET MASTER causes the value of gt i d_pur ged to be reset to an empty string.

You can set the value of gt i d_pur ged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. An
example use case for this action is when you are restoring a backup of one or more databases on a
server, but you do not have the relevant binary logs containing the transactions on the server.

Important

GTIDs are only available on a server instance up to the number of non-
negative values for a signed 64-bit integer (2 to the power of 63, minus 1). If
you set the value of gt i d_pur ged to a number that approaches this limit,
subsequent commits can cause the server to run out of GTIDs and take the
action specified by bi nl og_error _acti on.

In MySQL 5.7, it is possible to update the value of gt i d_pur ged only when gti d_execut ed is
the empty string, and therefore gt i d_pur ged is the empty string. This is the case either when
replication has not been started previously, or when replication did not previously use GTIDs. Prior

120

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html

Common Replication Administration Tasks

to MySQL 5.7.6, gt i d_pur ged was also settable only when gti d_node=0ON. In MySQL 5.7.6 and
higher, gt i d_pur ged is settable regardless of the value of gt i d_node.

To replace the value of gt i d_pur ged with your specified GTID set, use the following statement:
SET @oBELOBAL. gtid _purged = 'gtid_set'
Note

If you are using MySQL 5.7.7 or earlier, after issuing a SET

@& OBAL. gti d_pur ged statement, you might need to set

binl og _gtid _sinple_recovery=FALSE in the server's configuration

file before restarting the server, otherwise gt i d_pur ged can be computed
incorrectly. See the description for bi nl og_gti d_si npl e_recovery for
details of the situations in which this setting is needed. If all binary logs on the
server were generated using MySQL 5.7.8 or later and you are using MySQL
5.7.8 or later, bi nl og_gtid_si npl e_recover y=TRUE (which is the default
setting from MySQL 5.7.7) can always safely be used.

2.7 Common Replication Administration Tasks

Once replication has been started it executes without requiring much regular administration. This
section describes how to check the status of replication and how to pause a replica.

2.7.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking
place and that there have been no errors between the replica and the source.

The SHOW SLAVE STATUS statement, which you must execute on each replica, provides information
about the configuration and status of the connection between the replica server and the source server.
From MySQL 5.7, the Performance Schema has replication tables that provide this information in a
more accessible form. See Performance Schema Replication Tables.

The SHOW STATUS statement also provided some information relating specifically to replicas. As of
MySQL version 5.7.5, the following status variables previously monitored using SHOWV STATUS were
deprecated and moved to the Performance Schema replication tables:

« Slave retried_transactions
e Slave_| ast_heart beat

* Sl ave_received_heartbeats
» Sl ave_heartbeat period

e Sl ave_runni ng

The replication heartbeat information shown in the Performance Schema replication tables lets

you check that the replication connection is active even if the source has not sent events to

the replica recently. The source sends a heartbeat signal to a replica if there are no updates

to, and no unsent events in, the binary log for a longer period than the heartbeat interval. The

MASTER HEARTBEAT _PERI OD setting on the source (set by the CHANGE MASTER TO statement)
specifies the frequency of the heartbeat, which defaults to half of the connection timeout interval for the
replica (sl ave_net tinmeout). Thereplication_connection_status Performance Schema
table shows when the most recent heartbeat signal was received by a replica, and how many heartbeat
signals it has received.

If you are using the SHOW SLAVE STATUS statement to check on the status of an individual replica,
the statement provides the following information:

nmysqgl > SHOW SLAVE STATUS\ G

121

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_retried_transactions
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_last_heartbeat
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_received_heartbeats
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_heartbeat_period
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_running
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Checking Replication Status

LEEEEEEEEEEEEEEEEEEEEEEEEEE

Slave_| O State
Mast er _Host :

Mast er _User :

Mast er _Port:

Connect _Retry:

Master _Log_File
Read_Mast er _Log_Pos

Rel ay_Log_File

Rel ay_Log_Pos:

Rel ay_Master_Log_File
Sl ave_| O_Runni ng

Sl ave_SQL_Runni ng

Repl i cat e_Do_DB:

Repli cate_| gnore_DB
Repli cate_Do_Tabl e
Replicate_| gnore_Tabl e
Replicate_WI|d_Do_Tabl e
Replicate_WId_| gnore_Tabl e
Last _Errno

Last _Error

Ski p_Count er :
Exec_Mast er _Log_Pos

Rel ay_Log_Space

Until _Condition

Until _Log_File

Until _Log_Pos

Mast er _SSL_Al | owed:
Master _SSL_CA File

Mast er _SSL_CA Pat h
Master _SSL_Cert:

Mast er _SSL_Ci pher

Mast er _SSL_Key:
Seconds_Behi nd_Mast er
Master _SSL_Verify_Server_Cert:
Last _| O Errno
Last _| O Error:

Last _SQ._Errno

Last _SQL_Error
Replicate_| gnore_Server_|ds

kkkkkkkkkkhkkhkkhkkkkkkkkkk &k %
row

Waiting for naster to send event
sourcel

r oot

3306

60

mysql - bi n. 000004

931
replical-rel ay- bi n. 000056
950

nmysql - bi n. 000004

Yes

Yes

931
1365
None

0
No

0
No
0
0

0

The key fields from the status report to examine are:

» Slave_ | O St at e: The current status of the replica. See Replication Replica I/O Thread States, and

Replication Replica SQL Thread States, for more information.

Sl ave_| O Runni ng: Whether the 1/O thread for reading the source's binary log is running.
Normally, you want this to be Yes unless you have not yet started replication or have explicitly
stopped it with STOP SLAVE.

Sl ave _SQL_Runni ng: Whether the SQL thread for executing events in the relay log is running. As
with the 1/O thread, this should normally be Yes.

Last 1O Error,Last SQ. Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

Seconds_Behi nd_Mast er : The number of seconds that the replication SQL thread is behind
processing the source's binary log. A high number (or an increasing one) can indicate that the replica
is unable to handle events from the source in a timely fashion.

A value of 0 for Seconds_Behi nd_NMast er can usually be interpreted as meaning that the replica
has caught up with the source, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between source and replica is broken but the replication 1/0
thread has not yet noticed this—that is, sl ave_net _ti neout has not yet elapsed.

It is also possible that transient values for Seconds_Behi nd_Mast er may not reflect
the situation accurately. When the replication SQL thread has caught up on 1/O,
Seconds_Behi nd_Mast er displays 0; but when the replication I/O thread is still queuing up a new

122

https://dev.mysql.com/doc/refman/5.7/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html

Pausing Replication on the Replica

event, Seconds_Behi nd_Mast er may show a large value until the SQL thread finishes executing
the new event. This is especially likely when the events have old timestamps; in such cases, if you
execute SHOW SLAVE STATUS several times in a relatively short period, you may see this value
change back and forth repeatedly between 0 and a relatively large value.

Several pairs of fields provide information about the progress of the replica in reading events from the
source's binary log and processing them in the relay log:

e (Master _Log file, Read Master Log_Pos): Coordinates in the source's binary log indicating
how far the replication 1/O thread has read events from that log.

* (Rel ay_Master _Log Fil e, Exec_Master_Log_Pos): Coordinates in the source's binary log
indicating how far the replication SQL thread has executed events received from that log.

* (Rel ay_Log_Fil e, Rel ay_Log_Pos): Coordinates in the replica's relay log indicating how
far the replication SQL thread has executed the relay log. These correspond to the preceding
coordinates, but are expressed in the replica's relay log coordinates rather than the source's binary
log coordinates.

On the source, you can check the status of connected replicas using SHOW PROCESSLI ST to examine
the list of running processes. Replica connections have Bi nl og Dunp in the Conmand field:

nysqgl > SHOW PROCESSLI ST \ G

khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkkhkkkkkkkkx* 4 r ow khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkx*

Id: 10
User: root
Host: replical: 58371
db: NULL
Conmand: Bi nl og Dunp
Tinme: 777
State: Has sent all binlog to slave; waiting for binlog to be updated
I nfo: NULL

Because it is the replica that drives the replication process, very little information is available in this
report.

For replicas that were started with the - - r epor t - host option and are connected to the source, the
SHOW SLAVE HOSTS statement on the source shows basic information about the replicas. The output
includes the ID of the replica server, the value of the - - r epor t - host option, the connecting port, and
source ID:

nysqgl > SHOW SLAVE HOSTS;

drmccosccoo=ao drmccoccooos dhmoc=oa dhmccocccosccoosooosa drmccocccoo=ao +
| Server_id | Host | Port | Rpl_recovery rank | Master_id |
drmccosccoo=ao drmccoccooos dhmoc=oa dhmccocccosccoosooosa drmccocccoo=ao +
| 10 | replical | 3306 | 0| 1|
drmccosccoo=ao drmccoccooos dhmoc=oa dhmccocccosccoosooosa drmccocccoo=ao +

1 rowin set (0.00 sec)

2.7.2 Pausing Replication on the Replica

You can stop and start replication on the replica using the STOP SLAVE and START SLAVE
statements.

To stop processing of the binary log from the source, use STOP SLAVE:

mysql > STOP SLAVE;

When replication is stopped, the replication I/O thread stops reading events from the source's binary
log and writing them to the relay log, and the replication SQL thread stops reading events from the
relay log and executing them. You can pause the replication 1/0O and SQL threads individually by
specifying the thread type:

nysqgl > STOP SLAVE | O THREAD,
nysqgl > STOP SLAVE SQ._THREAD,

123

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html

Skipping Transactions

To start execution again, use the START SLAVE statement:

nysqgl > START SLAVE;

To start a particular thread, specify the thread type:

nysql > START SLAVE | O THREAD;
nysql > START SLAVE SQL_THREAD;

For a replica that performs updates only by processing events from the source, stopping only the
replication SQL thread can be useful if you want to perform a backup or other task. The replication 1/0
thread continues to read events from the source but they are not executed. This makes it easier for the
replica to catch up when you restart the replication SQL thread.

Stopping only the replication I/O thread enables the events in the relay log to be executed by the
replication SQL thread up to the point where the relay log ends. This can be useful when you want to
pause execution to catch up with events already received from the source, when you want to perform
administration on the replica but also ensure that it has processed all updates to a specific point. This
method can also be used to pause event receipt on the replica while you conduct administration on the
source. Stopping the 1/O thread but permitting the SQL thread to run helps ensure that there is not a
massive backlog of events to be executed when replication is started again.

2.7.3 Skipping Transactions

If replication stops due to an issue with an event in a replicated transaction, you can resume replication
by skipping the failed transaction on the replica. Before skipping a transaction, ensure that the
replication 1/O thread is stopped as well as the replication SQL thread.

First you need to identify the replicated event that caused the error. Details of the error and

the last successfully applied transaction are recorded in the Performance Schema table
replication_applier_status_by worker.You can use nysql bi nl og to retrieve and display
the events that were logged around the time of the error. For instructions to do this, see Point-in-Time
(Incremental) Recovery. Alternatively, you can issue SHON RELAYLOG EVENTS on the replica or SHOWV
Bl NLOG EVENTS on the source.

Before skipping the transaction and restarting the replica, check these points:

* Is the transaction that stopped replication from an unknown or untrusted source? If so, investigate
the cause in case there are any security considerations that indicate the replica should not be
restarted.

» Does the transaction that stopped replication need to be applied on the replica? If so, either make
the appropriate corrections and reapply the transaction, or manually reconcile the data on the replica.

 Did the transaction that stopped replication need to be applied on the source? If not, undo the
transaction manually on the server where it originally took place.

To skip the transaction, choose one of the following methods as appropriate:

 When GTIDs are in use (gt i d_node is ON), see Section 2.7.3.1, “Skipping Transactions With
GTIDs".

* When GTIDs are not in use or are being phased in (gt i d_node is OFF, OFF _PERM SSI VE, or
ON_PERM SSI VE), see Section 2.7.3.2, “Skipping Transactions Without GTIDs".

To restart replication after skipping the transaction, issue START SLAVE, with the FOR CHANNEL
clause if the replica is a multi-source replica.

2.7.3.1 Skipping Transactions With GTIDs

When GTIDs are in use (gt i d_node is ON), the GTID for a committed transaction is persisted on
the replica even if the content of the transaction is filtered out. This feature prevents a replica from

124

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/5.7/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/5.7/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Skipping Transactions

retrieving previously filtered transactions when it reconnects to the source using GTID auto-positioning.
It can also be used to skip a transaction on the replica, by committing an empty transaction in place of
the failing transaction.

If the failing transaction generated an error in a worker thread, you can obtain its GTID

directly from the APPLYI NG_TRANSACTI ON field in the Performance Schema table
replication_applier_status_ by worker. To see what the transaction is, issue SHOW
RELAYLOG EVENTS on the replica or SHOW Bl NLOG EVENTS on the source, and search the output for
a transaction preceded by that GTID.

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), to skip it, commit an empty transaction on the replica that
has the same GTID as the failing transaction. For example:

SET GTI D_NEXT=' aaa- bbb-ccc-ddd: N ;
BEG N;

COWM T;

SET GTI D_NEXT=' AUTOWATI C ;

The presence of this empty transaction on the replica means that when you issue a START SLAVE
statement to restart replication, the replica uses the auto-skip function to ignore the failing transaction,
because it sees a transaction with that GTID has already been applied. If the replica is a multi-source
replica, you do not need to specify the channel name when you commit the empty transaction, but you
do need to specify the channel name when you issue START SLAVE.

Note that if binary logging is in use on this replica, the empty transaction enters the replication stream
if the replica becomes a source or primary in the future. If you need to avoid this possibility, consider
flushing and purging the replica's binary logs, as in this example:

FLUSH LCGS;
PURGE BI NARY LOGS TO ' bi nl og. 000146' ;

The GTID of the empty transaction is persisted, but the transaction itself is removed by purging the
binary log files.

2.7.3.2 Skipping Transactions Without GTIDs

To skip failing transactions when GTIDs are not in use or are being phased in (gt i d_node is OFF,
OFF_PERM SSI VE, or ON_PERM SSI VE), you can skip a specified number of events by issuing a SET
GLOBAL sqgl _sl ave_ski p_count er statement. Alternatively, you can skip past an event or events
by issuing a CHANGE MASTER TOstatement to move the source's binary log position forward.

When you use these methods, it is important to understand that you are not necessarily skipping a
complete transaction, as is always the case with the GTID-based method described previously. These
non-GTID-based methods are not aware of transactions as such, but instead operate on events.

The binary log is organized as a sequence of groups known as event groups, and each event group
consists of a sequence of events.

» For transactional tables, an event group corresponds to a transaction.
» For nontransactional tables, an event group corresponds to a single SQL statement.
A single transaction can contain changes to both transactional and nontransactional tables.

When you use a SET GLOBAL sql _sl ave_ski p_count er statement to skip events and the
resulting position is in the middle of an event group, the replica continues to skip events until it
reaches the end of the group. Execution then starts with the next event group. The CHANGE MASTER
TOstatement does not have this function, so you must be careful to identify the correct location

to restart replication at the beginning of an event group. However, using CHANGE MASTER TO
means you do not have to count the events that need to be skipped, as you do with a SET GLOBAL
sql _sl ave_ski p_count er, and instead you can just specify the location to restart.

125

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Skipping Transactions

Skipping Transactions With SET GLOBAL sql _sl ave_ski p_counter

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), count the number of events that you need to skip. One
event normally corresponds to one SQL statement in the binary log, but note that statements that use
AUTO | NCREMENT or LAST | NSERT | D() count as two events in the binary log.

If you want to skip the complete transaction, you can count the events to the end of the

transaction, or you can just skip the relevant event group. Remember that with SET GLOBAL

sql _sl ave_ski p_count er, the replica continues to skip to the end of an event group. Make sure
you do not skip too far forward and go into the next event group or transaction, as this then causes it to
be skipped as well.

Issue the SET statement as follows, where Nis the number of events from the source to skip:

SET GLOBAL sql _sl ave_skip_counter = N
This statement cannot be issued if gt i d_node=0ONis set, or if the replica threads are running.

The SET GLOBAL sql sl ave ski p_count er statement has no immediate effect. When you issue
the START SLAVE statement for the next time following this SET statement, the new value for the
system variable sql _sl ave_ski p_count er is applied, and the events are skipped. That START
SLAVE statement also automatically sets the value of the system variable back to 0. If the replica is

a multi-source replica, when you issue that START SLAVE statement, the FOR CHANNEL clause is
required. Make sure that you name the correct channel, otherwise events are skipped on the wrong
channel.

Skipping Transactions With CHANGE MASTER TO

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), identify the coordinates (file and position) in the source's
binary log that represent a suitable position to restart replication. This can be the start of the event
group following the event that caused the issue, or the start of the next transaction. The replication /O
thread begins reading from the source at these coordinates the next time the thread starts, skipping the
failing event. Make sure that you have identified the position accurately, because this statement does
not take event groups into account.

Issue the CHANGE MASTER TOstatement as follows, where sour ce_| og_nane is the binary log
file that contains the restart position, and sour ce_| og_pos is the number representing the restart
position as stated in the binary log file:

CHANGE MASTER TO MASTER LOG FI LE=' source_| og_nane', MASTER LOG PCS=source_| og _pos;

If the replica is a multi-source replica, you must use the FOR CHANNEL clause to nhame the appropriate
channel on the CHANGE MASTER TO statement.

This statement cannot be issued if MVASTER _AUTO _PGCSI TlI ON=1 is set, or if the replication threads are
running. If you need to use this method of skipping a transaction when MASTER AUTO PGCSI TI ON=1 is
normally set, you can change the setting to MASTER _AUTO_PGSI TI ON=0 while issuing the statement,
then change it back again afterwards. For example:

CHANGE MASTER TO MASTER _AUTO PGSI TI ON=0, MASTER LOG FI LE=' bi nl 0og. 000145' , MASTER LOG PCS=235;
CHANGE MASTER TO MASTER _AUTO PGCSI Tl ON=1,

126

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Chapter 3 Replication Solutions

Table of Contents

3.1 Using Replication fOor BACKUPSccuuiiiiiiiiei ettt e e e e e e 127
3.1.1 Backing Up a Replica Using MySqldumpcoouiiiiiiiii e 128
3.1.2 Backing Up Raw Data from a RepliCaccouuiiiiiiiiiiiiice e 128
3.1.3 Backing Up a Source or Replica by Making It Read Onlycccooeiiiiiiiiiiiniiiies 129

3.2 Handling an Unexpected Halt of @ RepliCaccouuiiiiiiiiii e 131

3.3 Using Replication with Different Source and Replica Storage ENginescc.cccoeveiinieinneennnn. 133

3.4 Using Replication fOr SCAIE-OULciiuuiiiiiii e 134

3.5 Replicating Different Databases to Different RepliCasocouviiiiiiiiiiiiiiiie e, 136

3.6 Improving Replication PerformanCeooouuiiiiiiiii e 137

3.7 Switching Sources DUNNG FalOVEToiiuiiii e 138

3.8 Setting Up Replication to Use Encrypted CONNECHIONSoiuuiiiiiiiiiiiii e 140

3.9 Semisynchronous RePHCAtIONoiiuiiiii e 141
3.9.1 Semisynchronous Replication Administrative Interfaceccoocooviiiiiiiiiiinenn, 144
3.9.2 Semisynchronous Replication Installation and Configurationcc.cccoiviiiiiiiinnennnn. 145
3.9.3 Semisynchronous Replication MONItOrNGcoouuiiiiiiiiiiiiie e 147

3.10 Delayed REPICALIONietiiieeei ettt e et e et e et e e e ea e eans 147

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the source and replicas, see Section 3.3,
“Using Replication with Different Source and Replica Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of
applications that use the solution. See Section 3.4, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replicas. See Section 3.5, “Replicating Different Databases to Different Replicas”

As the number of replicas increases, the load on the source can increase and lead to reduced
performance (because of the need to replicate the binary log to each replica). For tips on improving
your replication performance, including using a single secondary server as a replication source server,
see Section 3.6, “Improving Replication Performance”.

For guidance on switching sources, or converting replicas into sources as part of an emergency failover
solution, see Section 3.7, “Switching Sources During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-
step instructions, see Section 3.8, “Setting Up Replication to Use Encrypted Connections”.

3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the source to a replica, and then back up
the replica. The replica can be paused and shut down without affecting the running operation of the
source, so you can produce an effective snapshot of “live” data that would otherwise require the source
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore
two choices:

127

Backing Up a Replica Using mysqgldump

« If you are using replication as a solution to enable you to back up the data on the source, and the
size of your database is not too large, the nysql dunp tool may be suitable. See Section 3.1.1,
“Backing Up a Replica Using mysqgldump”.

» For larger databases, where nysql dunp would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that enable you to re-create the replica in the event of a replica failure. For more
information, see Section 3.1.2, “Backing Up Raw Data from a Replica”.

Another backup strategy, which can be used for either source or replica servers, is to put the server in
a read-only state. The backup is performed against the read-only server, which then is changed back to
its usual read/write operational status. See Section 3.1.3, “Backing Up a Source or Replica by Making It
Read Only”.

3.1.1 Backing Up a Replica Using mysqgldump

Using mysgl dunp to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see mysqldump — A Database Backup Program). Because the format of the information is
SQL statements, the file can easily be distributed and applied to running servers in the event that
you need access to the data in an emergency. However, if the size of your data set is very large,
nysql dunp may be impractical.

When using nysql dunp, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
nmysql adm n:

$> nysql adnmi n st op-sl ave
Alternatively, you can stop only the replication SQL thread to pause event execution:

$> nysqgl -e ' STOP SLAVE SQ._THREAD;'

This enables the replica to continue to receive data change events from the source's binary log
and store them in the relay logs using the 1/O thread, but prevents the replica from executing these
events and changing its data. Within busy replication environments, permitting the 1/0 thread to run
during backup may speed up the catch-up process when you restart the replication SQL thread.

2. Runnysqgl dunp to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:

$> nysql dunp --all-databases > fulldb. dunp

3. Once the dump has completed, start replica operations again:

$> nysqgl adnmin start-sl ave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica's ability to keep up with events from the source. See
Section 2.7.1, “Checking Replication Status”. If the replica is unable to keep up, you may want to add
another replica and distribute the backup process. For an example of how to configure this scenario,
see Section 3.5, “Replicating Different Databases to Different Replicas”.

3.1.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replica should take place while your replica server is shut down. If the MySQL server is still running,

128

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

Backing Up a Source or Replica by Making It Read Only

background tasks may still be updating the database files, particularly those involving storage engines
with background processes such as | nnoDB. With | nnoDB, these problems should be resolved during
crash recovery, but since the replica server can be shut down during the backup process without
affecting the execution of the source it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> nysqgl adm n shut down

2. Copy the data files. You can use any suitable copying or archive utility, including cp, t ar or
W nZi p. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

$> tar cf /tnp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> nysql d_safe &

Under Windows:

C\> "C\Program Fi | es\ \ySQL\ MySQL Server 5.7\ bin\nysql d"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be
able to restore the data and operate as a replica (for example, in the event of failure of the replica),
then in addition to the replica's data, you should also back up the replica status files, the replication
metadata repositories, and the relay log files. These files are needed to resume replication after you
restore the replica's data.

If you lose the relay logs but still have the r el ay- | og. i nf o file, you can check it to determine how
far the replication SQL thread has executed in the source's binary logs. Then you can use CHANGE
MASTER TOwith the MASTER LOG FI LE and MASTER LOG PGS options to tell the replica to re-read
the binary logs from that point. This requires that the binary logs still exist on the source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD- * files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of

the sl ave_ | oad_t npdi r system variable. If the server was not started with that variable set, the
directory location is the value of the t npdi r system variable.

3.1.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the r ead_onl y system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.
2. Perform the backup.
3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as nysql dunp
(see mysgldump — A Database Backup Program). You should not attempt to
use these instructions to make a binary backup by copying files directly because
the server may still have modified data cached in memory and not flushed to
disk.

129

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

Backing Up a Source or Replica by Making It Read Only

The following instructions describe how to do this for a source server and for a replica server. For both
scenarios discussed here, suppose that you have the following replication setup:

e A source server S1

» Areplica server R1 that has S1 as its source

A client C1 connected to S1

A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the r ead_onl y
variable are performed on the server to be backed up and do not propagate to any replicas of that
server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

nysqgl > FLUSH TABLES W TH READ LOCK;
nysqgl > SET GLOBAL read_only = ON,

While S1 is in a read-only state, the following properties are true:

* Requests for updates sent by C1 to S1 block because the server is in read-only mode.
» Requests for query results sent by C1 to S1 succeed.

* Making a backup on S1 is safe.

» Making a backup on R1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2

While S1 is read only, perform the backup. For example, you can use nysql dunp.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

nmysqgl > SET GLOBAL read_only = OFF;
nysql > UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

This strategy applies to backing up a source server in a replication setup, but can also be used for a
single server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

nysqgl > FLUSH TABLES W TH READ LOCK;
nmysqgl > SET GLOBAL read_only = ON,

While R1 is in a read-only state, the following properties are true:
» The source S1 continues to operate, so making a backup on the source is not safe.
» The replica R1 is stopped, so making a backup on the replica R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing
a backup for a while is not a problem because it does not affect the entire network, and the system

is still running during the backup. In particular, clients can still perform updates on the source server,
which remains unaffected by backup activity on the replica.

130

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only

Handling an Unexpected Halt of a Replica

While R1 is read only, perform the backup. For example, you can use nysql dunp.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing
these statements:

nysqgl > SET GLOBAL read_only = OFF;
mysql > UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the binary log of the source.

3.2 Handling an Unexpected Halt of a Replica

In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-
safe) it must be possible for the replica to recover its state before halting. This section describes the
impact of an unexpected halt of a replica during replication, and how to configure a replica for the best
chance of recovery to continue replication.

After an unexpected halt of a replica, upon restart the replication SQL thread must recover information
about which transactions have been executed already. The information required for recovery is stored
in the replica's applier metadata repository. In older MySQL Server versions, this repository could
only be created as a file in the data directory that was updated after the transaction had been applied.
In MySQL 5.7 you can instead use an | nnoDB table named nysql . sl ave_relay | og_infoto
store the applier metadata repository. As a table, updates to the applier metadata repository are
committed together with the transactions, meaning that the replica's progress information recorded

in that repository is always consistent with what has been applied to the database, even in the event
of an unexpected server halt. To configure MySQL 5.7 to store the applier metadata repository as

an | nnoDB table, set the system variablerel ay | og_i nf o_reposi t ory to TABLE. For more
information on the applier metadata repository, see Section 5.4, “Relay Log and Replication Metadata
Repositories”.

The recovery process by which a replica recovers from an unexpected halt varies depending on the
configuration of the replica. The details of the recovery process are influenced by the chosen method of
replication, whether the replica is single-threaded or multithreaded, and the setting of relevant system
variables. The overall aim of the recovery process is to identify what transactions had already been
applied on the replica's database before the unexpected halt occurred, and retrieve and apply the
transactions that the replica missed following the unexpected halt.

» For GTID-based replication, the recovery process needs the GTIDs of the transactions that were
already received or committed by the replica. The missing transactions can be retrieved from the
source using GTID auto-positioning, which automatically compares the source's transactions to the
replica’s transactions and identifies the missing transactions.

 For file position based replication, the recovery process needs an accurate replication SQL thread
(applier) position showing the last transaction that was applied on the replica. Based on that position,
the replication 1/O thread (receiver) retrieves from the source's binary log all of the transactions that
should be applied on the replica from that point on.

Using GTID-based replication makes it easiest to configure replication to be resilient to unexpected
halts. GTID auto-positioning means the replica can reliably identify and retrieve missing transactions,
even if there are gaps in the sequence of applied transactions.

The following information provides combinations of settings that are appropriate for different types of
replica to guarantee recovery as far as this is under the control of replication.

Important

Some factors outside the control of replication can have an impact on the
replication recovery process and the overall state of replication after the

131

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

Handling an Unexpected Halt of a Replica

recovery process. In particular, the settings that influence the recovery process
for individual storage engines might result in transactions being lost in the event
of an unexpected halt of a replica, and therefore unavailable to the replication
recovery process. The i nnodb_flush | og at trx _conm t=1 setting
mentioned in the list below is a key setting for a replication setup that uses

I nnoDB with transactions. However, other settings specific to | nnoDB or to
other storage engines, especially those relating to flushing or synchronization,
can also have an impact. Always check for and apply recommendations made
by your chosen storage engines about crash-safe settings.

The following combination of settings on a replica is the most resilient to unexpected halts:

* When GTID-based replication is in use (gt i d_node=0N), set MASTER_AUTO_PCSI Tl ON=1, which

activates GTID auto-positioning for the connection to the source to automatically identify and retrieve
missing transactions. This option is set using a CHANGE MASTER TO statement. If the replica has
multiple replication channels, you need to set this option for each channel individually. For details

of how GTID auto-positioning works, see Section 2.3.3, “GTID Auto-Positioning”. When file position
based replication is in use, MASTER_AUTO_POSI Tl ON=1 is not used, and instead the binary log
position or relay log position is used to control where replication starts.

Setsync_rel ay_| og=1, which instructs the replication 1/O thread to synchronize the relay log to
disk after each received transaction is written to it. This means the replica's record of the current
position read from the source's binary log (in the source metadata repository) is never ahead of

the record of transactions saved in the relay log. Note that although this setting is the safest, it

is also the slowest due to the number of disk writes involved. With sync_relay | og > 1, or
sync_rel ay_| og=0 (where synchronization is handled by the operating system), in the event of an
unexpected halt of a replica there might be committed transactions that have not been synchronized
to disk. Such transactions can cause the recovery process to fail if the recovering replica, based

on the information it has in the relay log as last synchronized to disk, tries to retrieve and apply the
transactions again instead of skipping them. Setting sync_rel ay_| og=1 is particularly important
for a multi-threaded replica, where the recovery process fails if gaps in the sequence of transactions
cannot be filled using the information in the relay log. For a single-threaded replica, the recovery
process only needs to use the relay log if the relevant information is not available in the applier
metadata repository.

Setinnodb_flush | og at trx_comm t=1, which synchronizes the | nnoDB logs to disk before
each transaction is committed. This setting, which is the default, ensures that | nnoDB tables and
the | nnoDB logs are saved on disk so that there is no longer a requirement for the information in
the relay log regarding the transaction. Combined with the setting sync_r el ay_| og=1, this setting
further ensures that the content of the | nnoDB tables and the | nnoDB logs is consistent with the
content of the relay log at all times, so that purging the relay log files cannot cause unfillable gaps in
the replica's history of transactions in the event of an unexpected halt.

Setrelay | og_info_repository = TABLE, which stores the replication SQL thread position
in the | nnoDB table nysql . sl ave_rel ay_| og_i nf o, and updates it together with the transaction
commit to ensure a record that is always accurate. This setting is not the default in MySQL 5.7. If the
default FI LE setting is used, the information is stored in a file in the data directory that is updated
after the transaction has been applied. This creates a risk of losing synchrony with the source
depending at which stage of processing a transaction the replica halts at, or even corruption of the
file itself. With the settingrel ay_| og_i nfo_repository = FI LE, recovery is not guaranteed.

Setrelay | og recovery = ON, which enables automatic relay log recovery immediately
following server startup. This global variable defaults to OFF and is read-only at runtime, but you can
set it to ONwith the - -r el ay-| og-recovery option at replica startup following an unexpected
halt of a replica. Note that this setting ignores the existing relay log files, in case they are corrupted
or inconsistent. The relay log recovery process starts a new relay log file and fetches transactions
from the source beginning at the replication SQL thread position recorded in the applier metadata
repository. The previous relay log files are removed over time by the replica's normal purge
mechanism.

132

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

Using Replication with Different Source and Replica Storage Engines

For a multithreaded replica, from MySQL 5.7.13, settingrel ay | og _recovery = ONautomatically
handles any inconsistencies and gaps in the sequence of transactions that have been executed from
the relay log. These gaps can occur when file position based replication is in use. (For more details,
see Section 4.1.32, “Replication and Transaction Inconsistencies”.) The relay log recovery process
deals with gaps using the same method as the START SLAVE UNTI L SQL AFTER MIS GAPS
statement would. When the replica reaches a consistent gap-free state, the relay log recovery process
goes on to fetch further transactions from the source beginning at the replication SQL thread position.
In MySQL versions prior to MySQL 5.7.13, this process was not automatic and required starting

the server withrel ay | og recovery = OFF, starting the replica with START SLAVE UNTI L
SQL_AFTER _MIS_GAPS to fix any transaction inconsistencies, and then restarting the replica with
relay | og recovery = ON When GTID-based replication is in use, from MySQL 5.7.28 a
multithreaded replica checks first whether MVASTER _AUTO POSI Tl ONis set to ON, and if it is, omits the
step of calculating the transactions that should be skipped or not skipped, so that the old relay logs are
not required for the recovery process.

3.3 Using Replication with Different Source and Replica Storage
Engines

It does not matter for the replication process whether the source table on the source and the replicated
table on the replica use different engine types. In fact, the def aul t _st or age_engi ne system
variable is not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 3.4, “Using Replication for Scale-Out”), you want to use | nnoDB tables on the source to take
advantage of the transactional functionality, but use Myl SAMon the replicas where transaction support
is not required because the data is only read. When using replication in a data-logging environment you
may want to use the Ar chi ve storage engine on the replica.

Configuring different engines on the source and replica depends on how you set up the initial
replication process:

* If you used nysqgl dunp to create the database snapshot on your source, you could edit the dump
file text to change the engine type used on each table.

Another alternative for mysql dunp is to disable engine types that you do not want to use on the
replica before using the dump to build the data on the replica. For example, you can add the - -

ski p- f eder at ed option on your replica to disable the FEDERATED engine. If a specific engine
does not exist for a table to be created, MySQL uses the default engine type, usually Myl SAM (This
requires that the NO_ ENG NE_SUBSTI TUTI ON SQL mode is not enabled.) If you want to disable
additional engines in this way, you may want to consider building a special binary to be used on the
replica that supports only the engines you want.

« If you are using raw data files (a binary backup) to set up the replica, you cannot change the initial
table format. Instead, use ALTER TABLE to change the table types after the replica has been
started.

» For new source/replica replication setups where there are currently no tables on the source, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another
engine type, follow these steps:

1. Stop the replica from running replication updates:

nysql > STOP SLAVE;
This enables you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENG NE=' engi ne_t ype' for each table to be changed.

133

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_engine_substitution
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Using Replication for Scale-Out

3. Start the replication process again:

nysql > START SLAVE;

Although the def aul t _st or age_engi ne variable is not replicated, be aware that CREATE TABLE
and ALTER TABLE statements that include the engine specification are correctly replicated to the
replica. For example, if you have a CSV table and you execute:

nysql > ALTER TABLE csvt abl e Engi ne=" Myl SAM ;

The previous statement is replicated to the replica and the engine type on the replica is converted to
My | SAM even if you have previously changed the table type on the replica to an engine other than
CSV. If you want to retain engine differences on the source and replica, you should be careful to use
the def aul t _st or age_engi ne variable on the source when creating a new table. For example,
instead of:

nysqgl > CREATE TABLE tabl ea (columa int) Engi ne=M/| SAM

Use this format:

nmysql > SET def aul t _st or age_engi ne=My| SAM
nmysql > CREATE TABLE tablea (columa int);

When replicated, the def aul t _st or age_engi ne variable will be ignored, and the CREATE TABLE
statement executes on the replica using the replica's default engine.

3.4 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
gueries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one source to one or more replicas, using replication
for scale-out works best in an environment where you have a high number of reads and low number

of writes/updates. Most websites fit into this category, where users are browsing the website, reading
articles, posts, or viewing products. Updates only occur during session management, or when making a
purchase or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replicas, while still enabling
your web servers to communicate with the source when a write is required. You can see a sample
replication layout for this scenario in Figure 3.1, “Using Replication to Improve Performance During
Scale-Out”.

134

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Using Replication for Scale-Out

Figure 3.1 Using Replication to Improve Performance During Scale-Out

[MySQL Source ‘
| | |
Rephiation Repﬁiation Repliiation
| Replica 1 Replica 2 ‘ | Replica 3
| o |
Wiite e Wit

l l l
ol B O

pu =y g -y pr =y
Web Client Web Client Web Client
Client Data Client Data Client Data

| | |
l
—

I
Load Balancer

AN

i

Clients

Il

If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Change the
implementation of your database access to send all writes to the source, and to send reads to either
the source or a replica. If your code does not have this level of abstraction, setting up a replicated
system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or
module that implements the following functions:

« safe_writer_connect ()
» saf e_reader_connect ()
» safe_reader_statement ()
« safe_witer_statement()

saf e_ in each function name means that the function takes care of handling all error conditions.
You can use different names for the functions. The important thing is to have a unified interface for
connecting for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to
take advantage of a source/replica configuration, even one involving multiple replicas. The code is
much easier to maintain, and adding troubleshooting options is trivial. You need modify only one or two

135

Replicating Different Databases to Different Replicas

functions (for example, to log how long each statement took, or which statement among those issued
gave you an error).

If you have written a lot of code, you may want to automate the conversion task by using the r epl ace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your
code uses consistent programming style conventions. If not, then you are probably better off rewriting it
anyway, or at least going through and manually regularizing it to use a consistent style.

3.5 Replicating Different Databases to Different Replicas

There may be situations where you have a single source and want to replicate different databases to
different replicas. For example, you may want to distribute different sales data to different departments
to help spread the load during data analysis. A sample of this layout is shown in Figure 3.2,
“Replicating Databases to Separate Replicas”.

Figure 3.2 Replicating Databases to Separate Replicas

| MySQL Source
databaseA databaseB databaseC
‘ Replica 1 ‘ Replica 2 | Replica 3 ‘

You can achieve this separation by configuring the source and replicas as normal, and then limiting
the binary log statements that each replica processes by using the - -repl i cat e-wi | d- do-t abl e
configuration option on each replica.

Important

You should not use - - r epl i cat e- do- db for this purpose when using
statement-based replication, since statement-based replication causes this
option's effects to vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables some updates to
be replicated using the statement-based format.

However, it should be safe to use - - r epl i cat e- do- db for this purpose if you
are using row-based replication only, since in this case the currently selected
database has no effect on the option's operation.

For example, to support the separation as shown in Figure 3.2, “Replicating Databases to Separate
Replicas”, you should configure each replica as follows, before executing START SLAVE:

* Replica 1l shoulduse --replicate-w | d-do-tabl e=dat abaseA %
* Replica 2 should use - -repl i cat e-w | d- do-t abl e=dat abaseB. %
» Replica 3 should use --replicate-w | d-do-tabl e=dat abaseC. %

Each replica in this configuration receives the entire binary log from the source, but executes
only those events from the binary log that apply to the databases and tables included by the - -
replicate-w | d-do-tabl e option in effect on that replica.

If you have data that must be synchronized to the replicas before replication starts, you have a number
of choices:

» Synchronize all the data to each replica, and delete the databases, tables, or both that you do not
want to keep.

136

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Improving Replication Performance

e Use nysql dunp to create a separate dump file for each database and load the appropriate dump file
on each replica.

» Use araw data file dump and include only the specific files and databases that you need for each
replica.

Note

This does not work with | nnoDB databases unless you use
innodb_file_per_table.

3.6 Improving Replication Performance

As the number of replicas connecting to a source increases, the load, although minimal, also increases,
as each replica uses a client connection to the source. Also, as each replica must receive a full copy of
the source's binary log, the network load on the source may also increase and create a bottleneck.

If you are using a large number of replicas connected to one source, and that source is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication
structure that enables the source to replicate to only one replica, and for the remaining replicas to
connect to this primary replica for their individual replication requirements. A sample of this structure is
shown in Figure 3.3, “Using an Additional Replication Source to Improve Performance”.

Figure 3.3 Using an Additional Replication Source to Improve Performance

|' MySQL Source 1 ‘
) Y
|. MySQL Source 2 ‘
l) v)
‘. Replica 1 ‘ Replica 2 | Replica 3 ‘

For this to work, you must configure the MySQL instances as follows:

» Source 1 is the primary source where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

» Source 2 is the replica of Source 1 that provides the replication functionality to the remainder of the
replicas in the replication structure. Source 2 is the only machine permitted to connect to Source 1.
Source 2 also has binary logging enabled, and the | og_sl ave_updat es system variable enabled
so that replication instructions from Source 1 are also written to Source 2's binary log so that they
can then be replicated to the true replicas.

» Replica 1, Replica 2, and Replica 3 act as replicas to Source 2, and replicate the information from
Source 2, which actually consists of the upgrades logged on Source 1.

The above solution reduces the client load and the network interface load on the primary source, which
should improve the overall performance of the primary source when used as a direct database solution.

If your replicas are having trouble keeping up with the replication process on the source, there are a
number of options available:

* If possible, put the relay logs and the data files on different physical drives. To do this, set the
rel ay | og system variable to specify the location of the relay log.

137

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_file_per_table

Switching Sources During Failover

« If the replicas are significantly slower than the source, you may want to divide up the responsibility
for replicating different databases to different replicas. See Section 3.5, “Replicating Different
Databases to Different Replicas”.

« If your source makes use of transactions and you are not concerned about transaction support on
your replicas, use Myl SAMor another nontransactional engine on the replicas. See Section 3.3,
“Using Replication with Different Source and Replica Storage Engines”.

« If your replicas are not acting as sources, and you have a potential solution in place to ensure that
you can bring up a source in the event of failure, then you can disable the | og_sl ave _updat es
system variable on the replicas. This prevents “dumb” replicas from also logging events they have
executed into their own binary log.

3.7 Switching Sources During Failover

You can tell a replica to change to a new source using the CHANGE MASTER TOstatement. The replica
does not check whether the databases on the source are compatible with those on the replica; it simply
begins reading and executing events from the specified coordinates in the new source's binary log. In

a failover situation, all the servers in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not affect the structure or integrity of the
database, provided that you exercise care in making the change.

Replicas should be run with binary logging enabled (the - - | og- bi n option), which is the default. If
you are not using GTIDs for replication, then the replicas should also be run with - - | og- sl ave-
updat es=0OFF (logging replica updates is the default). In this way, the replica is ready to become a
source without restarting the replica mysql d. Assume that you have the structure shown in Figure 3.4,
“Redundancy Using Replication, Initial Structure”.

Figure 3.4 Redundancy Using Replication, Initial Structure

D) 1

u = p =
Web Client Web Client
| Read
Read/ waed
MySQL Source
Replication Replication Replication
‘ Replica 1 ‘ Replica 2 ‘ Replica 3 |

In this diagram, the Sour ce holds the source database, the Repl i ca* hosts are replicas, and the \\eb
Cl i ent machines are issuing database reads and writes. Web clients that issue only reads (and would
normally be connected to the replicas) are not shown, as they do not need to switch to a new server

in the event of failure. For a more detailed example of a read/write scale-out replication structure, see
Section 3.4, “Using Replication for Scale-Out”.

Each MySQL replica (Repl i ca 1, Replica 2,andReplica 3)is a replica running with binary
logging enabled, and with - - | 0g- sl ave- updat es=0OFF. Because updates received by a replica
from the source are not written to the binary log when - - | 0g- sl ave- updat es=CFF is specified,

138

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Switching Sources During Failover

the binary log on each replica is initially empty. If for some reason Sour ce becomes unavailable, you
can pick one of the replicas to become the new source. For example, if you pick Repl i ca 1, all Web
Cl i ent s should be redirected to Repl i ca 1, which writes the updates to its binary log. Repl i ca 2
and Repl i ca 3 should then replicate from Repl i ca 1.

The reason for running the replica with - - | og- sl ave- updat es=0FF is to prevent replicas from
receiving updates twice in case you cause one of the replicas to become the new source. If Repl i ca
1 has - -1 0g-sl ave- updat es enabled, which is the default, it writes any updates that it receives
from Sour ce in its own binary log. This means that, when Repl i ca 2 changes from Sour ce to
Replica 1 asits source, it may receive updates from Repl i ca 1 that it has already received from
Sour ce.

Make sure that all replicas have processed any statements in their relay log. On each replica, issue
STOP SLAVE | O THREAD, then check the output of SHOW PROCESSLI ST until you see Has read
al I relay | og.When this is true for all replicas, they can be reconfigured to the new setup. On the
replica Repl i ca 1 being promoted to become the source, issue STOP SLAVE and RESET NMASTER.

On the other replicas Repl i ca 2 and Repl i ca 3, use STOP SLAVE and CHANGE MASTER TO
MASTER HOST=' Repl i cal' (where' Replical' represents the real host name of Repl i ca 1).
To use CHANGE MASTER TO, add all information about how to connect to Repl i ca 1 from Repl i ca
2 orReplica 3 (user, password, port). When issuing the statement in this scenario, there is no
need to specify the name of the Repl i ca 1 binary log file or log position to read from, since the first
binary log file and position 4 are the defaults. Finally, execute START SLAVE on Replica 2 and
Replica 3.

Once the new replication setup is in place, you need to tell each \eb Cl i ent to direct its statements
to Repl i ca 1. From that point on, all updates sent by \leb Cl i ent to Repl i ca 1 are written to
the binary log of Repl i ca 1, which then contains every update sent to Repl i ca 1 since Sour ce
became unavailable.

The resulting server structure is shown in Figure 3.5, “Redundancy Using Replication, After Source
Failure”.

Figure 3.5 Redundancy Using Replication, After Source Failure

1 1

= = L
Web Client Web Client
Read
Ry et
y :
. ' MySQL Source
Replica 2 [(failed)
Replication Replication

‘ Replica 1 - ‘ Replica 3 \

When Sour ce becomes available again, you should make it a replica of Repl i ca 1. To do this, issue
on Sour ce the same CHANGE MASTER TOstatement as that issued on Replica 2 and Replica 3

previously. Sour ce then becomes a replica of Repl i ca 1 and picks up the Web Cl i ent writes that it
missed while it was offline.

139

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Setting Up Replication to Use Encrypted Connections

To make Sour ce a source again, use the preceding procedure as if Repl i ca 1 were unavailable and
Sour ce were to be the new source. During this procedure, do not forget to run RESET MASTER on
Sour ce before making Replica 1,Replica 2,and Replica 3 replicas of Sour ce. If you fail to
do this, the replicas may pick up stale writes from the Web Cl i ent applications dating from before the
point at which Sour ce became unavailable.

You should be aware that there is no synchronization between replicas, even when they share the
same source, and thus some replicas might be considerably ahead of others. This means that in
some cases the procedure outlined in the previous example might not work as expected. In practice,
however, relay logs on all replicas should be relatively close together.

One way to keep applications informed about the location of the source is to have a dynamic DNS
entry for the source host. With Bl ND, you can use nsupdat e to update the DNS dynamically.

3.8 Setting Up Replication to Use Encrypted Connections

To use an encrypted connection for the transfer of the binary log required during replication, both the
source and the replica servers must support encrypted network connections. If either server does not
support encrypted connections (because it has not been compiled or configured for them), replication
through an encrypted connection is not possible.

Setting up encrypted connections for replication is similar to doing so for client/server connections.
You must obtain (or create) a suitable security certificate that you can use on the source, and a similar
certificate (from the same certificate authority) on each replica. You must also obtain suitable key files.

For more information on setting up a server and client for encrypted connections, see Configuring
MySQL to Use Encrypted Connections.

To enable encrypted connections on the source, you must create or obtain suitable certificate and
key files, and then add the following configuration parameters to the source's configuration within the
[mysqgl d] section of the source's my. cnf file, changing the file names as necessary:

[nysal d]

ssl _ca=cacert.pem

ssl _cert=server-cert.pem
ssl _key=server-key. pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths
for this purpose.

The configuration parameters are as follows:

» ssl _ca: The path name of the Certificate Authority (CA) certificate file. (- - ssl - capat h is similar
but specifies the path name of a directory of CA certificate files.)

» ssl| _cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

e ssl _key: The path name of the server private key file.
To enable encrypted connections on the replica, use the CHANGE MASTER TO statement.

» To name the replica's certificate and SSL private key files using CHANGE MASTER TO, add the
appropriate MASTER _SSL_xxx options, like this:

-> MASTER SSL_CA = 'ca_file_nane',

-> MASTER SSL_CAPATH = 'ca_directory_nane',
-> MASTER SSL_CERT = 'cert_file_nane',

-> MASTER SSL_KEY = 'key_file_nane',

These options correspond to the - - ssl - xxx options with the same names, as described in
Command Options for Encrypted Connections. For these options to take effect, MASTER SSL=1
must also be set. For a replication connection, specifying a value for either of MASTER _SSL_ CA or

140

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options

Semisynchronous Replication

MASTER SSL_CAPATH corresponds to setting - - ssl - node=VERI FY_CA. The connection attempt
succeeds only if a valid matching Certificate Authority (CA) certificate is found using the specified
information.

» To activate host name identity verification, add the MASTER _SSL_VERI FY_SERVER CERT option:

-> MASTER SSL_VERI FY_SERVER CERT=1,

This option corresponds to the - - ssl - veri fy-server-cert option, which is

deprecated as of MySQL 5.7.11 and removed in MySQL 8.0. For a replication connection,

specifying MASTER_SSL_VERI FY_SERVER CERT=1 corresponds to setting - - ssl -

node=VERI FY_| DENTI TY, as described in Command Options for Encrypted Connections. For this
option to take effect, MASTER SSL=1 must also be set. Host name identity verification does not work
with self-signed certificates.

» To activate certificate revocation list (CRL) checks, add the MASTER SSL_CRL or
MASTER SSL_CRLPATH option, as shown here:

-> MASTER SSL_CRL = 'crl _file_nane',
-> MASTER SSL_CRLPATH = 'crl _directory_nane',

These options correspond to the - - ss| - xxx options with the same names, as described in
Command Options for Encrypted Connections. If they are not specified, no CRL checking takes
place.

» To specify lists of ciphers and encryption protocols permitted by the replica for the replication
connection, add the MASTER_SSL_ClI PHER and MASTER_TLS_ VERSI ON options, like this:

-> MASTER SSL_CI PHER = 'ci pher _list",
-> MASTER TLS VERSION = 'protocol _list"',
-> SOURCE_TLS Cl PHERSUI TES = 'ci phersuite_list',

The MASTER SSL_ Cl PHER option specifies the list of ciphers permitted by the replica

for the replication connection, with one or more cipher names separated by colons. The
MASTER TLS_ VERSI ON option specifies the encryption protocols permitted by the replica for the
replication connection. The format is like that for the t | s_ver si on system variable, with one or
more comma-separated protocol versions. The protocols and ciphers that you can use in these lists
depend on the SSL library used to compile MySQL. For information about the formats and permitted
values, see Encrypted Connection TLS Protocols and Ciphers.

 After the source information has been updated, start the replication process on the replica, like this:

nmysql > START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that an encrypted connection was
established successfully.

* Requiring encrypted connections on the replica does not ensure that the source requires encrypted
connections from replicas. If you want to ensure that the source only accepts replicas that connect
using encrypted connections, create a replication user account on the source using the REQUI RE
SSL option, then grant that user the REPLI CATI ON SLAVE privilege. For example:
nysql > CREATE USER 'repl' @ % exanpl e. coni | DENTI FI ED BY ' password'

-> REQUI RE SSL;

nysql > GRANT REPLI CATI ON SLAVE ON *.*
-> TO '"repl' @ % exanpl e. com ;

If you have an existing replication user account on the source, you can add REQUI RE SSL to it with
this statement:

nysqgl > ALTER USER 'repl' @ % exanpl e. coml REQUI RE SSL;

3.9 Semisynchronous Replication

141

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave

Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.7 supports an interface to
semisynchronous replication that is implemented by plugins. This section discusses what
semisynchronous replication is and how it works. The following sections cover the administrative
interface to semisynchronous replication and how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The source writes events to its binary log and replicas
request them when they are ready. The source does not know whether or when a replica has retrieved
and processed the transactions, and there is no guarantee that any event ever reaches any replica.
With asynchronous replication, if the source crashes, transactions that it has committed might not have
been transmitted to any replica. Failover from source to replica in this case might result in failover to a
server that is missing transactions relative to the source.

With fully synchronous replication, when a source commits a transaction, all replicas must also have
committed the transaction before the source returns to the session that performed the transaction.
Fully synchronous replication means failover from the source to any replica is possible at any time. The
drawback of fully synchronous replication is that there might be a lot of delay to complete a transaction.

Semisynchronous replication falls between asynchronous and fully synchronous replication. The
source waits until at least one replica has received and logged the events (the required number of
replicas is configurable), and then commits the transaction. The source does not wait for all replicas to
acknowledge receipt, and it requires only an acknowledgement from the replicas, not that the events
have been fully executed and committed on the replica side. Semisynchronous replication therefore
guarantees that if the source crashes, all the transactions that it has committed have been transmitted
to at least one replica.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity,
because when a commit returns successfully, it is known that the data exists in at least two places.
Until a semisynchronous source receives acknowledgment from the required number of replicas, the
transaction is on hold and not committed.

Compared to fully synchronous replication, semisynchronous replication is faster, because it can be
configured to balance your requirements for data integrity (the number of replicas acknowledging
receipt of the transaction) with the speed of commits, which are slower due to the need to wait for
replicas.

Important

With semisynchronous replication, if the source crashes and a failover to a
replica is carried out, the failed source should not be reused as the replication
source server, and should be discarded. It could have transactions that were not
acknowledged by any replica, which were therefore not committed before the
failover.

If your goal is to implement a fault-tolerant replication topology where all the
servers receive the same transactions in the same order, and a server that
crashes can rejoin the group and be brought up to date automatically, you can
use Group Replication to achieve this. For information, see Group Replication.

The performance impact of semisynchronous replication compared to asynchronous replication is the
tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to
send the commit to the replica and wait for the acknowledgment of receipt by the replica. This means
that semisynchronous replication works best for close servers communicating over fast networks,
and worst for distant servers communicating over slow networks. Semisynchronous replication also
places a rate limit on busy sessions by constraining the speed at which binary log events can be sent
from source to replica. When one user is too busy, this slows it down, which can be useful in some
deployment situations.

Semisynchronous replication between a source and its replicas operates as follows:

» Areplica indicates whether it is semisynchronous-capable when it connects to the source.

142

https://dev.mysql.com/doc/refman/5.7/en/group-replication.html

Semisynchronous Replication

« If semisynchronous replication is enabled on the source side and there is at least one
semisynchronous replica, a thread that performs a transaction commit on the source blocks and
waits until at least one semisynchronous replica acknowledges that it has received all events for the
transaction, or until a timeout occurs.

» The replica acknowledges receipt of a transaction's events only after the events have been written to
its relay log and flushed to disk.

« If a timeout occurs without any replica having acknowledged the transaction, the source reverts to
asynchronous replication. When at least one semisynchronous replica catches up, the source returns
to semisynchronous replication.

» Semisynchronous replication must be enabled on both the source and replica sides. If
semisynchronous replication is disabled on the source, or enabled on the source but on no replicas,
the source uses asynchronous replication.

While the source is blocking (waiting for acknowledgment from a replica), it does not return to the
session that performed the transaction. When the block ends, the source returns to the session, which
then can proceed to execute other statements. At this point, the transaction has committed on the
source side, and receipt of its events has been acknowledged by at least one replica. The number of
replica acknowledgments the source must receive per transaction before returning to the session is
configurable using the r pl _sem _sync_nmaster _wait _for_slave_count system variable, for
which the default value is 1.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction

that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though

it has no effect for transactional tables because the modifications to the nontransactional tables cannot
be rolled back and must be sent to replicas.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTI ONor SET aut ocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the source blocks for each such statement, just
as it does for explicit transaction commits.

Therpl _sem sync_master_wait_poi nt system variable controls the point at which a
semisynchronous replication source waits for replica acknowledgment of transaction receipt before
returning a status to the client that committed the transaction. These values are permitted:

» AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

« AFTER_COWM T: The source writes each transaction to its binary log and the replica, syncs
the binary log, and commits the transaction to the storage engine. The source waits for replica
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
source returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

» With AFTER_SYNC, all clients see the committed transaction at the same time, which is after it has
been acknowledged by the replica and committed to the storage engine on the source. Thus, all
clients see the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source and failover to the replica is lossless
because the replica is up to date. As noted above, the source should not be reused after the failover.

« With AFTER_COVM T, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before

143

https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html

Semisynchronous Replication Administrative Interface

replica acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the replica does not process the transaction, then in the event of
an unexpected source exit and failover to the replica, it is possible that such clients see a loss of data
relative to what they saw on the source.

3.9.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

* Two plugins implement semisynchronous capability. There is one plugin for the source side and one

for the replica side.
System variables control plugin behavior. Some examples:
e rpl _sem _sync_nast er_enabl ed

Controls whether semisynchronous replication is enabled on the source. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

e rpl _sem _sync_nmaster_tinmeout

A value in milliseconds that controls how long the source waits on a commit for acknowledgment
from a replica before timing out and reverting to asynchronous replication. The default value is
10000 (10 seconds).

e rpl _sem _sync_sl ave_enabl ed
Similartorpl _senmi _sync_nast er _enabl ed, but controls the replica plugin.

Allrpl _sem _sync_xxx system variables are described at Section 2.6.2, “Replication Source
Options and Variables” and Section 2.6.3, “Replica Server Options and Variables”.

From MySQL 5.7.33, you can improve the performance of semisynchronous replication by enabling
the system variables repl i cati on_sender _observe_conmni t _onl y, which limits callbacks, and
replication_optimze for_static_plugin_config,which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can
also get performance benefits from enabling these system variables, because they use the same
locking mechanisms as the replicas.

 Status variables enable semisynchronous replication monitoring. Some examples:

e Rpl _sem _sync_nmaster_clients
The number of semisynchronous replicas.
e Rpl _sem _sync_nmster_status

Whether semisynchronous replication currently is operational on the source. The value is 1 if the
plugin has been enabled and a commit acknowledgment has not occurred. It is O if the plugin is not
enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

e Rpl _sem _sync_master_no_tx
The number of commits that were not acknowledged successfully by a replica.
e Rpl _sem _sync_naster_yes tx

The number of commits that were acknowledged successfully by a replica.

144

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx

Semisynchronous Replication Installation and Configuration

* Rpl _sem _sync_sl ave_st at us

Whether semisynchronous replication currently is operational on the replica. This is 1 if the plugin
has been enabled and the replication I/O thread is running, O otherwise.

All Rpl _sem _sync_xxx status variables are described at Server Status Variables.

The system and status variables are available only if the appropriate source or replica plugin has been
installed with | NSTALL PLUG N.

3.9.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the
server to make them available. After a plugin has been installed, you control it by means of the system
variables associated with it. These system variables are unavailable until the associated plugin has
been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To use semisynchronous replication, the following requirements must be satisfied:

» The capability of installing plugins requires a MySQL server that supports dynamic loading. To
verify this, check that the value of the have_dynamni c_| oadi ng system variable is YES. Binary
distributions should support dynamic loading.

* Replication must already be working, see Chapter 2, Configuring Replication.

» There must not be multiple replication channels configured. Semisynchronous replication is only
compatible with the default replication channel. See Section 5.2, “Replication Channels”.

To set up semisynchronous replication, use the following instructions. The | NSTALL PLUG N, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

MySQL distributions include semisynchronous replication plugin files for the source side and the replica
side.

To be usable by a source or replica server, the appropriate plugin library file must be located in the
MySQL plugin directory (the directory named by the pl ugi n_di r system variable). If necessary,
configure the plugin directory location by setting the value of pl ugi n_di r at server startup.

The plugin library file base names are seni sync_nmast er and sem sync_sl ave. The file name
suffix differs per platform (for example, . so for Unix and Unix-like systems, . dl | for Windows).

The source plugin library file must be present in the plugin directory of the source server. The replica
plugin library file must be present in the plugin directory of each replica server.

To load the plugins, use the | NSTALL PLUG N statement on the source and on each replica that is to
be semisynchronous, adjusting the . so suffix for your platform as necessary.

On the source:
I NSTALL PLUG N rpl _sem _sync_naster SONAME 'seni sync_naster.so';
On each replica:

I NSTALL PLUG N rpl _seni _sync_sl ave SONAME ' semi sync_sl ave. so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
['ibinf:

nmysql > | NSTALL PLUG N rpl _sem _sync_naster SONAME 'sem sync_naster.so';

145

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_have_dynamic_loading
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html

Semisynchronous Replication Installation and Configuration

ERROR 1126 (HY000): Can't open shared library
"lusr/local /nysqgl/lib/plugin/sem sync_master.so'
(errno: 22 |ibinf.so: cannot open shared object file:
No such file or directory)

You can obtain | i bi nf from https://dev.mysqgl.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOWN PLUG NS statement, or query the Information
Schema PLUG NS table.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW
PLUG NS statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHENMA. PLUG NS
VWHERE PLUG N_NAME LI KE ' %sem % ;

If the plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins
must be enabled both on the source side and the replica side to enable semisynchronous replication. If
only one side is enabled, replication is asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set
these variables at runtime using SET GLOBAL, or at server startup on the command line or in an option
file.

At runtime, these source-side system variables are available:

SET GLOBAL rpl _seni _sync_mast er _enabl ed
SET GLOBAL rpl _seni _sync_master_ti nmeout

{0] 1};
N;

On the replica side, this system variable is available:

SET GLOBAL rpl _seni _sync_sl ave_enabl ed = {0] 1};

Forrpl _sem sync_nmaster _enabledorrpl _sem sync_sl ave_enabl ed, the value should be
1 to enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

Forrpl _sem sync_nmster tineout,the value Nis given in milliseconds. The default value is
10000 (10 seconds).

If you enable semisynchronous replication on a replica at runtime, you must also start the replication
I/O thread (stopping it first if it is already running) to cause the replica to connect to the source and
register as a semisynchronous replica:

STOP SLAVE | O THREAD,
START SLAVE | O THREAD,

If the replication I/O thread is already running and you do not restart it, the replica continues to use
asynchronous replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my. cnf files on the source and replica sides as follows.

On the source:

[nysql d]
rpl _sem _sync_mast er _enabl ed=1

146

https://dev.mysql.com/downloads/os-linux.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html

Semisynchronous Replication Monitoring

rpl _sem _sync_mast er_ti nmeout =1000 # 1 second

On each replica:

[nysql d]
rpl _sem _sync_sl ave_enabl ed=1

3.9.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables
that you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARI ABLES:

nysqgl > SHOW VARI ABLES LI KE 'rpl _sem _sync%;

The status variables enable you to monitor the operation of semisynchronous replication. To check
their values, use SHOW STATUS:

nysql > SHOW STATUS LI KE ' Rpl _seni _sync% ;

When the source switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a replica catching up, it sets the value of the Rpl _seni _sync_nmast er st at us
status variable appropriately. Automatic fallback from semisynchronous to asynchronous replication on
the source means that it is possible for the r pl _seni _sync_nast er _enabl ed system variable to
have a value of 1 on the source side even when semisynchronous replication is in fact not operational
at the moment. You can monitor the Rpl _sem _sync_nmast er _st at us status variable to determine
whether the source currently is using asynchronous or semisynchronous replication.

To see how many semisynchronous replicas are connected, check
Rpl _senmi _sync_nmaster _clients.

The number of commits that have been acknowledged successfully or unsuccessfully by replicas
are indicated by the Rpl _semi _sync_naster_yes tx and Rpl _sem sync _nmaster_no_tx
variables.

On the replica side, Rpl _sem _sync_sl ave_st at us indicates whether semisynchronous replication
currently is operational.

3.10 Delayed Replication

MySQL 5.7 supports delayed replication such that a replica server deliberately lags behind the source
by at least a specified amount of time. The default delay is 0 seconds. Use the MASTER DELAY option
for CHANGE MASTER TOto set the delay to N seconds:

CHANGE MASTER TO MASTER DELAY = N,

An event received from the source is not executed until at least N seconds later than its execution on
the source. The exceptions are that there is no delay for format description events or log file rotation
events, which affect only the internal state of the SQL thread.

Delayed replication can be used for several purposes:

» To protect against user mistakes on the source. A DBA can roll back a delayed replica to the time
just before the disaster.

» To test how the system behaves when there is a lag. For example, in an application, a lag might
be caused by a heavy load on the replica. However, it can be difficult to generate this load level.
Delayed replication can simulate the lag without having to simulate the load. It can also be used to
debug conditions related to a lagging replica.

147

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Delayed Replication

» To inspect what the database looked like long ago, without having to reload a backup. For example,
if the delay is one week and the DBA needs to see what the database looked like before the last few
days' worth of development, the delayed replica can be inspected.

START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets
the delay to 0.

SHOW SLAVE STATUS has three fields that provide information about the delay:

e SQL_Del ay: A nonnegative integer indicating the number of seconds that the replica must lag the
source.

e SQL_Remai ni ng_Del ay: When Sl ave_SQ._Runni ng_StateisWaiting until
MASTER _DELAY seconds after master executed event, this field contains an integer
indicating the number of seconds left of the delay. At other times, this field is NULL.

» Slave_SQL_Runni ng_St at e: A string indicating the state of the SQL thread (analogous to
Sl ave_| O St at e). The value is identical to the St at e value of the SQL thread as displayed by
SHOW PROCESSLI ST.

When the replication SQL thread is waiting for the delay to elapse before executing an event, SHOV
PROCESSLI ST displays its St at e value as Wi ting unti| MASTER DELAY seconds after
mast er executed event.

148

https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

Chapter 4 Replication Notes and Tips

Table of Contents

4.1 Replication FEatures and ISSUESieiiiiiiiiiiiiiie e e e e e e e e e e e e et e e et e et e e aaeeeens
4.1.1 Replication and AUTO _INCREMENTcciiiiiiiiiiiii e e e e e
4.1.2 Replication and BLACKHOLE TabIeScoiiiiiiiiiciiec e
4.1.3 Replication and Character SEtSc..iiiiiiiiiiii e e
4.1.4 Replication and CHECKSUM TABLEuoiiiiiiii e
4.1.5 Replication of CREATE ... IF NOT EXISTS Statementsccoceuvveviiiiiiiieiiineeeiineeieens
4.1.6 Replication of CREATE TABLE ... SELECT Statementscocccoveviviieiiieeiiiieeineeeennn,
4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
4.1.8 Replication of CURRENT _USER() ..civvniiiiiiiii e e e
4.1.9 Replication of DROP ... IF EXISTS StatemMentscc.oeeiiiiiiiiiieiiiieiii e e e
4.1.10 Replication with Differing Table Definitions on Source and Replicacccceeevvneis
4.1.11 Replication and DIRECTORY Table OPLiONScccuuiiiiiiiiiiiieiiiecie e e e e
4.1.12 Replication and Floating-Point Valuescccoiiiiiiiiiii e
4.1.13 Replication and Fractional Seconds SUPPOIcc.uiiiiiiiiiiieii e e
4.1.14 Replication and FLUSHcooiiiiii e e
4.1.15 Replication and System FUNCLONSccouiiiiiiiiiii e
4.1.16 Replication of INVOKEd FEALUIESiiiiiiiii e
4.1.17 Replication and LIMIT ... e e e e e e e e aa s
4.1.18 Replication and LOAD DAT A ...t e e e et eeaaeees
4.1.19 Replication and max_allowed _Packetc.coieiiiiiiiiiiii e
4.1.20 Replication and MEMORY TabIESuoiiiiiiiiiiii e
4.1.21 Replication of the mysql System Databasecccoviviiiiiiiiciiii e
4.1.22 Replication and the QUEery OPLIMIZEToivuiiiiii e e
4.1.23 Replication and Partitioningcccouiiiiiiiiiiiee e
4.1.24 Replication and REPAIR TABLE ..o e
4.1.25 Replication and ReServed WOIASooiiiiiiiiiiiiiie e e e
4.1.26 Replication and Source or Replica Shutdownsccoooviiiiiiiiiii e,
4.1.27 Replica Errors During RepPliCAtiONccuuiiiiniiiiiiiii e
4.1.28 Replication and Server SQL MOGEccoviiiiiiiiiiii e e
4.1.29 Replication and Temporary TabIEScoiviiiiiiiiii e
4.1.30 Replication Retries and TIMEOULSociiuiiiiiiiiiiiieiiie e e e e e e e aaeees
4.1.31 Replication and TiME ZONEScouuiiiiiiiiiiee et e e e e e e e e e e e e e e e e aaens
4.1.32 Replication and Transaction INCONSISIENCIEScccuiiiiiiiiiiiieii e
4.1.33 Replication and TranSACLIONSiiiiiieiiiieeiii e e iee e e e e e e e e e e st e e e eanaees
N IRCY N ==Y o] o= 1u (o] TF= U [o BN I o o =] £
4.1.35 Replication and TRUNCATE TABLEcooiiiiiiiii e e
4.1.36 Replication and User Name Lengthooiiiiiiiiiiiii e
4.1.37 Replication and Variables ..o
4.1.38 RepliCAtioN @nd VIBWScciuiiiiii i e e e e e e e e e e e e aa s

4.2 Replication Compatibility Between MySQL VEISIONSoiveuiiiiiieiiii e ee e e e e e eaneens

4.3 Upgrading a Replication TOPOIOGYccuuniiiiiiiiiieii e e e e e e e e e eaaes

4.4 Troubleshooting REPHCALIONcciuiiiii e e e e e e e e e e eees

4.5 How to Report Replication Bugs or Problemscccoooiiiiiiiii e

4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL
replication, and about specific issues and situations that may occur when replicating certain
statements.

Statement-based replication depends on compatibility at the SQL level between the source and
replica. In other words, successful statement-based replication requires that any SQL features used

149

Replication and AUTO_INCREMENT

be supported by both the source and the replica servers. If you use a feature on the source server that
is available only in the current version of MySQL, you cannot replicate to a replica that uses an earlier
version of MySQL. Such incompatibilities can also occur within a release series as well as between
versions.

If you are planning to use statement-based replication between MySQL 5.7 and a previous MySQL
release series, it is a good idea to consult the edition of the MySQL Reference Manual corresponding
to the earlier release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or
triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed
list of issues, see Stored Program Binary Logging. For more information about row-based logging and
row-based replication, see Binary Logging Formats, and Section 5.1, “Replication Formats”.

For additional information specific to replication and | nnoDB, see InnoDB and MySQL Replication. For
information relating to replication with NDB Cluster, see NDB Cluster Replication.

4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO | NCREMENT, LAST | NSERT | D() , and TI MESTAMP values is
done correctly, subject to the following exceptions:

» When using statement-based replication prior to MySQL 5.7.1, AUTO | NCREMENT columns in tables
on the replica must match the same columns on the source; that is, AUTO | NCREVENT columns
must be replicated to AUTO | NCREVENT columns.

» A statement invoking a trigger or function that causes an update to an AUTO_| NCREMENT column is
not replicated correctly using statement-based replication. These statements are marked as unsafe.
(Bug #45677)

An | NSERT into a table that has a composite primary key that includes an AUTO_| NCREVENT
column that is not the first column of this composite key is not safe for statement-based logging or
replication. These statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the | nnoDB storage engine, since an | nnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only
or leftmost column.

» Adding an AUTO_| NCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which the
rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_| NCREMENT number. Assuming that you want to add an
AUTO_| NCREMENT column to a table t 1 that has columns col 1 and col 2, the following statements
produce a new table t 2 identical to t 1 but with an AUTO_| NCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id | NT AUTO | NCREMENT PRI MARY KEY;
I NSERT INTO t2 SELECT * FROM t1 ORDER BY col 1, col 2;

Important

To guarantee the same ordering on both source and replica, the ORDER BY
clause must name all columns of t 1.

The instructions just given are subject to the limitations of CREATE TABLE ... LI KE: Foreign key
definitions are ignored, as are the DATA DI RECTCORY and | NDEX DI RECTORY table options. If a
table definition includes any of those characteristics, create t 2 using a CREATE TABLE statement
that is identical to the one used to create t 1, but with the addition of the AUTO_| NCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO | NCREVENT
column, the final step is to drop the original table and then rename the copy:

150

https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_auto_increment
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-like.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Replication and BLACKHOLE Tables

DROP t 1,
ALTER TABLE t2 RENAME t1;

See also Problems with ALTER TABLE.

4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing
binary logging, all inserts to such tables are always logged, regardless of the logging format in use.
Updates and deletes are handled differently depending on whether statement based or row based
logging is in use. With the statement based logging format, all statements affecting BLACKHCOLE tables
are logged, but their effects ignored. When using row-based logging, updates and deletes to such
tables are simply skipped—they are not written to the binary log. A warning is logged whenever this
occurs (Bug #13004581).

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that
you have the bi nl og_f or mat server variable set to STATEMENT, and not to either RONor M XED.

4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

« If the source has databases with a character set different from the global char act er _set server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on
the database default character set. A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends
on the table row storage format. The storage format is not guaranteed to remain the same between
MySQL versions, so the checksum value might change following an upgrade.

4.1.5 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... | F NOT EXI STS statements are replicated:

» Every CREATE DATABASE | F NOT EXI STS statement is replicated, whether or not the database
already exists on the source.

» Similarly, every CREATE TABLE | F NOT EXI STS statement without a SELECT is replicated,
whether or not the table already exists on the source. This includes CREATE TABLE | F NOT
EXI STS ... LI KE. Replication of CREATE TABLE | F NOT EXI STS ... SELECT follows
somewhat different rules; see Section 4.1.6, “Replication of CREATE TABLE ... SELECT
Statements”, for more information.

« CREATE EVENT | F NOT EXI STSis always replicated, whether or not the event named in the
statement already exists on the source.

4.1.6 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

MySQL 5.7 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement. Some older versions of MySQL permitted these
statements to do so; this means that, when using replication between a MySQL 5.6 or later replica and
a source running a previous version of MySQL, a CREATE TABLE ... SELECT statement causing
changes in other tables on the source fails on the replica, causing replication to stop. To prevent this

151

https://dev.mysql.com/doc/refman/5.7/en/alter-table-problems.html
https://dev.mysql.com/doc/refman/5.7/en/blackhole-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/blackhole-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/checksum-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-like.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-like.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html

Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

from happening, you should use row-based replication, rewrite the offending statement before running
it on the source, or upgrade the source to MySQL 5.7. (If you choose to upgrade the source, keep

in mind that such a CREATE TABLE ... SELECT statement fails following the upgrade unless it is
rewritten to remove any side effects on other tables.)

These behaviors are not dependent on MySQL version:

 CREATE TABLE ... SELECT always performs an implicit commit (Statements That Cause an
Implicit Commit).

« If destination table does not exist, logging occurs as follows. It does not matter whether | F NOT
EXI STS'is present.

* STATEMENT or M XED format: The statement is logged as written.

« ROWformat: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

« If the statement fails, nothing is logged. This includes the case that the destination table exists and
I F NOT EXI STSis not given.

When the destination table exists and | F NOT EXI STS is given, MySQL 5.7 ignores the statement
completely; nothing is inserted or logged.

4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

The statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to the binary
log, regardless of the binary logging format that is in use.

4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name
of, and possibly the host for, an affected user or a definer:

* DROP USER

* RENAME USER

* CRANT

* REVOKE

* CREATE FUNCTI ON
» CREATE PROCEDURE
* CREATE TRI GGER
* CREATE EVENT

* CREATE VI EW

* ALTER EVENT

* ALTER VI EW

» SET PASSWORD

When binary logging is enabled and CURRENT USER() or CURRENT USER s used as the definer in
any of these statements, MySQL Server ensures that the statement is applied to the same user on both
the source and the replica when the statement is replicated. In some cases, such as statements that

152

https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html
https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-server.html
https://dev.mysql.com/doc/refman/5.7/en/alter-server.html
https://dev.mysql.com/doc/refman/5.7/en/drop-server.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/create-function.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html
https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/alter-view.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Replication of DROP ... IF EXISTS Statements

change passwords, the function reference is expanded before it is written to the binary log, so that the
statement includes the user name. For all other cases, the name of the current user on the source is
replicated to the replica as metadata, and the replica applies the statement to the current user named
in the metadata, rather than to the current user on the replica.

4.1.9 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE | F EXI STS, DROP TABLE | F EXI STS, and DROP VI EW | F EXI STS
statements are always replicated, even if the database, table, or view to be dropped does not exist on
the source. This is to ensure that the object to be dropped no longer exists on either the source or the
replica, once the replica has caught up with the source.

DROP ... | F EXI STS statements for stored programs (stored procedures and functions, triggers,
and events) are also replicated, even if the stored program to be dropped does not exist on the source.

4.1.10 Replication with Differing Table Definitions on Source and Replica

Source and target tables for replication do not have to be identical. A table on the source can have
more or fewer columns than the replica's copy of the table. In addition, corresponding table columns on
the source and the replica can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is
not supported. See Section 4.1.23, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the source and the replica. Additional conditions are discussed, with
examples, in the following two sections.

4.1.10.1 Replication with More Columns on Source or Replica

You can replicate a table from the source to the replica such that the source and replica copies of the
table have differing numbers of columns, subject to the following conditions:

» Columns common to both versions of the table must be defined in the same order on the source and
the replica.

(This is true even if both tables have the same number of columns.)
» Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the replica where a new column is
inserted into the table within the range of columns common to both tables causes replication to fail,
as shown in the following example:

Suppose that a table t , existing on the source and the replica, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
cl I NT,
c2 | NT,
c3 I NT

)i
Suppose that the ALTER TABLE statement shown here is executed on the replica:

ALTER TABLE t ADD COLUMN cnewl | NT AFTER c3;

The previous ALTER TABLE is permitted on the replica because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

153

https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-view.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Replication with Differing Table Definitions on Source and Replica

However, the following ALTER TABLE statement cannot be executed on the replica without causing
replication to break:

ALTER TABLE t ADD COLUWN cnew?2 | NT AFTER c2;

Replication fails after execution on the replica of the ALTER TABLE statement just shown, because
the new column cnew2 comes between columns common to both versions of t .

» Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the
time of its creation; for more information, see Data Type Default Values).

In addition, when the replica's copy of the table has more columns than the source's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the source. The following table definitions are valid and replicate correctly:

sour ce> CREATE TABLE t1 (cl1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (cl1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to
both versions of the table are in a different order on the replica than they are on the source:

sour ce> CREATE TABLE t1 (cl1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on
the source appears before the definitions of the columns common to both versions of the table:

source> CREATE TABLE t1 (c3 INT, cl1 INT, c2 INT);
replica> CREATE TABLE t1 (cl INT, c2 INT);

More columns on the replica. The following table definitions are valid and replicate correctly:

sour ce> CREATE TABLE t1 (cl1 INT, c2 INT);
replica> CREATE TABLE t1 (cl1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are
not defined in the same order on both the source and the replica:

sour ce> CREATE TABLE t1 (cl1 INT, c2 INT);
replica> CREATE TABLE t1 (c2 INT, cl1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the
replica's version of the table appears before the definitions for the columns which are common to both
versions of the table:

sour ce> CREATE TABLE t1 (cl1 INT, c2 INT);
replica> CREATE TABLE t1 (c3 INT, cl1 INT, c2 INT);

The following table definitions fail because the replica's version of the table has additional columns
compared to the source's version, and the two versions of the table use different data types for the
common column c2:

sour ce> CREATE TABLE t1 (cl1 INT, c2 Bl G NT);
replica> CREATE TABLE t1 (cl1 INT, c2 INT, c3 INT);

4.1.10.2 Replication of Columns Having Different Data Types

154

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/data-type-defaults.html

Replication with Differing Table Definitions on Source and Replica

Corresponding columns on the source's and the replica's copies of the same table ideally should have
the same data type. However, this is not always strictly enforced, as long as certain conditions are met.

It is usually possible to replicate from a column of a given data type to another column of the same type
and same size or width, where applicable, or larger. For example, you can replicate from a CHAR(10)
column to another CHAR(10) , or from a CHAR(10) column to a CHAR(25) column without any
problems. In certain cases, it also possible to replicate from a column having one data type (on the
source) to a column having a different data type (on the replica); when the data type of the source's
version of the column is promoted to a type that is the same size or larger on the replica, this is known
as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the source or the replica. However, the choice of
logging format does have an effect on the type conversions that are permitted; the particulars are
discussed later in this section.

Important

Whether you use statement-based or row-based replication, the replica's copy
of the table cannot contain more columns than the source's copy if you wish to
employ attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the source would also execute successfully on the replica, it should
also replicate successfully”. In other words, if the statement uses a value that is compatible with the
type of a given column on the replica, the statement can be replicated. For example, you can insert any
value that fits in a TI NYI NT column into a Bl G NT column as well; it follows that, even if you change
the type of a TI NYI NT column in the replica's copy of a table to Bl G NT, any insert into that column

on the source that succeeds should also succeed on the replica, since it is impossible to have a legal
TI NYI NT value that is large enough to exceed a Bl G NT column.

Prior to MySQL 5.7.1, when using statement-based replication, AUTO | NCREMENT columns were
required to be the same on both the source and the replica; otherwise, updates could be applied to the
wrong table on the replica. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Row-based replication supports
attribute promotion and demotion between smaller data types and larger types. It is also possible to
specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values,
as explained later in this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value
being inserted, a decision must be made on how to handle the conversion. If we permit the conversion
but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make
what is known as a lossy conversion. A conversion which does not require truncation or similar
modifications to fit the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable). The setting of the

sl ave_type_conver si ons global server variable controls the type conversion mode used on the
replica. This variable takes a set of values from the following table, which shows the effects of each
mode on the replica's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean
loss of information are permitted.

This does not imply that non-lossy conversions
are permitted, merely that only cases requiring
either lossy conversions or no conversion at all
are permitted; for example, enabling only this

155

Replication with Differing Table Definitions on Source and Replica

Mode Effect

mode permits an | NT column to be converted to
TI NYI NT (a lossy conversion), but not a Tl NYI NT
column to an | NT column (non-lossy). Attempting
the latter conversion in this case would cause
replication to stop with an error on the replica.

ALL_NON_LOSSY This mode permits conversions that do not require
truncation or other special handling of the source
value; that is, it permits conversions where the
target type has a wider range than the source

type.

Setting this mode has no bearing on whether lossy
conversions are permitted; this is controlled with
the ALL_LGSSY mode. If only ALL_NON_LOSSY

is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data
(such as | NT to TI NYI NT, or CHAR(25) to
VARCHAR(20)) causes the replica to stop with an
error.

ALL_LOSSY, ALL_NON _LOsSsY When this mode is set, all supported type
conversions are permitted, whether or not they are
lossy conversions.

ALL_SI GNED Treat promoted integer types as signed values
(the default behavior).

ALL_UNSI GNED Treat promoted integer types as unsigned values.

ALL_SI GNED, ALL__UNSI GNED Treat promoted integer types as signed if possible,

otherwise as unsigned.

[empty] When sl ave type_conversi ons is not set, no
attribute promotion or demotion is permitted; this
means that all columns in the source and target
tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the replica treats all
such values as signed. Beginning with MySQL 5.7.2, you can control this behavior using ALL _SI GNED,
ALL_UNSI GNED, or both. (Bug#15831300) ALL_SI GNED tells the replica to treat all promoted integer
types as signed; ALL__UNSI GNED instructs it to treat these as unsigned. Specifying both causes the
replica to treat the value as signed if possible, otherwise to treat it as unsigned; the order in which they
are listed is not significant. Neither ALL_SI GNED nor ALL__UNSI GNED has any effect if at least one of
ALL LOSSY or ALL_NONLOSSY is not also used.

Changing the type conversion mode requires restarting the replica with the new
sl ave_type_conversi ons setting.

Supported conversions. Supported conversions between different but similar data types are
shown in the following list:

» Between any of the integer types TI NYI NT, SMALLI NT, MEDI UM NT, | NT, and Bl Gl NT.
This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column.
For example, you can demote TI NYI NT UNSI GNED non-lossily to SMALLI NT, but not to Tl NYI NT.

156

https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

Replication and DIRECTORY Table Options

» Between any of the decimal types DECI VAL, FLOAT, DOUBLE, and NUVERI C.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECI MAL(M D) to DECI MAL(M , D) whereD >= Dand (M -D) >= (MD)is
non-lossy; for any case where M < M D < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value
is rounded down according to the rounding rules defined for the server elsewhere in the
documentation. See Rounding Behavior, for information about how this is done for decimal types.

» Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or
larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string
on the replica, where Nis the width of the target column.

I Important

Replication between columns using different character sets is not supported.

» Between any of the binary data types Bl NARY, VARBI NARY, and BLOB, including conversions
between different widths.

Conversion of a Bl NARY, VARBI NARY, or BLOB to a Bl NARY, VARBI NARY, or BLOB column the
same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of
the string on the replica, where Nis the width of the target column.

» Between any 2 BI T columns of any 2 sizes.

When inserting a value from a Bl T(M columnintoa Bl T(M) column, where M > M the most
significant bits of the Bl T(M) columns are cleared (set to zero) and the Mbits of the Bl T(M value
are set as the least significant bits of the BI T(M) column.

When inserting a value from a source Bl T(M column into a target Bl T(M) column, where M <
M the maximum possible value for the Bl T(M) column is assigned; in other words, an “all-set”
value is assigned to the target column.

Conversions between types not in the previous list are not permitted.

4.1.11 Replication and DIRECTORY Table Options

If a DATA DI RECTORY or | NDEX DI RECTORY table option is used in a CREATE TABLE statement
on the source server, the table option is also used on the replica. This can cause problems if no
corresponding directory exists in the replica host's file system or if it exists but is not accessible to
the replica server. This can be overridden by using the NO DI R_| N_CREATE server SQL mode on
the replica, which causes the replica to ignore the DATA DI RECTORY and | NDEX DI RECTORY table
options when replicating CREATE TABLE statements. The result is that Myl SAMdata and index files
are created in the table's database directory.

For more information, see Server SQL Modes.

4.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving
floating-point values are inexact. This is true for operations that use floating-point values explicitly,

or that use values that are converted to floating-point implicitly. Comparisons of floating-point values
might yield different results on source and replica servers due to differences in computer architecture,
the compiler used to build MySQL, and so forth. See Type Conversion in Expression Evaluation, and
Problems with Floating-Point Values.

157

https://dev.mysql.com/doc/refman/5.7/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/precision-math-rounding.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/bit-type.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://dev.mysql.com/doc/refman/5.7/en/type-conversion.html
https://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html

Replication and Fractional Seconds Support

4.1.13 Replication and Fractional Seconds Support

MySQL 5.7 permits fractional seconds for Tl ME, DATETI ME, and TI MESTAMP values, with up to
microseconds (6 digits) precision. See Fractional Seconds in Time Values.

There may be problems replicating from a source server that understands fractional seconds to an
older replica (MySQL 5.6.3 and earlier) that does not:

» For CREATE TABLE statements containing columns that have an f sp (fractional seconds precision)
value greater than 0, replication fails due to parser errors.

» Statements that use temporal data types with an f sp value of 0 work with statement-based logging
but not row-based logging. In the latter case, the data types have binary formats and type codes on
the source that differ from those on the replica.

» Some expression results differ on source and replica. Examples: On the source, the t i nest anp
system variable returns a value that includes a microseconds fractional part; on the replica, it returns
an integer. On the source, functions that return a result that includes the current time (such as
CURTI ME() , SYSDATE() , or UTC_TI MESTANMP()) interpret an argument as an f sp value and the
return value includes a fractional seconds part of that many digits. On the replica, these functions
permit an argument but ignore it.

4.1.14 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a replica: FLUSH LOGS and FLUSH TABLES W TH READ LOCK. For a syntax example, see
FLUSH Statement. The FLUSH TABLES, ANALYZE TABLE, OPTI M ZE TABLE, and REPAI R TABLE
statements are written to the binary log and thus replicated to replicas. This is not normally a problem
because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the nysql database and update those tables directly without using GRANT, you must issue

a FLUSH PRI VI LEGES on the replicas to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a Myl SAMtable that is part of a MERGE table, you must issue FLUSH
TABLES manually on the replicas. These statements are written to the binary log unless you specify
NO WRI TE_TO BI NLOGor its alias LOCAL.

4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

« The USER(), CURRENT USER() (or CURRENT USER), UUI D(), VERSI ON() , and LOAD FI LE()
functions are replicated without change and thus do not work reliably on the replica unless row-
based replication is enabled. (See Section 5.1, “Replication Formats”.)

USER() and CURRENT USER() are automatically replicated using row-based replication when using
M XED mode, and generate a warning in STATEMENT mode. (See also Section 4.1.8, “Replication of
CURRENT_USER()".) This is also true for VERSI ON() and RAND() .

» For NOW() , the binary log includes the timestamp. This means that the value as returned by the
call to this function on the source is replicated to the replica. To avoid unexpected results when
replicating between MySQL servers in different time zones, set the time zone on both source and
replica. For more information, see Section 4.1.31, “Replication and Time Zones”.

To explain the potential problems when replicating between servers which are in different time
zones, suppose that the source is located in New York, the replica is located in Stockholm, and
both servers are using local time. Suppose further that, on the source, you create a table myt abl e,
perform an | NSERT statement on this table, and then select from the table, as shown here:

nysqgl > CREATE TABLE nytabl e (nycol TEXT);

158

https://dev.mysql.com/doc/refman/5.7/en/time.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_curtime
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_utc-timestamp
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/insert.html

Replication and System Functions

Query OK, O rows affected (0.06 sec)

mysql > | NSERT | NTO nytabl e VALUES (NOA));
Query OK, 1 row affected (0.00 sec)

nmysql > SELECT * FROM nyt abl e;

foccocoooosoooooonooos +
| mycol |
foccocoooosoooooonooos +
| 2009-09-01 12:00: 00 |
foccocoooosoooooonooos +

1 rowin set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOA() on the
replica at that exact same instant, the value 2009- 09- 01 18: 00: 00 is returned. For this reason,
if you select from the replica's copy of nyt abl e after the CREATE TABLE and | NSERT statements
just shown have been replicated, you might expect mycol to contain the value 2009- 09- 01

18: 00: 00. However, this is not the case; when you select from the replica’'s copy of nyt abl e, you
obtain exactly the same result as on the source:

nmysql > SELECT * FROM nyt abl e;

foccocoooosoooooonooos +
| mycol [
foccocoooosoooooonooos +
| 2009-09-01 12:00: 00 |
foccocoooosoooooonooos +

1 rowin set (0.00 sec)

Unlike NOW() , the SYSDATE() function is not replication-safe because it is not affected by SET
TI MESTAMP statements in the binary log and is nondeterministic if statement-based logging is used.
This is not a problem if row-based logging is used.

An alternative is to use the - - sysdat e- i s- nowoption to cause SYSDATE() to be an alias for
NOW() . This must be done on the source and the replica to work correctly. In such cases, a warning
is still issued by this function, but can safely be ignored as long as - - sysdat e- i s- nowis used on
both the source and the replica.

SYSDATE() is automatically replicated using row-based replication when using M XED mode, and
generates a warning in STATEVENT mode.

See also Section 4.1.31, “Replication and Time Zones”.

The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE LOCK(),| S FREE LOCK(),and| S USED LOCK() functions that
handle user-level locks are replicated without the replica knowing the concurrency context on the
source. Therefore, these functions should not be used to insert into a source table because the
content on the replica would differ. For example, do not issue a statement such as | NSERT | NTO
nyt abl e VALUES(GET_LOCK(...)).

These functions are automatically replicated using row-based replication when using M XED mode,
and generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can

use the strategy of saving the problematic function result in a user variable and referring to the variable
in a later statement. For example, the following single-row | NSERT is problematic due to the reference
to the UUI D() function:

I NSERT I NTO t VALUES(UUI X))

To work around the problem, do this instead:

SET @vy_uuid = UU () ;
I NSERT | NTO t VALUES(@ry_uui d) ;

That sequence of statements replicates because the value of @ry_uui d is stored in the binary log as a
user-variable event prior to the | NSERT statement and is available for use in the | NSERT.

159

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html

Replication of Invoked Features

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert,
you can do this:

SET @y_uuidl = UUID(); @y_uuid2 = UU IX);
I NSERT | NTO t VALUES(@ry_uui d1), (@y _uui d2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROMt1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the
execution of the function. (You can consider the function execution timestamp and random number
seed as implicit inputs that are identical on the source and replica.)

The FOUND_ROW5() and ROW COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that
in the | NSERT statement. For example, if you wish to store the result in a table named myt abl e, you
might normally do so like this:

SELECT SQL_CALC_FOUND_ROAS FROM mytable LIMT 1;
I NSERT | NTO nyt abl e VALUES(FOUND ROWS());

However, if you are replicating nyt abl e, you should use SELECT ... | NTQ, and then store the
variable in the table, like this:

SELECT SQ._CALC FOUND_ROAS | NTO @ ound_rows FROM nytable LIMT 1;
I NSERT | NTO nyt abl e VALUES(@ ound_r ows) ;

In this way, the user variable is replicated as part of the context, and applied on the replica correctly.

These functions are automatically replicated using row-based replication when using M XED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.7.3, the value of LAST | NSERT | D() was not replicated correctly if any filtering
options such as - -replicate-ignore-dband--replicate-do-tabl e were enabled on the
replica. (Bug #17234370, BUG# 69861)

4.1.16 Replication of Invoked Features

Replication of invoked features such as loadable functions and stored programs (stored procedures
and functions, triggers, and events) provides the following characteristics:

» The effects of the feature are always replicated.
» The following statements are replicated using statement-based replication:
* CREATE EVENT
e ALTER EVENT
« DROP EVENT
» CREATE PROCEDURE
* DROP PROCEDURE
* CREATE FUNCTI ON
* DROP FUNCTI ON

e CREATE TRI GGER

160

https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/drop-event.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/drop-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-function.html
https://dev.mysql.com/doc/refman/5.7/en/drop-function.html
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html

Replication of Invoked Features

* DROP TRI GGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning St at enent is not safe to log in statenent
f or mat . For example, trying to replicate a loadable function with statement-
based replication generates this warning because it currently cannot be
determined by the MySQL server whether the function is deterministic. If you
are absolutely certain that the invoked feature's effects are deterministic, you
can safely disregard such warnings.

. In the case of CREATE EVENT and ALTER EVENT:

« The status of the event is set to SLAVESI DE_DI SABLED on the replica regardless of the state
specified (this does not apply to DROP EVENT).

* The source on which the event was created is identified on the replica by its server ID. The
ORI G NATOR column in the Information Schema EVENTS table and the ori gi nat or column in
mysql . event store this information. See The INFORMATION_SCHEMA EVENTS Table, and
SHOW EVENTS Statement, for more information.

» The feature implementation resides on the replica in a renewable state so that if the source fails, the
replica can be used as the source without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a
different server (that was acting as a replication source server), query the Information Schema EVENTS
table in a manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
FROM | NFORVATI ON_SCHEMA. EVENTS
WHERE STATUS = ' SLAVESI DE_DI SABLED ;

Alternatively, you can use the SHOWV EVENTS statement, like this:

SHOW EVENTS
WHERE STATUS = ' SLAVESI DE_DI SABLED ;

When promoting a replica having such events to a replication source server, you must enable each
event using ALTER EVENT event nane ENABLE, where event nane is the name of the event.

If more than one source was involved in creating events on this replica, and you wish to identify events
that were created only on a given source having the server ID sour ce_i d, modify the previous query
on the EVENTS table to include the ORI G NATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORI G NATOR
FROM | NFORVATI ON_SCHEMA. EVENTS
WHERE STATUS = ' SLAVESI DE_DI SABLED
AND ORI G NATOR = 'source_id'

You can employ ORI G NATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
WHERE STATUS = ' SLAVESI DE_DI SABLED
AND ORI G NATOR = 'source_id'

Before enabling events that were replicated from the source, you should disable the MySQL Event
Scheduler on the replica (using a statement such as SET GLOBAL event schedul er = OFF;), run
any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on
the replica afterward (using a statement such as SET GLOBAL event schedul er = ON;)-

161

https://dev.mysql.com/doc/refman/5.7/en/drop-trigger.html
https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/drop-event.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-events.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-events.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-events.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html

Replication and LIMIT

If you later demote the new source back to being a replica, you must disable manually all events
enabled by the ALTER EVENT statements. You can do this by storing in a separate table the event
names from the SELECT statement shown previously, or using ALTER EVENT statements to rename
the events with a common prefix such as r epl i cat ed_ to identify them.

If you rename the events, then when demoting this server back to being a replica, you can identify the
events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS ' Db. Event'
FROM | NFORMATI ON_SCHEMA. EVENTS
WHERE | NSTR(EVENT_NAME, 'replicated ') = 1;

4.1.17 Replication and LIMIT

Statement-based replication of LI M T clauses in DELETE, UPDATE, and | NSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.)
When such a statement is encountered:

* When using STATEMENT mode, a warning that the statement is not safe for statement-based
replication is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LI M T even
when they also have an ORDER BY clause (and so are made deterministic). This is a known issue.
(Bug #42851)

* When using M XED mode, the statement is now automatically replicated using row-based mode.

4.1.18 Replication and LOAD DATA

LOAD DATA s considered unsafe for statement-based logging (see Section 5.1.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). When bi nl og_f or mat =M XED is set, the statement
is logged in row-based format. When bi nl og_f or nat =STATEMENT is set, note that LOAD DATA does
not generate a warning, unlike other unsafe statements.

When nysql bi nl og reads log events for LOAD DATA statements logged in statement-based format,
a generated local file is created in a temporary directory. These temporary files are not automatically
removed by nysql bi nl og or any other MySQL program. If you do use LOAD DATA statements with
statement-based binary logging, you should delete the temporary files yourself after you no longer
need the statement log. For more information, see mysqlbinlog — Utility for Processing Binary Log
Files.

4.1.19 Replication and max_allowed_packet

max_al | oned packet sets an upper limit on the size of any single message between the MySQL
server and clients, including replicas. If you are replicating large column values (such as might be
found in TEXT or BLOB columns) and max_al | owed_packet is too small on the source, the source
fails with an error, and the replica shuts down the replication I/O thread. If rax_al | owed_packet is
too small on the replica, this also causes the replica to stop the replication I/O thread.

Row-based replication sends all columns and column values for updated rows from the source to the
replica, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_al | oned_packet large enough to accommodate the largest row in any table to be replicated,
even if you are replicating updates only, or you are inserting only relatively small values.

On a multi-threaded replica (sl ave_paral | el _wor kers > 0), ensure that the system

variable sl ave_pendi ng_j obs_si ze_max is set to a value equal to or greater than the

setting for the max_al | owed_packet system variable on the source. The default setting for

sl ave_pendi ng_j obs_si ze_nax, 128M, is twice the default setting for nax_al | owed_packet
which is 64M. max_al | owed_packet limits the packet size that the source can send, but the addition

162

https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet

Replication and MEMORY Tables

of an event header can produce a bhinary log event exceeding this size. Also, in row-based replication,
a single event can be significantly larger than the nax_al | owed _packet size, because the value of
max_al | oned_packet only limits each column of the table.

The replica actually accepts packets up to the limit set by its sl ave_nax_al | owed packet setting,
which default to the maximum setting of 1GB, to prevent a replication failure due to a large packet.
However, the value of sl ave_pendi ng_j obs_si ze nax controls the memory that is made available
on the replica to hold incoming packets. The specified memory is shared among all the replica worker
queues.

The value of sl ave_pendi ng_j obs_si ze_max is a soft limit, and if an unusually large event
(consisting of one or multiple packets) exceeds this size, the transaction is held until all the

replica workers have empty queues, and then processed. All subsequent transactions are

held until the large transaction has been completed. So although unusual events larger than

sl ave_pendi ng_j obs_si ze_nmax can be processed, the delay to clear the queues of all the replica
workers and the wait to queue subsequent transactions can cause lag on the replica and decreased
concurrency of the replica workers. sl ave_pendi ng_j obs_si ze_nax should therefore be set high
enough to accommodate most expected event sizes.

4.1.20 Replication and MEMORY Tables

When a replication source server shuts down and restarts, its MEMORY tables become empty. To
replicate this effect to replicas, the first time that the source uses a given VEMORY table after startup, it
logs an event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL
5.7.32) TRUNCATE TABLE statement for that table to the binary log. This generated event is identifiable
by a comment in the binary log, and if GTIDs are in use on the server, it has a GTID assigned. The
statement is always logged in statement format, even if the binary logging format is set to ROW and it is
written even if r ead_onl y or super _read_onl y mode is set on the server. Note that the replica still
has outdated data in a MEMORY table during the interval between the source's restart and its first use of
the table. To avoid this interval when a direct query to the replica could return stale data, you can set
theinit_fil e system variable to name a file containing statements that populate the MEMORY table
on the source at startup.

When a replica server shuts down and restarts, its MEMORY tables become empty. This causes the
replica to be out of synchrony with the source and may lead to other failures or cause the replica to
stop:

» Row-format updates and deletes received from the source may fail with Can't find record in
"menory_table'.

e Statements such as | NSERT | NTO ... SELECT FROM nenory tabl e may insert a different set
of rows on the source and replica.

The replica also writes a DELETE or (from MySQL 5.7.32) TRUNCATE TABLE statement to its own
binary log, which is passed on to any downstream replicas, causing them to empty their own MEMORY
tables.

The safe way to restart a replica that is replicating MEMORY tables is to first drop or delete all rows from
the MEMORY tables on the source and wait until those changes have replicated to the replica. Then it is
safe to restart the replica.

An alternative restart method may apply in some cases. When bi nl og_f or nat =ROW you can prevent
the replica from stopping if you set sl ave_exec_node=I DEMPOTENT before you start the replica
again. This allows the replica to continue to replicate, but its MEMORY tables still differ from those on

the source. This is acceptable if the application logic is such that the contents of MEMORY tables can be
safely lost (for example, if the MEMORY tables are used for caching). sl ave _exec_node=| DEMPOTENT
applies globally to all tables, so it may hide other replication errors in non-VEMORY tables.

(The method just described is not applicable in NDB Cluster, where sl ave _exec_node is always
| DEMPOTENT, and cannot be changed.)

163

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html

Replication of the mysql System Database

The size of MEMORY tables is limited by the value of the nax_heap_t abl e_si ze system

variable, which is not replicated (see Section 4.1.37, “Replication and Variables”). A change in
max_heap_t abl e_si ze takes effect for MEMORY tables that are created or updated using ALTER
TABLE ... ENG NE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY
tables following a server restart. If you increase the value of this variable on the source without doing
so on the replica, it becomes possible for a table on the source to grow larger than its counterpart

on the replica, leading to inserts that succeed on the source but fail on the replica with Tabl e i s
ful |l errors. This is a known issue (Bug #48666). In such cases, you must set the global value of
max_heap_t abl e_si ze on the replica as well as on the source, then restart replication. It is also
recommended that you restart both the source and replica MySQL servers, to insure that the new value
takes complete (global) effect on each of them.

See The MEMORY Storage Engine, for more information about VEMORY tables.

4.1.21 Replication of the mysql System Database

Data modification statements made to tables in the nysql database are replicated according to the
value of bi nl og_f or nat ; if this value is M XED, these statements are replicated using row-based
format. However, statements that would normally update this information indirectly—such GRANT,
REVCKE, and statements manipulating triggers, stored routines, and views—are replicated to replicas
using statement-based replication.

4.1.22 Replication and the Query Optimizer

It is possible for the data on the source and replica to become different if a statement is written in such
a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general,
this is not a good practice, even outside of replication.) Examples of nondeterministic statements
include DELETE or UPDATE statements that use LI M T with no ORDER BY clause; see Section 4.1.17,
“Replication and LIMIT”, for a detailed discussion of these.

4.1.23 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme
and otherwise have the same structure except where an exception is specifically allowed (see
Section 4.1.10, “Replication with Differing Table Definitions on Source and Replica”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTI TI ON) acting directly on partitions in such
cases may produce different results on source and replica. In the case where a table is partitioned on
the source but not on the replica, any statements operating on partitions on the source's copy of the
replica fail on the replica. When the replica’s copy of the table is partitioned but the source's copy is
not, statements acting on partitions cannot be run on the source without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on source
and replica), we recommend that insure that the partitioning of any tables to be replicated from the
source is matched by the replica's versions of these tables.

4.1.24 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAI R TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed

by this statement are not replicated, which can cause source and replica to lose synchronization.

For this reason, in the event that a table on the source becomes damaged and you use REPAI R
TABLE to repair it, you should first stop replication (if it is still running) before using REPAI R TABLE,
then afterward compare the source's and replica's copies of the table and be prepared to correct any
discrepancies manually, before restarting replication.

4.1.25 Replication and Reserved Words

164

https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html

Replication and Source or Replica Shutdowns

You can encounter problems when you attempt to replicate from an older source to a newer replica
and you make use of identifiers on the source that are reserved words in the newer MySQL version
running on the replica. An example of this is using a table column named vi rt ual on a 5.6 source
that is replicating to a 5.7 or higher replica because VI RTUAL is a reserved word beginning in MySQL
5.7. Replication can fail in such cases with Error 1064 You have an error in your SQ

synt ax. . ., even if a database or table named using the reserved word or a table having a column
named using the reserved word is excluded from replication. This is due to the fact that each SQL
event must be parsed by the replica prior to execution, so that the replica knows which database object
or objects would be affected; only after the event is parsed can the replica apply any filtering rules
defined by - -repl i cat e-do-db,--replicate-do-table,--replicate-ignore-db,and--
replicate-ignore-table.

To work around the problem of database, table, or column names on the source which would be
regarded as reserved words by the replica, do one of the following:

» Use one or more ALTER TABLE statements on the source to change the names of any database
objects where these names would be considered reserved words on the replica, and change any
SQL statements that use the old names to use the new names instead.

* In any SQL statements using these database object names, write the names as quoted identifiers
using backtick characters (*).

For listings of reserved words by MySQL version, see Keywords and Reserved Words in MySQL 5.7, in
the MySQL Server Version Reference. For identifier quoting rules, see Schema Object Names.

4.1.26 Replication and Source or Replica Shutdowns

It is safe to shut down a source server and restart it later. When a replica loses its connection to the
source, the replica tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the CHANGE MASTER TOstatement. A replica also
is able to deal with network connectivity outages. However, the replica notices the network outage only
after receiving no data from the source for sl ave_net _t i meout seconds. If your outages are short,
you may want to decrease sl ave_net _ti meout . See Section 3.2, “Handling an Unexpected Halt of a
Replica”.

An unclean shutdown (for example, a crash) on the source side can result in the source's binary

log having a final position less than the most recent position read by the replica, due to the source's
binary log file not being flushed. This can cause the replica not to be able to replicate when the

source comes back up. Setting sync_bi nl og=1 in the source's ny. cnf file helps to minimize this
problem because it causes the source to flush its binary log more frequently. For the greatest possible
durability and consistency in a replication setup using | nnoDB with transactions, you should also set

i nnodb_flush_[og at trx_conm t=1.With this setting, the contents of the | nnoDB redo log
buffer are written out to the log file at each transaction commit and the log file is flushed to disk. Note
that the durability of transactions is still not guaranteed with this setting, because operating systems or
disk hardware may tell nysql d that the flush-to-disk operation has taken place, even though it has not.

Shutting down a replica cleanly is safe because it keeps track of where it left off. However, be careful
that the replica does not have temporary tables open; see Section 4.1.29, “Replication and Temporary
Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to
disk before the problem occurred:

 For transactions, the replica commits and then updates r el ay- | og. i nf 0. If an unexpected exit
occurs between these two operations, relay log processing proceeds further than the information file
indicates and the replica re-executes the events from the last transaction in the relay log after it has
been restarted.

» A similar problem can occur if the replica updates r el ay- | og. i nf o but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay | og_i nfo=1inthe replicany. cnf file. Setting sync_rel ay | og_i nf o to 0 causes

165

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-5-7.html
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Replica Errors During Replication

no writes to be forced to disk and the server relies on the operating system to flush the file from time
to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

4.1.27 Replica Errors During Replication

If a statement produces the same error (identical error code) on both the source and the replica, the
error is logged, but replication continues.

If a statement produces different errors on the source and the replica, the replication SQL thread
terminates, and the replica writes a message to its error log and waits for the database administrator
to decide what to do about the error. This includes the case that a statement produces an error on

the source or the replica, but not both. To address the issue, connect to the replica manually and
determine the cause of the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and
run START SLAVE. For example, you might need to create a nonexistent table before you can start the
replica again.

Note

If a temporary error is recorded in the replica's error log, you do not necessarily
have to take any action suggested in the quoted error message. Temporary
errors should be handled by the client retrying the transaction. For example,

if the replication SQL thread records a temporary error relating to a deadlock,
you do not need to restart the transaction manually on the replica, unless the
replication SQL thread subsequently terminates with a nontemporary error
message.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored)
with the - - sl ave- ski p- errors option.

For nontransactional storage engines such as Myl SAM it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updating
some of the rows. If that happens on the source, the replica expects execution of the statement to
result in the same error code. If it does not, the replication SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the source and replica,

keep in mind that the same statement might produce a different error when run against one version of
the table, but not the other, or might cause an error for one version of the table, but not the other. For
example, since Myl SAMignores foreign key constraints, an | NSERT or UPDATE statement accessing
an | nnoDB table on the source might cause a foreign key violation but the same statement performed
on a Myl SAMversion of the same table on the replica would produce no such error, causing replication
to stop.

4.1.28 Replication and Server SQL Mode

Using different server SQL mode settings on the source and the replica may cause the same | NSERT
statements to be handled differently on the source and the replica, leading the source and replica to
diverge. For best results, you should always use the same server SQL mode on the source and on the
replica. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the source and the replica is
likely to cause issues. At a minimum, this is likely to cause the distribution of data among partitions
to be different in the source's and replica's copies of a given table. It may also cause inserts into
partitioned tables that succeed on the source to fail on the replica.

For more information, see Server SQL Modes. In particular, see SQL Mode Changes in MySQL 5.7,
which describes changes in MySQL 5.7, so that you can assess whether your applications are affected.

166

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sql-mode-changes

Replication and Temporary Tables

4.1.29 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when bi nl og_f or mat =ROWbecause, in
that case, temporary tables are not replicated; this means that there are never any temporary tables
on the replica to be lost in the event of an unplanned shutdown by the replica. The remainder of this
section applies only when using statement-based or mixed-format replication. Loss of replicated
temporary tables on the replica can be an issue, whenever bi nl og_f or mat is STATEMENT or M XED,
for statements involving temporary tables that can be logged safely using statement-based format.

For more information about row-based replication and temporary tables, see Row-based logging of
temporary tables.

Safe replica shutdown when using temporary tables. Temporary tables are replicated except in
the case where you stop the replica server (not just the replication threads) and you have replicated
temporary tables that are open for use in updates that have not yet been executed on the replica. If
you stop the replica server, the temporary tables needed by those updates are no longer available
when the replica is restarted. To avoid this problem, do not shut down the replica while it has temporary
tables open. Instead, use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.
2. Use SHOW STATUS to check the value of the Sl ave _open_t enp_t abl es variable.

3. If the value is not 0O, restart the replication SQL thread with START SLAVE SQ._THREAD and
repeat the procedure later.

4. When the value is 0, issue a nysql adni n shut down command to stop the replica.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching - - r epl i cat e- do-db, --repl i cat e-do-t abl e,
or--replicate-w | d-do-tabl e options in effect. However, the - -repl i cat e-i gnore-tabl e
and--replicate-wild-ignore-tabl e options are honored for temporary tables. The exception is
that to enable correct removal of temporary tables at the end of a session, a replica always replicates
a DROP TEMPORARY TABLE | F EXI STS statement, regardless of any exclusion rules that would
normally apply for the specified table.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a - -
replicate-w | d-ignore-tabl e option to match that prefix. For example, you might give all such
tables names beginning with nor ep (such as nor epnyt abl e, nor epyourt abl e, and so on), then
use --replicate-wld-ignore-tabl e=nor ep%to prevent them from being replicated.

4.1.30 Replication Retries and Timeouts

The global system variable sl ave transacti on_retri es affects replication as follows:

If the replication SQL thread fails to execute a transaction because of an | nnoDB deadlock

or because it exceeded the | nnoDB i nnodb_| ock _wait ti nmeout value, or the NDB

Transacti onDeadl ockDet ecti onTi neout or Transact i onl nacti veTi meout value, the
replica automatically retries the transaction sl ave_transacti on_retri es times before stopping
with an error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS;
see Server Status Variables.

4.1.31 Replication and Time Zones

By default, source and replica servers assume that they are in the same time zone. If you are
replicating between servers in different time zones, the time zone must be set on both source and
replica. Otherwise, statements depending on the local time on the source are not replicated properly,
such as statements that use the NOA() or FROM _UNI XTI ME() functions.

Verify that your combination of settings for the system time zone (syst em ti ne_zone), server
current time zone (the global value of t i ne_zone), and per-session time zones (the session value of

167

https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_from-unixtime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_system_time_zone
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone

Replication and Transaction Inconsistencies

ti me_zone) on the source and replica is producing the correct results. In particular, if the t i ne_zone
system variable is set to the value SYSTEM indicating that the server time zone is the same as the
system time zone, this can cause the source and replica to apply different time zones. For example, a
source could write the following statement in the binary log:

SET @@ession.tine_zone=' SYSTEM ;

If this source and its replica have a different setting for their system time zones, this statement can
produce unexpected results on the replica, even if the replica's global t i me_zone value has been set
to match the source's. For an explanation of MySQL Server's time zone settings, and how to change
them, see MySQL Server Time Zone Support.

See also Section 4.1.15, “Replication and System Functions”.

4.1.32 Replication and Transaction Inconsistencies

Inconsistencies in the sequence of transactions that have been executed from the relay log can occur
depending on your replication configuration. This section explains how to avoid inconsistencies and
solve any problems they cause.

The following types of inconsistencies can exist:

» Half-applied transactions. A transaction which updates non-transactional tables has applied some
but not all of its changes.

» Gaps. A gap is a transaction that has not been fully applied, even though some transaction
later in the sequence has been applied. Gaps can only appear when using a multithreaded
replica. To avoid gaps occurring, set sl ave_preserve_comi t _or der =1, which requires
sl ave_paral |l el _type=LO3 CAL_CLQOCK, and that | og- bi n and | og- sl ave- updat es are
also enabled. Note that sl ave_preserve_conmm t _or der =1 does not preserve the order of non-
transactional DML updates, so these might commit before transactions that precede them in the
relay log, which might result in gaps.

» Source binary log position lag. Even in the absence of gaps, it is possible that transactions after
Exec_nmst er | og_pos have been applied. That is, all transactions up to point N have been
applied, and no transactions after N have been applied, but Exec_mast er | og_pos has a value
smaller than N. In this situation, Exec_rnmast er _| og_pos is a “low-water mark” of the transactions
applied, and lags behind the position of the most recently applied transaction. This can only happen
on multithreaded replicas. Enabling sl ave _preserve_conmit_or der does not prevent source
binary log position lag.

The following scenarios are relevant to the existence of half-applied transactions, gaps, and source
binary log position lag:

1. While replication threads are running, there may be gaps and half-applied transactions.

2. nysql d shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave
gaps and half-applied transactions.

3. KI LL of replication threads (the SQL thread when using a single-threaded replica, the coordinator
thread when using a multithreaded replica). This aborts ongoing transactions and may leave gaps
and half-applied transactions.

4. Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction
is half-applied. When using a multithreaded replica, workers which have not received an error
complete their queues, so it may take time to stop all threads.

5. STOP SLAVE when using a multithreaded replica. After issuing STOP SLAVE, the replica waits for
any gaps to be filled and then updates Exec_nast er | og_pos. This ensures it never leaves gaps
or source binary log position lag, unless any of the cases above applies, in other words, before

168

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html

Replication and Transaction Inconsistencies

STOP SLAVE completes, either an error happens, or another thread issues Kl LL, or the server
restarts. In these cases, STOP SLAVE returns successfully.

6. If the last transaction in the relay log is only half-received and the multithreaded replica coordinator
has started to schedule the transaction to a worker, then STOP SLAVE waits up to 60 seconds
for the transaction to be received. After this timeout, the coordinator gives up and aborts the
transaction. If the transaction is mixed, it may be left half-completed.

7. STOP SLAVE when the ongoing transaction updates transactional tables only, in which case it is
rolled back and STOP SLAVE stops immediately. If the ongoing transaction is mixed, STOP SLAVE
waits up to 60 seconds for the transaction to complete. After this timeout, it aborts the transaction,
so it may be left half-completed.

The global variable r pl _st op_sl ave_ti neout is unrelated to the process of stopping the replication
threads. It only makes the client that issues STOP SLAVE return to the client, but the replication
threads continue to try to stop.

If a replication channel has gaps, it has the following consequences:
1. The replica database is in a state that may never have existed on the source.

2. The field Exec_nast er _| og_pos in SHON SLAVE STATUS is only a “low-water mark”. In
other words, transactions appearing before the position are guaranteed to have committed, but
transactions after the position may have committed or not.

3. CHANGE MASTER TOstatements for that channel fail with an error, unless the applier threads are
running and the CHANGE MASTER TO statement only sets receiver options.

4. Ifnysql dis started with - - r el ay- | og-r ecovery, no recovery is done for that channel, and a
warning is printed.

5. If mysql dunp is used with - - dunp- sl ave, it does not record the existence of gaps; thus
it prints CHANGE MASTER TOwith RELAY _LOG PCS set to the “low-water mark” position in
Exec_master | og_pos.

After applying the dump on another server, and starting the replication threads, transactions
appearing after the position are replicated again. Note that this is harmless if GTIDs are enabled
(however, in that case it is not recommended to use - - dunp- sl ave).

If a replication channel has source binary log position lag but no gaps, cases 2 to 5 above apply, but
case 1 does not.

The source binary log position information is persisted in binary format in the internal table

nysql . sl ave_wor ker i nfo. START SLAVE [SQ._THREAD] always consults this information so
that it applies only the correct transactions. This remains true even if sl ave_paral | el _wor ker s
has been changed to 0 before START SLAVE, and even if START SLAVE is used with UNTI L clauses.
START SLAVE UNTI L SQL_AFTER MIS_ GAPS only applies as many transactions as needed in
order to fill in the gaps. If START SLAVE is used with UNTI L clauses that tell it to stop before it has
consumed all the gaps, then it leaves remaining gaps.

Warning

RESET SLAVE removes the relay logs and resets the replication position. Thus
issuing RESET SLAVE on a replica with gaps means the replica loses any
information about the gaps, without correcting the gaps.

When GTID-based replication is in use, from MySQL 5.7.28 a multithreaded
replica checks first whether MASTER _AUTO PQOSI TI ONiis set to ON, and if it
is, omits the step of calculating the transactions that should be skipped or not
skipped. In that situation, the old relay logs are not required for the recovery
process.

169

https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_dump-slave
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_dump-slave
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html

Replication and Transactions

4.1.33 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional
(or temporary) and nontransactional tables and writes to any of them.

The server uses these rules for binary logging:

« If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary
log until the transaction is committed. (If the transaction is rolled back, the cached statements are
written to the binary log only if they make nontransactional changes that cannot be rolled back.
Otherwise, they are discarded.)

» For statement-based logging, logging of nontransactional statements is affected by the
bi nl og _direct_non_transacti onal updat es system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. bi nl og_di rect _non_transacti onal updat es has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.

To apply those rules, the server considers a statement nontransactional if it changes only
nontransactional tables, and transactional if it changes only transactional tables. A statement that
references both nontransactional and transactional tables and updates any of the tables involved, is
considered a “mixed” statement. (In some past MySQL versions, only a statement that updated both
nontransactional and transactional tables was considered mixed.) Mixed statements, like transactional
statements, are cached and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also
performs either of the following actions:

» Updates or reads a temporary table
» Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered
unsafe if it performs either of the following actions:

» Updates any table and reads from any temporary table
» Updates a nontransactional table and bi nl og_di rect _non_t ransacti onal _updat es is OFF

For more information, see Section 5.1.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note
A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on source and replica. Itis possible to replicate transactional
tables on the source using nontransactional tables on the replica. For example, you can replicate

170

https://dev.mysql.com/doc/refman/5.7/en/commit.html

Replication and Triggers

an | nnoDB source table as a Myl SAMreplica table. However, if you do this, there are problems if
the replica is stopped in the middle of a BEG N... COVM T block because the replica restarts at the
beginning of the BEG N block.

It is also safe to replicate transactions from Myl SAMtables on the source to transactional tables, such
as tables that use the | nnoDB storage engine, on the replica. In such cases, an AUTOCOVM T=1
statement issued on the source is replicated, thus enforcing AUTOCOVM T mode on the replica.

When the storage engine type of the replica is nontransactional, transactions on the source that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the source transactional table and the replica nontransactional table.
That is, such transactions can lead to source storage engine-specific behavior with the possible effect
of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra
care should be taken when replicating transactional tables from the source to nontransactional tables
on the replicas.

Changing the binary logging format within transactions. The bi nl og_f or mat and
bi nl og_checksumsystem variables are read-only as long as a transaction is in progress.

Every transaction (including aut oconmi t transactions) is recorded in the binary log as though it starts
with a BEG N statement, and ends with either a COVM T or a ROLLBACK statement. This is even true
for statements affecting tables that use a nontransactional storage engine (such as Myl SAM).

Note

For restrictions that apply specifically to XA transactions, see Restrictions on XA
Transactions.

4.1.34 Replication and Triggers

With statement-based replication, triggers executed on the source also execute on the replica. With
row-based replication, triggers executed on the source do not execute on the replica. Instead, the row
changes on the source resulting from trigger execution are replicated and applied on the replica.

This behavior is by design. If under row-based replication the replica applied the triggers as well as the
row changes caused by them, the changes would in effect be applied twice on the replica, leading to
different data on the source and the replica.

If you want triggers to execute on both the source and the replica, perhaps because you have different
triggers on the source and replica, you must use statement-based replication. However, to enable
replica-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to
switch to statement-based replication only for those statements where you want this effect, and to use
row-based replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_| NCREMENT column
is not replicated correctly using statement-based replication. MySQL 5.7 marks such statements as
unsafe. (Bug #45677)

A trigger can have triggers for different combinations of trigger event (I NSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have the
same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are permitted.
This change has replication implications for upgrades and downgrades.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event
and action time.”

Upgrades. Suppose that you upgrade an old server that does not support multiple triggers to MySQL
5.7.2 or higher. If the new server is a replication source server and has old replicas that do not support
multiple triggers, an error occurs on those replicas if a trigger is created on the source for a table that
already has a trigger with the same trigger event and action time. To avoid this problem, upgrade the
replicas first, then upgrade the source.

171

https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/xa-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/xa-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Replication and TRUNCATE TABLE

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does
not, the downgrade has these effects:

» For each table that has triggers, all trigger definitions remain in the . TRGfile for the table. However,
if there are multiple triggers with the same trigger event and action time, the server executes only
one of them when the trigger event occurs. For information about . TRGfiles, see the Table Trigger
Storage section of the MySQL Server Doxygen documentation, available at https://dev.mysqgl.com/
doc/index-other.html.

« If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's . TRGfile. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEWand OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a stored
procedure and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

4.1.35 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary logging mode is RONor M XED.
However this caused issues when logging or replicating, in STATEMENT or M XED mode, tables that
used transactional storage engines such as | nnoDB when the transaction isolation level was READ
COWM TTED or READ UNCOWM TTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that

it can be logged and replicated as a statement. However, the effects of the statement as applicable to

I nnoDB and other transactional tables on replicas still follow the rules described in TRUNCATE TABLE
Statement governing such tables. (Bug #36763)

4.1.36 Replication and User Name Length

The maximum length of MySQL user names was increased from 16 characters to 32 characters in
MySQL 5.7.8. Replication of user names longer than 16 characters to a replica that supports only
shorter user names fails. However, this should occur only when replicating from a newer source to an
older replica, which is not a recommended configuration.

4.1.37 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

e auto_increnment i ncrenent
e auto_increnent of fset
e character_set _client

e character_set_connection

172

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_connection

Replication and Variables

e character_set _dat abase
» character_set_server
e col l ati on_connection
e col | ati on_dat abase

e collation_server

» foreign_key checks

e identity

e last _insert _id

| c_tine_nanes

e pseudo_thread_id

* sgl _auto_is_nul

e time_zone

e tinmestanp

e uni que_checks

When M XED mode is used, the variables in the preceding list, when used with session scope, cause a
switch from statement-based to row-based logging. See Mixed Binary Logging Format.

sql _node is also replicated except for the NO DI R _| N_CREATE mode; the replica always preserves
its own value for NO DI R _| N_CREATE, regardless of changes to it on the source. This is true for all
replication formats.

However, when mysql bi nl og parses a SET @®ql _node = node statement, the full nrode value,
including NO_DI R _| N_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The def aul t _st or age_engi ne system variable is not replicated, regardless of the logging mode;
this is intended to facilitate replication between different storage engines.

The read_onl y system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_t abl e_si ze system variable is not replicated. Increasing the value of this variable on
the source without doing so on the replica can lead eventually to Tabl e i s ful | errors on the replica
when trying to execute | NSERT statements on a MEMORY table on the source that is thus permitted to
grow larger than its counterpart on the replica. For more information, see Section 4.1.20, “Replication
and MEMORY Tables".

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements do not insert the same data on
the source and the replica:

SET nmax_j oi n_si ze=1000;
I NSERT | NTO nyt abl e VALUES(@@rax_j oi n_si ze) ;

This does not apply to the common sequence:

SET ti me_zone-=.. .;

173

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_identity
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_last_insert_id
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_pseudo_thread_id
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_timestamp
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_unique_checks
https://dev.mysql.com/doc/refman/5.7/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html

Replication and Views

I NSERT | NTO nyt abl e VALUES(CONVERT_TZ(..., ..., @Qine_zone));

Replication of session variables is not a problem when row-based replication is being used, in which
case, session variables are always replicated safely. See Section 5.1, “Replication Formats”.

The following session variables are written to the binary log and honored by the replica when parsing
the binary log, regardless of the logging format:

* sgl _node

« foreign_key checks

* uni que_checks

e character _set client

e col l ati on_connection

e col | ati on_dat abase

e collation_server

e sql _auto_is_nul
Important

Even though session variables relating to character sets and collations are
written to the binary log, replication between different character sets is not
supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
| ower case_tabl e_nanes system variable on both source and replica, especially when you are
running MySQL on platforms with case-sensitive file systems.

4.1.38 Replication and Views

Views are always replicated to replicas. Views are filtered by their own name, not by the tables they
refer to. This means that a view can be replicated to the replica even if the view contains a table
that would normally be filtered out by r epl i cati on-i gnor e-t abl e rules. Care should therefore
be taken to ensure that views do not replicate table data that would normally be filtered for security
reasons.

Replication from a table to a same-named view is supported using statement-based logging, but not
when using row-based logging. Trying to do so when row-based logging is in effect causes an error.
(Bug #11752707, Bug #43975)

4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example,
you can replicate from a source running MySQL 5.6 to a replica running MySQL 5.7, from a source
running MySQL 5.7 to a replica running MySQL 8.0, and so on. However, you may encounter
difficulties when replicating from an older source to a newer replica if the source uses statements or
relies on behavior no longer supported in the version of MySQL used on the replica. For example,
foreign key names longer than 64 characters are no longer supported from MySQL 8.0.

The use of more than two MySQL Server versions is not supported in replication setups involving
multiple sources, regardless of the number of source or replica MySQL servers. This restriction applies
not only to release series, but to version numbers within the same release series as well. For example,
if you are using a chained or circular replication setup, you cannot use MySQL 5.7.22, MySQL 5.7.23,
and MySQL 5.7.24 concurrently, although you could use any two of these releases together.

174

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_unique_checks
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_lower_case_table_names

Upgrading a Replication Topology

Important

It is strongly recommended to use the most recent release available within a
given MySQL release series because replication (and other) capabilities are
continually being improved. It is also recommended to upgrade sources and
replicas that use early releases of a release series of MySQL to GA (production)
releases when the latter become available for that release series.

Replication from newer sources to older replicas may be possible, but is generally not supported. This
is due to a number of factors:

» Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible.

This also has significant implications for upgrading replication servers; see Section 4.3, “Upgrading a
Replication Topology”, for more information.

» For more information about row-based replication, see Section 5.1, “Replication Formats”.

* SQL incompatibilities. You cannot replicate from a newer source to an older replica using
statement-based replication if the statements to be replicated use SQL features available on the
source but not on the replica.

However, if both the source and the replica support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the source but not on
the replica, you can use row-based replication to replicate the effects of data modification statements
even if the DDL run on the source is not supported on the replica.

For more information on potential replication issues, see Section 4.1, “Replication Features and
Issues”.

4.3 Upgrading a Replication Topology

When you upgrade servers that participate in a replication topology, you need to take into account each
server's role in the topology and look out for issues specific to replication. For general information and
instructions for upgrading a MySQL Server instance, see Upgrading MySQL.

As explained in Section 4.2, “Replication Compatibility Between MySQL Versions”, MySQL supports
replication from a source running one release series to a replica running the next higher release series,
but does not support replication from a source running a later release to a replica running an earlier
release. A replica at an earlier release might not have the required capability to process transactions
that can be handled by the source at a later release. You must therefore upgrade all of the replicas in
a replication topology to the target MySQL Server release, before you upgrade the source server to the
target release. In this way you will never be in the situation where a replica still at the earlier release is
attempting to handle transactions from a source at the later release.

In a replication topology where there are multiple sources (multi-source replication), the use of more
than two MySQL Server versions is not supported, regardless of the number of source or replica
MySQL servers. This restriction applies not only to release series, but to version numbers within the
same release series as well. For example, you cannot use MySQL 5.7.22, MySQL 5.7.24, and MySQL
5.7.28 concurrently in such a setup, although you could use any two of these releases together.

If you need to downgrade the servers in a replication topology, the source must be downgraded before
the replicas are downgraded. On the replicas, you must ensure that the binary log and relay log have
been fully processed, and remove them before proceeding with the downgrade.

Behavior Changes Between Releases

Although this upgrade sequence is correct, it is possible to still encounter replication difficulties when
replicating from a source at an earlier release that has not yet been upgraded, to a replica at a later

175

https://dev.mysql.com/doc/refman/5.7/en/upgrading.html

Standard Upgrade Procedure

release that has been upgraded. This can happen if the source uses statements or relies on behavior
that is no longer supported in the later release installed on the replica. You can use MySQL Shell's
upgrade checker utility uti | . checkFor Ser ver Upgr ade() to check MySQL 5.7 server instances or
MySQL 8.0 server instances for upgrade to a GA MySQL 8.0 release. The utility identifies anything that
needs to be fixed for that server instance so that it does not cause an issue after the upgrade, including
features and behaviors that are no longer available in the later release. See Upgrade Checker Utility for
information on the upgrade checker utility.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers (GTIDs) to a version that does, only enable GTIDs on the source and the replicas
when you have made sure that the setup meets all the requirements for GTID-based replication. See
Section 2.3.4, “Setting Up Replication Using GTIDs"” for information about converting binary log file
position based replication setups to use GTID-based replication.

Changes affecting operations in strict SQL mode (STRI CT_TRANS TABLES or STRI CT_ALL_TABLES)
may result in replication failure on an upgraded replica. If you use statement-based logging

(bi nl og_f or mat =STATEMENT), if a replica is upgraded before the source, the source executes
statements which succeed there but which may fail on the replica and so cause replication to stop.

To deal with this, stop all new statements on the source and wait until the replicas catch up, then
upgrade the replicas. Alternatively, if you cannot stop new statements, temporarily change to row-
based logging on the source (bi nl og_f or mat =ROW and wait until all replicas have processed all
binary logs produced up to the point of this change, then upgrade the replicas.

The default character set has changed from | at i n1 to ut f 8nb4 in MySQL 8.0. In a replicated setting,
when upgrading from MySQL 5.7 to 8.0, it is advisable to change the default character set back to

the character set used in MySQL 5.7 before upgrading. After the upgrade is completed, the default
character set can be changed to ut f 8nb4. Assuming that the previous defaults were used, one way to
preserve them is to start the server with these lines in the ny. cnf file:

[nysql d]
character_set_server=latinl
collation_server=l ati nl_swedi sh_ci

Standard Upgrade Procedure

To upgrade a replication topology, follow the instructions in Upgrading MySQL for each individual
MySQL Server instance, using this overall procedure:

1. Upgrade the replicas first. On each replica instance:
« Carry out the preliminary checks and steps described in Preparing Your Installation for Upgrade.
¢ Shut down MySQL Server.
e Upgrade the MySQL Server binaries or packages.
* Restart MySQL Server.

« If you have upgraded to a release earlier than MySQL 8.0.16, invoke mysql _upgr ade manually
to upgrade the system tables and schemas. When the server is running with global transaction
identifiers (GTIDs) enabled (gt i d_npde=0ON), do not enable binary logging by nysql _upgr ade
(so do not use the - - wr i t e- bi nl og option). Then shut down and restart the server.

« If you have upgraded to MySQL 8.0.16 or later, do not invoke nysql _upgr ade. From that
release, MySQL Server performs the entire MySQL upgrade procedure, disabling binary logging
during the upgrade.

< Restart replication using a START REPLI CA or START SLAVE statement.

2. When all the replicas have been upgraded, follow the same steps to upgrade and restart the source
server, with the exception of the START REPLI CA or START SLAVE statement. If you made a

176

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_strict_trans_tables
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_strict_all_tables
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-upgrade.html#option_mysql_upgrade_write-binlog
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html

Upgrade Procedure With Table Repair Or Rebuild

temporary change to row-based logging or to the default character set, you can revert the change
now.

Upgrade Procedure With Table Repair Or Rebuild

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt.
Such operations, if necessary, are detailed at Changes in MySQL 5.7. It is safest to perform these
operations separately on the replicas and the source, and to disable replication of these operations
from the source to the replica. To achieve this, use the following procedure:

1. Stop all the replicas and upgrade the binaries or packages. Restart them with the - - ski p- sl ave-
st art option, or from MySQL 8.0.24, the ski p_sl ave_st art system variable, so that they do
not connect to the source. Perform any table repair or rebuilding operations needed to re-create
database objects, such as use of REPAI R TABLE or ALTER TABLE, or dumping and reloading
tables or triggers.

2. Disable the binary log on the source. To do this without restarting the source, execute a SET
sql _lI og_bi n = OFF statement. Alternatively, stop the source and restart it with the - - ski p-
| 0og- bi n option. If you restart the source, you might also want to disallow client connections. For
example, if all clients connect using TCP/IP, enable the ski p_net wor ki ng system variable when
you restart the source.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the replicas later.

4. Re-enable the binary log on the source. If you set sgl _| og_bi n to OFF earlier, execute a SET
sql I og_bi n = ONstatement. If you restarted the source to disable the binary log, restart it
without - - ski p- | og- bi n, and without enabling the ski p_net wor ki ng system variable so that
clients and replicas can connect.

5. Restart the replicas, this time without the - - ski p- sl ave- st art option or ski p_sl ave_start
system variable.

4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after
encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

 Verify that the source has binary logging enabled by issuing a SHON MASTER STATUS statement. If
logging is enabled, Posi t i on is nonzero. If binary logging is not enabled, verify that you are running
the source server with the - - | og- bi n option.

» Verify that the ser ver _i d system variable was set at startup on both the source and replica and
that the ID value is unique on each server.

 Verify that the replica is running. Use SHOW SLAVE STATUS to check whether the
Sl ave_| O Runni ng and Sl ave_SQL_Runni ng values are both Yes. If not, verify the options
that were used when starting the replica server. For example, - - ski p- sl ave- st art prevents the
replica threads from starting until you issue a START SLAVE statement.

« If the replica is running, check whether it established a connection to the source. Use SHOWV
PROCESSLI ST, find the I/0O and SQL threads and check their St at e column to see what they
display. See Section 5.3, “Replication Threads”. If the replication 1/O thread state says Connect i ng
t o nmst er, check the following:

« Verify the privileges for the user being used for replication on the source.

177

https://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

How to Report Replication Bugs or Problems

« Check that the host name of the source is correct and that you are using the correct port to
connect to the source. The port used for replication is the same as used for client network
communication (the default is 3306). For the host name, ensure that the name resolves to the
correct IP address.

« Check the configuration file to see whether the ski p_net wor ki ng system variable has been
enabled on the source or replica to disable networking. If so, comment the setting or remove it.

« If the source has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

¢ Check that you can reach the source by using pi ng ortracer out e/t racert to reach the host.

« If the replica was running previously but has stopped, the reason usually is that some statement that
succeeded on the source failed on the replica. This should never happen if you have taken a proper
shapshot of the source, and never modified the data on the replica outside of the replication threads.
If the replica stops unexpectedly, it is a bug or you have encountered one of the known replication
limitations described in Section 4.1, “Replication Features and Issues”. If it is a bug, see Section 4.5,
“How to Report Replication Bugs or Problems”, for instructions on how to report it.

« If a statement that succeeded on the source refuses to run on the replica, try the following procedure
if it is not feasible to do a full database resynchronization by deleting the replica's databases and
copying a new snapshot from the source:

1. Determine whether the affected table on the replica is different from the table on the source. Try
to understand how this happened. Then make the replica’s table identical to the source's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe
to make the update manually (if needed) and then ignore the next statement from the source.

3. If you decide that the replica can skip the next statement from the source, issue the following
statements:

nysqgl > SET GLOBAL sql _sl ave_ski p_counter = N;
nysqgl > START SLAVE;

The value of N should be 1 if the next statement from the source does not use AUTO | NCREVENT
or LAST | NSERT | D() . Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO | NCREMVENT or LAST | NSERT | () is that they take two events in
the binary log of the source.

See also SET GLOBAL sql_slave_skip_counter Syntax.

4. |If you are sure that the replica started out perfectly synchronized with the source, and that no
one has updated the tables involved outside of the replication threads, then presumably the
discrepancy is the result of a bug. If you are running the most recent version of MySQL, please
report the problem. If you are running an older version, try upgrading to the latest production
release to determine whether the problem persists.

4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as
possible from you to be able to track down the bug. Please spend some time and effort in preparing a
good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database
using the instructions given in How to Report Bugs or Problems. If you have a “phantom” problem (one
that you cannot duplicate at will), use the following procedure:

178

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html
https://dev.mysql.com/doc/refman/5.7/en/bug-reports.html

How to Report Replication Bugs or Problems

1. Verify that no user error is involved. For example, if you update the replica outside of the replication
thread, the data goes out of synchrony, and you can have unigue key violations on updates. In
this case, the replication SQL thread stops and waits for you to clean up the tables manually to
bring them into synchrony. This is not a replication problem. It is a problem of outside interference
causing replication to fail.

2. Run the replica with the - - | 0g- sl ave- updat es and - - | 0g- bi n options. These options cause
the replica to log the updates that it receives from the source into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

 All binary log files from the source

All binary log files from the replica

¢ The output of SHOW MASTER STATUS from the source at the time you discovered the problem
e The output of SHOW SLAVE STATUS from the replica at the time you discovered the problem
 Error logs from the source and the replica

4. Use nysql bi nl og to examine the binary logs. The following should be helpful to find the problem
statement. | og_fil e and| og pos are the Master Log Fi |l e and Read_Master Log_Pos
values from SHOW SLAVE STATUS.

$> nysql binlog --start-position=log_pos |og_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
How to Report Bugs or Problems.

179

https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/bug-reports.html

180

Chapter 5 Replication Implementation

Table of Contents

5.1 RePlICALION FOMMALS ... ciiiiiiiiiiii ettt ettt ettt e e e e e e e et e e eabi e eeneas 182
5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 183
5.1.2 Usage of Row-Based Logging and RepliCationcoveeviiiiiiiiiiiinieiiiineecci e 185
5.1.3 Determination of Safe and Unsafe Statements in Binary LOggingcccovvvvevinveeiennnnn. 187

5.2 Replication ChaNNEIScooiiiiii ettt 189
5.2.1 Commands for Operations on a Single Channel ..., 189
5.2.2 Compatibility with Previous Replication Statementsc.coovveiiiiiiiiviin e, 190
5.2.3 Startup Options and Replication Channelsccooiiiiiiiiiiiiii e 191
5.2.4 Replication Channel Naming CONVENLIONSoiviiiiiiiiiiiieieiiie e 192

5.3 RePlICAtiON TRIEAUS ...ttt e e e et e e e e e eeeas 192
5.3.1 Monitoring Replication Main TArEadSc.uuiiiiiiiiiiiiiiieeei e 193
5.3.2 Monitoring Replication Applier Worker Threadscovvviiiiiiiiiiiini e, 194

5.4 Relay Log and Replication Metadata REPOSItONESvvvuuiiiiiiiiieeii e eeie e ee e e e 195
B5.4.1 THE REIAY LOG «.vuiiiiiiiiieeiiii ettt e e e e 195
5.4.2 Replication Metadata REPOSITONEScccvuiiiiiiiiiieiiii e 196

5.5 How Servers Evaluate Replication Filtering RUIESiiiiiiiiiiiiii e, 201
5.5.1 Evaluation of Database-Level Replication and Binary Logging Optionsccc.uun... 202
5.5.2 Evaluation of Table-Level Replication OPtioNScccuuiviiiiiiiiiiiiiieeeii e 203
5.5.3 Interactions Between Replication Filtering Optionsoovvuiiiiiiiiiniiiiiiec e, 205

Replication is based on the replication source server keeping track of all changes to its databases
(updates, deletes, and so on) in its binary log. The binary log serves as a written record of all events
that modify database structure or content (data) from the moment the server was started. Typically,
SELECT statements are not recorded because they modify neither database structure nor content.

Each replica that connects to the source requests a copy of the binary log. That is, it pulls the data from
the source, rather than the source pushing the data to the replica. The replica also executes the events
from the binary log that it receives. This has the effect of repeating the original changes just as they
were made on the source. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the source.

Because each replica is independent, the replaying of the changes from the source's binary log occurs
independently on each replica that is connected to the source. In addition, because each replica
receives a copy of the binary log only by requesting it from the source, the replica is able to read and
update the copy of the database at its own pace and can start and stop the replication process at will
without affecting the ability to update to the latest database status on either the source or replica side.

For more information on the specifics of the replication implementation, see Section 5.3, “Replication
Threads”.

Sources and replicas report their status in respect of the replication process regularly so that you can
monitor them. See Examining Server Thread (Process) Information, for descriptions of all replicated-
related states.

The source's binary log is written to a local relay log on the replica before it is processed. The replica
also records information about the current position with the source's binary log and the replica's relay
log. See Section 5.4, “Relay Log and Replication Metadata Repositories”.

Database changes are filtered on the replica according to a set of rules that are applied according to
the various configuration options and variables that control event evaluation. For details on how these
rules are applied, see Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

181

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/thread-information.html

Replication Formats

5.1 Replication Formats

Replication works because events written to the binary log are read from the source and then
processed on the replica. The events are recorded within the binary log in different formats according
to the type of event. The different replication formats used correspond to the binary logging format
used when the events were recorded in the source's binary log. The correlation between binary logging
formats and the terms used during replication are:

» When using statement-based binary logging, the source writes SQL statements to the binary log.
Replication of the source to the replica works by executing the SQL statements on the replica. This
is called statement-based replication (which can be abbreviated as SBR), which corresponds to the
MySQL statement-based binary logging format.

» When using row-based logging, the source writes events to the binary log that indicate how individual
table rows are changed. Replication of the source to the replica works by copying the events
representing the changes to the table rows to the replica. This is called row-based replication (which
can be abbreviated as RBR).

* You can also configure MySQL to use a mix of both statement-based and row-based logging,
depending on which is most appropriate for the change to be logged. This is called mixed-format
logging. When using mixed-format logging, a statement-based log is used by default. Depending
on certain statements, and also the storage engine being used, the log is automatically switched
to row-based in particular cases. Replication using the mixed format is referred to as mixed-based
replication or mixed-format replication. For more information, see Mixed Binary Logging Format.

Prior to MySQL 5.7.7, statement-based format was the default. In MySQL 5.7.7 and later, row-based
format is the default.

NDB Cluster. The default binary logging format in MySQL NDB Cluster 7.5 is M XED. You should
note that NDB Cluster Replication always uses row-based replication, and that the NDB storage
engine is incompatible with statement-based replication. See General Requirements for NDB Cluster
Replication, for more information.

When using M XED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Mixed Binary Logging Format.

The logging format in a running MySQL server is controlled by setting the bi nl og_f or nat server
system variable. This variable can be set with session or global scope. The rules governing when and
how the new setting takes effect are the same as for other MySQL server system variables. Setting the
variable for the current session lasts only until the end of that session, and the change is not visible to
other sessions. Setting the variable globally takes effect for clients that connect after the change, but
not for any current client sessions, including the session where the variable setting was changed. To
make the global system variable setting permanent so that it applies across server restarts, you must
set it in an option file. For more information, see SET Syntax for Variable Assignment.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Setting The Binary Log Format.

Changing the global bi nl og_f or mat value requires privileges sufficient to set global system
variables. Changing the session bi nl og_f or mat value requires privileges sufficient to set restricted
session system variables. See System Variable Privileges.

The statement-based and row-based replication formats have different issues and limitations. For
a comparison of their relative advantages and disadvantages, see Section 5.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or triggers.
You can avoid these issues by using row-based replication instead. For more information, see Stored
Program Binary Logging.

182

https://dev.mysql.com/doc/refman/5.7/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-general.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-general.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based
Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

» Advantages of statement-based replication

» Disadvantages of statement-based replication

» Advantages of row-based replication

» Disadvantages of row-based replication
Advantages of statement-based replication

* Proven technology.

» Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

» Log files contain all statements that made any changes, so they can be used to audit the database.
Disadvantages of statement-based replication

» Statements that are unsafe for SBR.
Not all statements which modify data (such as | NSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such Data Modification Language
(DML) statements include the following:

« A statement that depends on a loadable function or stored program that is nondeterministic, since
the value returned by such a function or stored program or depends on factors other than the
parameters supplied to it. (Row-based replication, however, simply replicates the value returned by
the function or stored program, so its effect on table rows and data is the same on both the source
and replica.) See Section 4.1.16, “Replication of Invoked Features”, for more information.

+ DELETE and UPDATE statements that use a LI M T clause without an ORDER BY are
nondeterministic. See Section 4.1.17, “Replication and LIMIT".

< Deterministic loadable functions must be applied on the replicas.

« Statements using any of the following functions cannot be replicated properly using statement-
based replication:

« LOAD FI LE()

« UUID(), UUl D_SHORT()
« USER()

« FOUND_ROWS()

e SYSDATE() (unless both the source and the replica are started with the - - sysdat e-i s- now
option)

« GET_LOCK()

183

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid-short
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_get-lock

Advantages and Disadvantages of Statement-Based and Row-Based Replication

« 1'S_FREE_LOCK()

| S USED_LOCK()

MASTER POS_WAI T()

* RAND()

RELEASE_LOCK()

« SLEEP()

VERSI ON()

However, all other functions are replicated correctly using statement-based replication, including
NOW) and so forth.

For more information, see Section 4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warni ng] Statenent is not safe to log in statenment format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNI NGS.

* | NSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

» UPDATE statements that require a table scan (because no index is used in the WHERE clause) must
lock a greater number of rows than with row-based replication.

e For | nnoDB: An | NSERT statement that uses AUTO_| NCREMENT blocks other nonconflicting | NSERT
statements.

» For complex statements, the statement must be evaluated and executed on the replica before the
rows are updated or inserted. With row-based replication, the replica only has to modify the affected
rows, not execute the full statement.

« If there is an error in evaluation on the replica, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over
time. See Section 4.1.27, “Replica Errors During Replication”.

» Stored functions execute with the same NOW() value as the calling statement. However, this is not
true of stored procedures.

» Deterministic loadable functions must be applied on the replicas.

» Table definitions must be (nearly) identical on source and replica. See Section 4.1.10, “Replication
with Differing Table Definitions on Source and Replica”, for more information.

Advantages of row-based replication

» All changes can be replicated. This is the safest form of replication.
Note

Statements that update the information in the nysql system database, such
as GRANT, REVOKE and the manipulation of triggers, stored routines (including
stored procedures), and views, are all replicated to replicas using statement-
based replication.

184

https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_sleep
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/show-warnings.html
https://dev.mysql.com/doc/refman/5.7/en/show-warnings.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html

Usage of Row-Based Logging and Replication

For statements such as CREATE TABLE ... SELECT, a CREATE statement
is generated from the table definition and replicated using statement-based
format, while the row insertions are replicated using row-based format.

» Fewer row locks are required on the source, which thus achieves higher concurrency, for the
following types of statements:

e | NSERT ... SELECT
¢ | NSERT statements with AUTO | NCREMENT

» UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of
the examined rows.

» Fewer row locks are required on the replica for any | NSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

* RBR can generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary
log. By contrast, row-based replication writes each changed row to the binary log. If the statement
changes many rows, row-based replication may write significantly more data to the binary log; this is
true even for statements that are rolled back. This also means that making and restoring a backup
can require more time. In addition, the binary log is locked for a longer time to write the data, which
may cause concurrency problems. Use bi nl og_r ow_i mage=ni ni nmal to reduce the disadvantage
considerably.

» Deterministic loadable functions that generate large BLOB values take longer to replicate with row-
based replication than with statement-based replication. This is because the BLOB column value is
logged, rather than the statement generating the data.

» You cannot see on the replica what statements were received from the source and executed.
However, you can see what data was changed using nmysql bi nl og with the options - - base64-
out put =DECODE- ROAS and - - ver bose.

Alternatively, use the bi nl og_r ows_query_| og_event s variable, which if enabled adds a
Rows_query event with the statement to nysql bi nl og output when the - vv option is used.

» For tables using the Myl SAMstorage engine, a stronger lock is required on the replica for | NSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on Myl SAMtables are not supported when using row-
based replication.

5.1.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging.

The type of binary log used impacts the size and efficiency of logging. Therefore the choice between
row-based replication (RBR) or statement-based replication (SBR) depends on your application and
environment. This section describes known issues when using a row-based format log, and describes
some best practices using it in replication.

For additional information, see Section 5.1, “Replication Formats”, and Section 5.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Known Issues in NDB Cluster Replication.

 Row-based logging of temporary tables. As noted in Section 4.1.29, “Replication and
Temporary Tables”, temporary tables are not replicated when using row-based format. When using

185

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html

Usage of Row-Based Logging and Replication

mixed format logging, “safe” statements involving temporary tables are logged using statement-
based format. For more information, see Section 5.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In
addition, because temporary tables can be read only from the thread which created them, there is
seldom if ever any benefit obtained from replicating them, even when using statement-based format.

You can switch from statement-based to row-based binary logging format at runtime even when
temporary tables have been created. From MySQL 5.7.25, the MySQL server tracks the logging
mode that was in effect when each temporary table was created. When a given client session ends,
the server logs a DROP TEMPORARY TABLE | F EXI STS statement for each temporary table that
still exists and was created when statement-based binary logging was in use. If row-based or mixed
format binary logging was in use when the table was created, the DROP TEMPORARY TABLE | F
EXI STS statement is not logged. In previous releases, the DROP TEMPORARY TABLE | F EXI STS
statement was logged regardless of the logging mode that was in effect.

Nontransactional DML statements involving temporary tables are allowed when using
bi nl og_f or mat =ROW as long as any nontransactional tables affected by the statements are
temporary tables (Bug #14272672).

RBL and synchronization of nontransactional tables. When many rows are affected, the set
of changes is split into several events; when the statement commits, all of these events are written

to the binary log. When executing on the replica, a table lock is taken on all tables involved, and then
the rows are applied in batch mode. Depending on the engine used for the replica's copy of the table,
this may or may not be effective.

Latency and binary log size. = RBL writes changes for each row to the binary log and so its size
can increase quite rapidly. This can significantly increase the time required to make changes on the
replica that match those on the source. You should be aware of the potential for this delay in your
applications.

Reading the binary log. nysql bi nl og displays row-based events in the binary log using

the Bl NLOG statement (see BINLOG Statement). This statement displays an event as a base
64-encoded string, the meaning of which is not evident. When invoked with the - - base64-

out put =DECCDE- ROAS and - - ver bose options, mysql bi nl og formats the contents of the binary
log to be human readable. When binary log events were written in row-based format and you want to
read or recover from a replication or database failure you can use this command to read contents of
the binary log. For more information, see mysqglbinlog Row Event Display.

Binary log execution errors and replica execution mode. Using

sl ave_exec_node=I DEMPOTENT is generally only useful with MySQL NDB Cluster replication, for
which | DEMPOTENT is the default value. (See NDB Cluster Replication: Bidirectional and Circular
Replication). When sl ave_exec_node is | DEMPOTENT, a failure to apply changes from RBL
because the original row cannot be found does not trigger an error or cause replication to fail. This
means that it is possible that updates are not applied on the replica, so that the source and replica
are no longer synchronized. Latency issues and use of nontransactional tables with RBR when

sl ave_exec_node is | DEMPOTENT can cause the source and replica to diverge even further. For
more information about sl ave _exec_node, see Server System Variables.

For other scenarios, setting sl ave_exec_node to STRI CT is normally sufficient; this is the default
value for storage engines other than NDB.

Filtering based on server ID not supported. You can filter based on server ID by using the

| GNORE_SERVER | DS option for the CHANGE NMASTER TOstatement. This option works with
statement-based and row-based logging formats. Another method to filter out changes on some
replicas is to use a V\HERE clause that includes the relation @@ er ver _id <> id_val ue clause
with UPDATE and DELETE statements. For example, WHERE @ erver id <> 1. However,
this does not work correctly with row-based logging. To use the ser ver _i d system variable for
statement filtering, use statement-based logging.

186

https://dev.mysql.com/doc/refman/5.7/en/binlog.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Determination of Safe and Unsafe Statements in Binary Logging

 RBL, nontransactional tables, and stopped replicas. = When using row-based logging, if
the replica server is stopped while a replication thread is updating a nontransactional table, the
replica database can reach an inconsistent state. For this reason, it is recommended that you use a
transactional storage engine such as | nnoDB for all tables replicated using the row-based format.
Use of STOP SLAVE or STOP SLAVE SQL_THREAD prior to shutting down the replica server helps
prevent issues from occurring, and is always recommended regardless of the logging format or
storage engine you use.

5.1.3 Determination of Safe and Unsafe Statements in Binary Logging

The “safeness” of a statement in MySQL Replication, refers to whether the statement and its effects
can be replicated correctly using statement-based format. If this is true of the statement, we refer to the
statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain
nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered
unsafe, later in this section). In addition, statements using results from floating-point math functions—
which are hardware-dependent—are always considered unsafe (see Section 4.1.12, “Replication and
Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether
the statement is considered safe, and with respect to the binary logging format (that is, the current
value of bi nl og_f or mat).

* When using row-based logging, no distinction is made in the treatment of safe and unsafe
statements.

* When using mixed-format logging, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

* When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

Each statement flagged as unsafe generates a warning. Formerly, if a large number of such statements
were executed on the source, this could lead to excessively large error log files. To prevent this,
MySQL 5.7 provides a warning suppression mechanism, which behaves as follows: Whenever the 50
most recent ER_BI NLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in
any 50-second period, warning suppression is enabled. When activated, this causes such warnings not
to be written to the error log; instead, for each 50 warnings of this type, a note The | ast war ni ng
was repeated N tinmes in [ast S seconds is written to the error log. This continues as long
as the 50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased
below this threshold, the warnings are once again logged normally. Warning suppression has no effect
on how the safety of statements for statement-based logging is determined, nor on how warnings are
sent to the client. MySQL clients still receive one warning for each such statement.

For more information, see Section 5.1, “Replication Formats”.

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

» Statements containing system functions that may return a different value on areplica.
These functions include FOUND_ROWS() , GET_LOCK(), | S_FREE_LOCK(),| S_USED_LOCK(),
LOAD_FI LE(), MASTER_POS_WAI T() , PASSWORD() , RAND() , RELEASE_LOCK() , ROW COUNT(),
SESSI ON_USER() , SLEEP() , SYSDATE() , SYSTEM USER(), USER(), UUI D() , and
UUI D_SHORT() .

Nondeterministic functions not considered unsafe. Although these functions are not
deterministic, they are treated as safe for purposes of logging and replication: CONNECTI ON_| D() ,
CURDATE() , CURRENT_DATE() , CURRENT_TI ME() , CURRENT_TI MESTAMP() , CURTI ME() ,
LAST_| NSERT_| D(), LOCALTI ME() , LOCALTI MESTAMP(), NOA(), UNI X_TI MESTAMP(),
UTC_DATE(), UTC_TI ME() , and UTC_TI MESTAMP() .

187

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_binlog_unsafe_statement
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_session-user
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_sleep
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_system-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid-short
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_curdate
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-date
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-time
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_curtime
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_localtime
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_localtimestamp
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_utc-date
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_utc-time
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_utc-timestamp

Determination of Safe and Unsafe Statements in Binary Logging

For more information, see Section 4.1.15, “Replication and System Functions”.

» References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 4.1.37, “Replication and Variables”. For exceptions, see Mixed
Binary Logging Format.

* Loadable Functions. Since we have no control over what a loadable function does, we must
assume that it is executing unsafe statements.

» Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore,
statements depending on it could have different results. For this reason, all statements relying on the
fulltext plugin are treated as unsafe (Bug #11756280, Bug #48183).

» Trigger or stored program updates a table having an AUTO_INCREMENT column. Thisis
unsafe because the order in which the rows are updated may differ on the source and the replica.

In addition, an | NSERT into a table that has a composite primary key containing an
AUTO_| NCREMENT column that is not the first column of this composite key is unsafe.

For more information, see Section 4.1.1, “Replication and AUTO_INCREMENT".

* INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An I NSERT ... ON DUPLI CATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

» Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 4.1.17, “Replication and LIMIT".

» Accesses or references log tables. The contents of the system log table may differ between
source and replica.

* Nontransactional operations after transactional operations. Within a transaction, allowing
any nontransactional reads or writes to execute after any transactional reads or writes is considered
unsafe.

For more information, see Section 4.1.33, “Replication and Transactions”.

» Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables
is also considered unsafe.

 LOAD DATA statements. LOAD DATAIs treated as unsafe and when bi nl og_f or mat =m xed
the statement is logged in row-based format. When bi nl og_f or mat =st at enrent LOAD DATA
does not generate a warning, unlike other unsafe statements.

» XA transactions. If two XA transactions committed in parallel on the source are being prepared
on the replica in the inverse order, locking dependencies can occur with statement-based replication
that cannot be safely resolved, and it is possible for replication to fail with deadlock on the replica.
When bi nl og_f or mat =STATEMENT is set, DML statements inside XA transactions are flagged as
being unsafe and generate a warning. When bi nl og_f or mat =M XED or bi nl og_f or nat =ROW
is set, DML statements inside XA transactions are logged using row-based replication, and the
potential issue is not present.

For additional information, see Section 4.1, “Replication Features and Issues”.

188

https://dev.mysql.com/doc/refman/5.7/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Replication Channels

5.2 Replication Channels

In MySQL multi-source replication, a replica opens multiple replication channels, one for each
replication source server. The replication channels represent the path of transactions flowing from a
source to the replica. Each replication channel has its own receiver (I/O) thread, one or more applier
(SQL) threads, and relay log. When transactions from a source are received by a channel's receiver
thread, they are added to the channel's relay log file and passed through to the channel's applier
threads. This enables each channel to function independently.

This section describes how channels can be used in a replication topology, and the impact they
have on single-source replication. For instructions to configure sources and replicas for multi-source
replication, to start, stop and reset multi-source replicas, and to monitor multi-source replication, see
Section 2.5, “MySQL Multi-Source Replication”.

The maximum number of channels that can be created on one replica in a multi-source replication
topology is 256. Each replication channel must have a unique (nonempty) name, as explained in
Section 5.2.4, “Replication Channel Naming Conventions”. The error codes and messages that are
issued when multi-source replication is enabled specify the channel that generated the error.

Note

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a
single source. This is because the server IDs of replicas must be unique in a
replication topology. The source distinguishes replicas only by their server IDs,
not by the names of the replication channels, so it cannot recognize different
replication channels from the same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the

sl ave_paral | el _wor ker s system variable to a value greater than 0. When you do this on a
multi-source replica, each channel on the replica has the specified number of applier threads, plus a
coordinator thread to manage them. You cannot configure the number of applier threads for individual
channels.

To provide compatibility with previous versions, the MySQL server automatically creates on startup

a default channel whose name is the empty string ("). This channel is always present; it cannot be
created or destroyed by the user. If no other channels (having nonempty names) have been created,
replication statements act on the default channel only, so that all replication statements from older
replicas function as expected (see Section 5.2.2, “Compatibility with Previous Replication Statements”.
Statements applying to replication channels as described in this section can be used only when there is
at least one named channel.

5.2.1 Commands for Operations on a Single Channel

To enable MySQL replication operations to act on individual replication channels, use the FOR
CHANNEL channel clause with the following replication statements:

* CHANGE MASTER TO

* START SLAVE

+ STOP SLAVE

* SHOW RELAYLOG EVENTS
* FLUSH RELAY LOGS

» SHOW SLAVE STATUS

» RESET SLAVE

189

https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html

Compatibility with Previous Replication Statements

Similarly, an additional channel parameter is introduced for the following functions:

« MASTER _POS_WAI T()

« WAI T_UNTI L_SQL_THREAD AFTER GTI DS()

The following statements are disallowed for the gr oup_repl i cati on_recovery channel:
 START SLAVE

« STOP SLAVE

The following statements are disallowed for the gr oup_repl i cati on_appl i er channel:
* START SLAVE

e« STOP SLAVE

e SHOW SLAVE STATUS

e FLUSH RELAY LOGS

5.2.2 Compatibility with Previous Replication Statements

When a replica has multiple channels and a FOR CHANNEL channel option is not specified, a valid
statement generally acts on all available channels, with some specific exceptions.

For example, the following statements behave as expected for all except certain Group Replication
channels:

e START SLAVE starts replication threads for all channels, except the
group_replication_recovery andgroup_replication_applier channels.

» STOP SLAVE stops replication threads for all channels, except the
group_replication_recovery andgroup_replication_applier channels.

» SHOW SLAVE STATUS reports the status for all channels, except the
group_replication_applier channel.

* FLUSH RELAY LGOGS flushes the relay logs for all channels, except the
group_replication_applier channel.

« RESET SLAVE resets all channels.
Warning

Use RESET SLAVE with caution as this statement deletes all existing channels,
purges their relay log files, and recreates only the default channel.

Some replication statements cannot operate on all channels. In this case, error 1964 Mul ti pl e
channel s exi st on the slave. Please provide channel nane as an argunent. is
generated. The following statements and functions generate this error when used in a multi-source
replication topology and a FOR CHANNEL channel option is not used to specify which channel to act
on:

* SHOW RELAYLOG EVENTS

CHANGE MASTER TO
« MASTER_PCS_WAI T()
« WAl T_UNTI L_SQL_THREAD AFTER_GTI DS()

Note that a default channel always exists in a single source replication topology, where statements and
functions behave as in previous versions of MySQL.

190

https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_wait-until-sql-thread-after-gtids
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html#function_wait-until-sql-thread-after-gtids

Startup Options and Replication Channels

5.2.3 Startup Options and Replication Channels
This section describes startup options which are impacted by the addition of replication channels.
The following startup settings must be configured correctly to use multi-source replication.
e relay log info repository.

This must be set to TABLE. If this variable is set to FI LE, attempting to add more sources to a replica
fails with ER_SLAVE_NEW CHANNEL WRONG REPOS| TORY.

e master _info_repository

This must be set to TABLE. If this variable is set to FI LE, attempting to add more sources to a replica
fails with ER_SLAVE_NEW CHANNEL_VRONG REPGCS| TORY.

The following startup options now affect all channels in a replication topology.
e --| 0g-sl ave-updat es

All transactions received by the replica (even from multiple sources) are written in the binary log.
e --relay-1og-purge

When set, each channel purges its own relay log automatically.
e --slave transaction retries

Applier threads of all channels retry transactions.
e --skip-slave-start

No replication threads start on any channels.
e --slave-skip-errors

Execution continues and errors are skipped for all channels.

The values set for the following startup options apply on each channel; since these are nmysql d startup
options, they are applied on every channel.

o --max-relay-1 og-size=size

Maximum size of the individual relay log file for each channel; after reaching this limit, the file is
rotated.

e --relay-log-space-limt=size

Upper limit for the total size of all relay logs combined, for each individual channel. For N channels,
the combined size of these logs is limitedtorel ay | og_space |imt * N

e --slave-parall el -workers=val ue
Number of worker threads per channel.
e sl ave_checkpoi nt _group
Waiting time by an 1/O thread for each source.
e --relay-1og-index=fil enanme

Base name for each channel's relay log index file. See Section 5.2.4, “Replication Channel Naming
Conventions”.

191

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_new_channel_wrong_repository
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_new_channel_wrong_repository

Replication Channel Naming Conventions

* --relay-log=fil enane

Denotes the base name of each channel's relay log file. See Section 5.2.4, “Replication Channel
Naming Conventions”.

e --slave _net-tinmeout=N

This value is set per channel, so that each channel waits for N seconds to check for a broken
connection.

e --sl| ave-ski p-count er=N

This value is set per channel, so that each channel skips N events from its source.

5.2.4 Replication Channel Naming Conventions

This section describes how naming conventions are impacted by replication channels.

Each replication channel has a unique name which is a string with a maximum length of 64 characters
and is case-insensitive. Because channel names are used in replication metadata repositories, the
character set used for these is always UTF-8. Although you are generally free to use any name for
channels, the following names are reserved:

e group_replication_applier
e group_replication_recovery

The name you choose for a replication channel also influences the file names used by

a multi-source replica. The relay log files and index files for each channel are named

rel ay | og _basenane-channel . xxxxxx, wherer el ay_| og_basenane is a base name specified
using the r el ay | og system variable, and channel is the name of the channel logged to this file. If
you do not specify the r el ay_| og system variable, a default file name is used that also includes the
name of the channel.

5.3 Replication Threads

MySQL replication capabilities are implemented using three main threads, one on the source server
and two on the replica:

e Binary log dump thread. The source creates a thread to send the binary log contents to a replica
when the replica connects. This thread can be identified in the output of SHOW PROCESSLI ST on the
source as the Bi nl og Dunp thread.

The binary log dump thread acquires a lock on the source's binary log for reading each event that is
to be sent to the replica. As soon as the event has been read, the lock is released, even before the
event is sent to the replica.

* Replication I/O thread. @ When a START SLAVE statement is issued on a replica server, the
replica creates an 1/O thread, which connects to the source and asks it to send the updates recorded
in its binary logs.

The replication 1/O thread reads the updates that the source's Bi nl og Dunp thread sends (see
previous item) and copies them to local files that comprise the replica's relay log.

The state of this thread is shown as Sl ave_| O r unni ng in the output of SHOW SLAVE STATUS.

» Replication SQL thread. The replica creates an SQL thread to read the relay log that is written
by the replication I/O thread and execute the transactions contained in it.

There are three main threads for each source/replica connection. A source that has multiple replicas
creates one binary log dump thread for each currently connected replica, and each replica has its own
replication 1/0 and SQL threads.

192

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Monitoring Replication Main Threads

A replica uses two threads to separate reading updates from the source and executing them into
independent tasks. Thus, the task of reading transactions is not slowed down if the process of applying
them is slow. For example, if the replica server has not been running for a while, its I/O thread can
quickly fetch all the binary log contents from the source when the replica starts, even if the SQL thread
lags far behind. If the replica stops before the SQL thread has executed all the fetched statements, the
I/O thread has at least fetched everything so that a safe copy of the transactions is stored locally in the
replica's relay logs, ready for execution the next time that the replica starts.

You can enable further parallelization for tasks on a replica by setting the sl ave_paral | el _wor kers
system variable to a value greater than 0 (the default). When this system variable is set, the replica
creates the specified number of worker threads to apply transactions, plus a coordinator thread to
manage them. If you are using multiple replication channels, each channel has this number of threads.
A replica with sl ave_paral | el _wor ker s set to a value greater than 0 is called a multithreaded
replica. With this setup, transactions that fail can be retried.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which
silently ignores the setting for this variable. See Known Issues in NDB Cluster
Replication for more information.

5.3.1 Monitoring Replication Main Threads

The SHOW PROCESSLI ST statement provides information that tells you what is happening on the
source and on the replica regarding replication. For information on source states, see Replication
Source Thread States. For replica states, see Replication Replica I/0 Thread States, and Replication
Replica SQL Thread States.

The following example illustrates how the three main replication threads, the binary log dump thread,
replicatin I/O thread, and replication SQL thread, show up in the output from SHOW PROCESSLI ST.

On the source server, the output from SHOW PROCESSLI ST looks like this:

nysql > SHOW PROCESSLI ST\ G
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 1. I'OW khkkhkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
ld: 2
User: root
Host: | ocal host: 32931
db: NULL
Conmand: Bi nl og Dunp
Tine: 94
State: Has sent all binlog to slave; waiting for binlog to
be updat ed
I nfo: NULL

Here, thread 2 is a Bi nl og Dunp thread that services a connected replica. The St at e information
indicates that all outstanding updates have been sent to the replica and that the source is waiting
for more updates to occur. If you see no Bi nl og Dunp threads on a source server, this means that
replication is not running; that is, no replicas are currently connected.

On a replica server, the output from SHOW PROCESSLI ST looks like this:

nmysqgl > SHOW PROCESSLI ST\ G
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkkkkk*x l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkk*x
Id: 10
User: system user
Host :
db: NULL
Conmmand: Connect
Time: 11
State: Waiting for master to send event
I nfo: NULL
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkk*x 2 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x
Id: 11
User: system user

193

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-replication-issues.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/source-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/source-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

Monitoring Replication Applier Worker Threads

Host :
db: NULL
Conmmand: Connect
Time: 11
State: Has read all relay log; waiting for the slave 1/0O
thread to update it
I nfo: NULL

The St at e information indicates that thread 10 is the replication I/O thread that is communicating with
the source server, and thread 11 is the replication SQL thread that is processing the updates stored in
the relay logs. At the time that SHOW PROCESSLI ST was run, both threads were idle, waiting for further
updates.

The value in the Ti ne column can show how late the replica is compared to the source. See
MySQL 5.7 FAQ: Replication. If sufficient time elapses on the source side without activity on the
Bi nl og Dunp thread, the source determines that the replica is no longer connected. As for any
other client connection, the timeouts for this depend on the values of net _wite tinmeout and
net retry_count;for more information about these, see Server System Variables.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
replica server. See Section 2.7.1, “Checking Replication Status”.

5.3.2 Monitoring Replication Applier Worker Threads

On a multithreaded replica, the Performance Schema tables

replication_applier_status_by coordi nator and

replication _applier_status_ by worker show status information for the replica's coordinator
thread and applier worker threads respectively. For a replica with multiple channels, the threads for
each channel are identified.

A multithreaded replica’'s coordinator thread also prints statistics to the replica's error log on a regular
basis if the verbosity setting is set to display informational messages. The statistics are printed
depending on the volume of events that the coordinator thread has assigned to applier worker threads,
with a maximum frequency of once every 120 seconds. The message lists the following statistics for
the relevant replication channel, or the default replication channel (which is not named):

Seconds elapsed The difference in seconds between the current time and the last
time this information was printed to the error log.

Events assigned The total number of events that the coordinator thread has queued
to all applier worker threads since the coordinator thread was
started.

Worker queues filled over The current number of events that are queued to any of the applier

overrun level worker threads in excess of the overrun level, which is set at 90%

of the maximum queue length of 16384 events. If this value is zero,
no applier worker threads are operating at the upper limit of their
capacity.

Waited due to worker queue full The number of times that the coordinator thread had to wait to
schedule an event because an applier worker thread's queue was
full. If this value is zero, no applier worker threads exhausted their
capacity.

Waited due to the total size The number of times that the coordinator thread had to wait to
schedule an event because the sl ave _pendi ng_j obs_si ze_nax
limit had been reached. This system variable sets the maximum
amount of memory (in bytes) available to applier worker thread
queues holding events not yet applied. If an unusually large event
exceeds this size, the transaction is held until all the applier worker
threads have empty queues, and then processed. All subsequent
transactions are held until the large transaction has been completed.

194

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/faqs-replication.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-coordinator-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html

Relay Log and Replication Metadata Repositories

Waited at clock conflicts The number of nanoseconds that the coordinator thread
had to wait to schedule an event because a transaction
that the event depended on had not yet been committed. If
sl ave_paral |l el _type is set to DATABASE (rather than
LOGd CAL_CLQCK), this value is always zero.

Waited (count) when workers The number of times that the coordinator thread slept for a short
occupied period, which it might do in two situations. The first situation is
where the coordinator thread assigns an event and finds the
applier worker thread's queue is filled beyond the underrun level
of 10% of the maximum queue length, in which case it sleeps
for a maximum of 1 millisecond. The second situation is where
sl ave _parallel typeissetto LOG CAL_CLOCK and the
coordinator thread needs to assign the first event of a transaction to
an applier worker thread's queue, it only does this to a worker with
an empty queue, so if no queues are empty, the coordinator thread
sleeps until one becomes empty.

Waited when workers occupied The number of nanoseconds that the coordinator thread slept while
waiting for an empty applier worker thread queue (that is, in the
second situation described above, where sl ave _paral | el _type
is set to LOG CAL_CLOCK and the first event of a transaction needs
to be assigned).

5.4 Relay Log and Replication Metadata Repositories

A replica server creates several repositories of information to use for the replication process:

» The relay log, which is written by the replication I/O thread, contains the transactions read from the
replication source server's binary log. The transactions in the relay log are applied on the replica by
the replication SQL thread. For information about the relay log, see Section 5.4.1, “The Relay Log".

» The replica's connection metadata repository contains information that the replication 1/O thread
needs to connect to the replication source server and retrieve transactions from the source's binary
log. The connection metadata repository is written to the nysql . sl ave_mast er _i nf o table orto a
file.

e The replica’'s applier metadata repository contains information that the replication SQL thread needs
to read and apply transactions from the replica's relay log. The applier metadata repository is written
tothe nysql . sl ave_rel ay_| og i nf o table or to afile.

The connection metadata repository and applier metadata repository are collectively known as
the replication metadata repositories. For information about these, see Section 5.4.2, “Replication
Metadata Repositories”.

Making replication resilient to unexpected halts. The nysql . sl ave_mast er _i nf o and

nmysql . sl ave_rel ay | og_i nf o tables are created using the transactional storage engine | nnoDB.
Updates to the replica’'s applier metadata repository table are committed together with the transactions,
meaning that the replica's progress information recorded in that repository is always consistent with
what has been applied to the database, even in the event of an unexpected server halt. For information
on the combination of settings on the replica that is most resilient to unexpected halts, see Section 3.2,
“Handling an Unexpected Halt of a Replica”.

5.4.1 The Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

195

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

Replication Metadata Repositories

Relay log files have the same format as binary log files and can be read using nysql bi nl og (see
mysqlbinlog — Utility for Processing Binary Log Files).

By default, relay log file names have the form host _name-r el ay- bi n. nnnnnn in the data directory,
where host _nane is the name of the replica server host and nnnnnn is a sequence number.
Successive relay log files are created using successive sequence numbers, beginning with 000001.
The replica uses an index file to track the relay log files currently in use. The default relay log index file
name is host _name-r el ay- bi n. i ndex in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the
relay |l ogandrelay | og index system variables (see Section 2.6, “Replication and Binary
Logging Options and Variables”).

If a replica uses the default host-based relay log file names, changing a replica's host name after
replication has been set up can cause replication to fail with the errors Fai | ed to open the rel ay
| ogand Coul d not find target |log during relay log initialization.Thisisaknown
issue (see Bug #2122). If you anticipate that a replica's host name might change in the future (for
example, if networking is set up on the replica such that its host name can be modified using DHCP),
you can avoid this issue entirely by using therel ay | og andr el ay_| og_i ndex system variables
to specify relay log file names explicitly when you initially set up the replica. This makes the names
independent of server host name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
replica server, prepend the contents of the old relay log index file to the new one, and then restart the
replica. On a Unix system, this can be done as shown here:

$> cat new relay_| og_nane.index >> ol d_rel ay_| og_nane. i ndex
$> nv ol d_relay_| og_nane.index new_rel ay_| og_nane. i ndex

A replica server creates a new relay log file under the following conditions:
» Each time the replication 1/O thread starts.
» When the logs are flushed (for example, with FLUSH LOGS or nysql adnmi n fl ush-1 ogs).
» When the size of the current relay log file becomes too large, determined as follows:
« If the value of max_rel ay_| og_si ze is greater than 0, that is the maximum relay log file size.

 Ifthe value of nex_rel ay | og_si zeis 0, max_bi nl og_si ze determines the maximum relay
log file size.

The replication SQL thread automatically deletes each relay log file after it has executed all events
in the file and no longer needs it. There is no explicit mechanism for deleting relay logs because
the replication SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which
influences when the replication SQL thread deletes them.

5.4.2 Replication Metadata Repositories

A replica server creates two replication metadata repositories, the connection metadata repository

and the applier metadata repository. The replication metadata repositories survive a replica server's
shutdown. If binary log file position based replication is in use, when the replica restarts, it reads the
two repositories to determine how far it previously proceeded in reading the binary log from the source
and in processing its own relay log. If GTID-based replication is in use, the replica does not use the
replication metadata repositories for that purpose, but does need them for the other metadata that they
contain.

» The replica's connection metadata repository contains information that the replication 1/O thread
needs to connect to the replication source server and retrieve transactions from the source's binary
log. The metadata in this repository includes the connection configuration, the replication user

196

https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs

Replication Metadata Repositories

account details, the SSL settings for the connection, and the file name and position where the
replication I/O thread is currently reading from the source's binary log.

* The replica's applier metadata repository contains information that the replication SQL thread needs
to read and apply transactions from the replica's relay log. The metadata in this repository includes
the file name and position up to which the replication SQL thread has executed the transactions in
the relay log, and the equivalent position in the source's binary log. It also includes metadata for the
process of applying transactions, such as the number of worker threads.

By default, the replication metadata repositories are created as files in the data directory named
master.infoandrel ay-1| og. i nf o, or with alternative names and locations specified by the
--master-info-fileoptionandrelay | og info fil e system variable. To create the
replication metadata repositories as tables, specify nast er i nfo_repository=TABLE and
relay | og info repository=TABLE at server startup. In that case, the replica's connection
metadata repository is written to the sl ave _nmast er i nf o table in the mysql system schema,

and the replica's applier metadata repository is written to the sl ave rel ay | og i nf o table in the
nysgl system schema. A warning message is issued if nysql d is unable to initialize the tables for the
replication metadata repositories, but the replica is allowed to continue starting. This situation is most
likely to occur when upgrading from a version of MySQL that does not support the use of tables for the
repositories to one in which they are supported.

Important

1. Do not attempt to update or insert rows in the
mysql . sl ave_nmaster _infoornysql.slave relay | og info tables
manually. Doing so can cause undefined behavior, and is not supported.
Execution of any statement requiring a write lock on either or both of the
sl ave _master _infoandslave relay | og info tablesis disallowed
while replication is ongoing (although statements that perform only reads are
permitted at any time).

2. Access to the replica's connection metadata repository file or table should
be restricted to the database administrator, because it contains the
replication user account name and password for connecting to the source.
Use a restricted access mode to protect database backups that include this
repository.

RESET SLAVE clears the data in the replication metadata repositories, with the exception of the
replication connection parameters (depending on the MySQL Server release and repository type). For
details, see the description for RESET SLAVE.

Ifyousetnaster info repositoryandrelay |og info repository toTABLE, the

nysql . sl ave_master i nfoandnysql.slave relay | og info tables are created using the
| nnoDB transactional storage engine. Updates to the replica's applier metadata repository table are

committed together with the transactions, meaning that the replica's progress information recorded in
that repository is always consistent with what has been applied to the database, even in the event of
an unexpected server halt. The - -r el ay- | og-recovery option must be enabled on the replica to

guarantee resilience. For more details, see Section 3.2, “Handling an Unexpected Halt of a Replica”.

When you back up the replica's data or transfer a snapshot of its data to create a new replica, ensure
that you include the nysql . sl ave_master _i nfo and nysql . sl ave_rel ay_| og_i nf o tables
containing the replication metadata repositories, or the equivalent files (mast er . i nf o and r el ay-

I 0g. i nf o in the data directory, unless you specified alternative names and locations). When binary
log file position based replication is in use, the replication metadata repositories are needed to resume
replication after restarting the restored or copied replica. If you do not have the relay log files, but still
have the replica’'s applier metadata repository, you can check it to determine how far the replication
SQL thread has executed in the source's binary log. Then you can use a CHANGE MASTER TO
statement with the MASTER LOG FI LE and MASTER _LOG PGS options to tell the replica to re-read
the binary logs from the source from that point (provided that the required binary logs still exist on the
source).

197

https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Replication Metadata Repositories

One additional repository, the applier worker metadata repository, is created primarily for internal use,
and holds status information about worker threads on a multithreaded replica. The applier worker
metadata repository includes the names and positions for the relay log file and the source's binary log
file for each worker thread. If the replica's applier metadata repository is created as a table, which is

the default, the applier worker metadata repository is written to the nysqgl . sl ave_wor ker i nfo
table. If the applier metadata repository is written to a file, the applier worker metadata repository is
written to the wor ker - r el ay- | og. i nf o file. For external use, status information for worker threads is
presented in the Performance Schemar epl i cati on_applier_status_ by worker table.

The replication metadata repositories originally contained information similar to that shown in the output
of the SHOW SLAVE STATUS statement, which is discussed in SQL Statements for Controlling Replica

Servers. Further information has since been added to the replication metadata repositories which is not
displayed by the SHON SLAVE STATUS statement.

For the connection metadata repository, the following table shows the correspondence between the
columns in the mysql . sl ave_mast er _i nf o table, the columns displayed by SHOV SLAVE STATUS,
and the lines in the mast er . i nf o file.

mast er . i nf o File Line|sl ave_master _info |SHOW SLAVE STATUS |Description
Table Column Column

1 Nunmber _of _|ines [None] Number of lines in the
file, or columns in the
table

2 Mast er | og_nane Master Log File The name of the binary
log currently being read
from the source

3 Mast er | og_pos Read Master Log PogThe current position
within the binary log that
has been read from the
source

4 Host Mast er _Host The host name of the
source server

5 User nane Mast er _User The replication user
name used to connect to
the source

6 User _passwor d Password (not shown by | The password used to
SHOW SLAVE STATUS) |connect to the source

7 Por t Mast er _Port The network port used
to connect to the source

8 Connect _retry Connect _Retry The period (in seconds)
that the replica waits
before trying to
reconnect to the source

9 Enabl ed_ssl Mast er _SSL_Al | owed |Indicates whether the
server supports SSL
connections

10 Ssl _ca Mast er SSL_CA Fi | e |The file used for the
Certificate Authority
(CA) certificate

11 Ssl _capath Mast er SSL_CA Pat h | The path to the
Certificate Authority
(CA) certificates

12 Ssl _cert Master SSL_Cert The name of the SSL

certificate file

198

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/5.7/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Replication Metadata Repositories

mast er. i nf o File Line

slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

13

Ssl _ci pher

Mast er SSL_Ci pher

The list of possible
ciphers used in the
handshake for the SSL
connection

14

Ssl _key

Mast er _SSL_Key

The name of the SSL
key file

15

Ssl _verify server g

dbster SSL Verify 9

beVhetheGer verify the
server certificate

16

Hear t beat

[None]

Interval between
replication heartbeats, in
seconds

17

Bi nd

Mast er _Bi nd

Which of the replica's
network interfaces
should be used for
connecting to the source

18

| gnored_server _ids

Replicate_ | gnore_Se

Mheilist dfserver IDs to
be ignored. Note that for
| gnored_server _ids
the list of server IDs is
preceded by the total
number of server IDs to
ignore.

19

Uui d

Mast er _UUl D

The source's unique ID

20

Retry_count

Mast er _Retry_Count

Maximum number of
reconnection attempts
permitted

21

Ssl _crl

[None]

Path to an SSL
certificate revocation-list
file

22

Ssl _crlpath

[None]

Path to a directory
containing SSL
certificate revocation-list
files

23

Enabl ed_aut o_posi ti

Ant o_position

If autopositioning is in
use or not

24

Channel _nane

Channel _nane

The name of the
replication channel

25

Tl s_version

Mast er TLS Version

TLS version on source

For the applier metadata repository, the following table shows the correspondence between the
columns in the nysql . sl ave_rel ay_| og_i nf o table, the columns displayed by SHOW SLAVE

STATUS, and the lines inthe r el ay- | og. i nf o file.

Lineinrel ay-

slave_relay | og_inf

6HOW SLAVE STATUS

Description

log.info Table Column Column

1 Nunber _of _I i nes [None] Number of lines in the
file or columns in the
table

2 Rel ay_| og_nane Rel ay_Log_File The name of the current

relay log file

199

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Replication Metadata Repositories

Lineinrel ay-
log.info

slave_relay |l og_inf
Table Column

8HOW SLAVE STATUS
Column

Description

3

Rel ay_| og_pos

Rel ay_Log_Pos

The current position
within the relay log

file; events up to this
position have been
executed on the replica
database

Mast er | og_nane

Rel ay _Master Log_Fi

The name of the
source's binary log file
from which the events
in the relay log file were
read

Mast er | og_pos

Exec_Mast er _Log_Pog

The equivalent position
within the source's
binary log file of events
that have already been
executed

Sql _del ay

SQL_Del ay

The number of seconds
that the replica must lag
the source

Nunmber _of workers

[None]

The number of worker
threads on the replica
for executing replication
events (transactions) in
parallel

[None]

ID used for internal
purposes; currently this
is always 1

Channel _nane

Channel_name

The name of the
replication channel

In versions of MySQL prior to MySQL 5.6, the r el ay-1 og. i nf o file does not include a line count or a
delay value (and the sl ave_rel ay_| og_i nf o table is not available).

Line

Status Column

Description

1

Relay _Log File

file

The name of the current relay log

Rel ay Log Pos

position

The current position within the
relay log file; events up to this

have been executed on

the replica database

Rel ay Master Log File

The name of the source's binary
log file from which the events in

the relay log file were read

Exec_Mast er _Log_Pos

The equivalent position within the
source's binary log file of events
that have already been executed

Note

If you downgrade a replica server to a version older than MySQL 5.6, the older

server does not read the r el ay- | og. i nf o file correctly. To address this,

200

How Servers Evaluate Replication Filtering Rules

I modify the file in a text editor by deleting the initial line containing the number of
lines.

The contents of the r el ay- | og. i nf o file and the states shown by the SHON SLAVE STATUS
statement might not match if the r el ay- 1 og. i nf o file has not been flushed to disk. Ideally, you
should only view r el ay- | og. i nf o on a replica that is offline (that is, mysql d is not running). For a
running system, you can use SHOW SLAVE STATUS, or query the nysql . sl ave _nmaster i nfo and
nysql . sl ave_rel ay_| og_i nf o tables if you are writing the replication metadata repositories to
tables.

5.5 How Servers Evaluate Replication Filtering Rules

If a replication source server does not write a statement to its binary log, the statement is not
replicated. If the server does log the statement, the statement is sent to all replicas and each replica
determines whether to execute it or ignore it.

On the source, you can control which databases to log changes for by using the - - bi nl og- do-

db and - - bi nl og-i gnor e- db options to control binary logging. For a description of the rules that
servers use in evaluating these options, see Section 5.5.1, “Evaluation of Database-Level Replication
and Binary Logging Options”. You should not use these options to control which databases and tables
are replicated. Instead, use filtering on the replica to control the events that are executed on the replica.

On the replica side, decisions about whether to execute or ignore statements received from the source
are made according to the - - r epl i cat e- * options that the replica was started with. (See Section 2.6,
“Replication and Binary Logging Options and Variables”.) The filters governed by these options can
also be set dynamically using the CHANGE REPLI CATI ON FI LTER statement. The rules governing
such filters are the same whether they are created on startup using - - r epl i cat e- * options or

while the replica server is running by CHANGE REPLI CATI ON FI LTER. Note that replication filters
cannot be used on a MySQL server instance that is configured for Group Replication, because filtering
transactions on some servers would make the group unable to reach agreement on a consistent state.

In the simplest case, when there are no - - r epl i cat e- * options, the replica executes all statements
that it receives from the source. Otherwise, the result depends on the particular options given.

Database-level options (- - r epl i cat e- do- db, - -repl i cat e-i gnor e- db) are checked first; see
Section 5.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level
options that may be in use (see Section 5.5.2, “Evaluation of Table-Level Replication Options”, for

a discussion of these). If one or more database-level options are used but none are matched, the
statement is not replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any - -repl i cat e-w | d- do-

t abl e options. In other words, for such statements, - - repl i cat e-w | d- do-t abl e options are
checked if and only if there are no database-level options that apply. This is a change in behavior from
previous versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the
replica had been started with - - r epl i cat e- do- db=dbx --replicate-wi | d-do-tabl e=db%t 1.
(Bug #46110)

To make it easier to determine what effect an option set has, it is recommended that you avoid mixing
“do” and “ignore” options, or wildcard and nonwildcard options.

Ifany --replicate-rewite-db options were specified, they are applied before the - -
replicate-* filtering rules are tested.

Note

All replication filtering options follow the same rules for case sensitivity that
apply to names of databases and tables elsewhere in the MySQL server,
including the effects of the | ower case_t abl e_nanes system variable.

201

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/alter-database.html
https://dev.mysql.com/doc/refman/5.7/en/alter-database.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_lower_case_table_names

Evaluation of Database-Level Replication and Binary Logging Options

5.5.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the replica begins by checking to see whether there are any - -
replicate-do-dbor--replicate-ignore-db options that apply. When using - - bi nl og- do- db
or - - bi nl og-i gnor e- db, the process is similar, but the options are checked on the source.

The database that is checked for a match depends on the binary log format of the statement that is
being handled. If the statement has been logged using the row format, the database where data is to
be changed is the database that is checked. If the statement has been logged using the statement
format, the default database (specified with a USE statement) is the database that is checked.

Note

Only DML statements can be logged using the row format. DDL statements
are always logged as statements, even when bi nl og_f or mat =ROW All DDL
statements are therefore always filtered according to the rules for statement-
based replication. This means that you must select the default database
explicitly with a USE statement in order for a DDL statement to be applied.

For replication, the steps involved are listed here:
1. Which logging format is used?
e STATEMENT. Test the default database.
« ROW. Testthe database affected by the changes.
2. Arethere any--replicate-do-db options?
* Yes. Does the database match any of them?
e Yes. Continue to Step 4.
* No. Ignore the update and exit.
« No. Continue to step 3.
3. Arethereany--replicate-ignore-db options?
¢ Yes. Does the database match any of them?
* Yes. Ignore the update and exit.
* No. Continue to step 4.
« No. Continue to step 4.

4. Proceed to checking the table-level replication options, if there are any. For a description of how
these options are checked, see Section 5.5.2, “Evaluation of Table-Level Replication Options”.

Important

A statement that is still permitted at this stage is not yet actually executed.
The statement is not executed until all table-level options (if any) have also
been checked, and the outcome of that process permits execution of the
statement.

For binary logging, the steps involved are listed here:
1. Arethere any - - bi nl og- do-db or - - bi nl og-i gnor e- db options?

¢ Yes. Continue to step 2.

202

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/use.html

Evaluation of Table-Level Replication Options

« No. Log the statement and exit.
2. lIsthere a default database (has any database been selected by USE)?
* Yes. Continue to step 3.
*« No. Ignore the statement and exit.
3. There is a default database. Are there any - - bi nl og- do- db options?
¢ Yes. Do any of them match the database?
e Yes. Log the statement and exit.
* No. Ignore the statement and exit.
« No. Continue to step 4.
4. Do any of the - - bi nl og-i gnor e- db options match the database?
e Yes. Ignore the statement and exit.
*« No. Log the statement and exit.
Important

For statement-based logging, an exception is made in the rules just given for
the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements.
In those cases, the database being created, altered, or dropped replaces the
default database when determining whether to log or ignore updates.

- - bi nl og- do- db can sometimes mean “ignore other databases”. For example, when using
statement-based logging, a server running with only - - bi nl og- do- db=sal es does not write to
the binary log statements for which the default database differs from sal es. When using row-based
logging with the same option, the server logs only those updates that change data in sal es.

5.5.2 Evaluation of Table-Level Replication Options

The replica checks for and evaluates table options only if either of the following two conditions is true:
» No matching database options were found.

» One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 5.5.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

First, as a preliminary condition, the replica checks whether statement-based replication is enabled.
If so, and the statement occurs within a stored function, the replica executes the statement and exits.
If row-based replication is enabled, the replica does not know whether a statement occurred within a
stored function on the source, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement);
for row-based replication, each event represents a change in a single table row
(thus a single statement such as UPDATE nyt abl e SET nycol = 1 may
yield many row-based events). When viewed in terms of events, the process
of checking table options is the same for both row-based and statement-based
replication.

203

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/alter-database.html
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html

Evaluation of Table-Level Replication Options

Having reached this point, if there are no table options, the replica simply executes all events. If there
areany--replicate-do-tableor--replicate-w | d-do-tabl e options, the event must match
one of these if it is to be executed; otherwise, it is ignored. If there are any - - repl i cat e-i gnor e-
tableor--replicate-w | d-ignore-tabl e options, all events are executed except those that
match any of these options.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that

are implicitly updated by the query. For example, a GRANT statement, which
updates the nysql . user system table but does not mention that table, is not
affected by a filter that specifies mysql . %as the wildcard pattern.

The following steps describe this evaluation in more detail. The starting point is the end of the
evaluation of the database-level options, as described in Section 5.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”.

1. Are there any table replication options?
e Yes. Continue to step 2.
« No. Execute the update and exit.
2. Which logging format is used?
« STATEMENT. Carry out the remaining steps for each statement that performs an update.
« ROW. Carry out the remaining steps for each update of a table row.
3. Arethere any--replicate-do-tabl e options?
* Yes. Does the table match any of them?
e Yes. Execute the update and exit.
« No. Continue to step 4.
« No. Continue to step 4.
4. Arethere any --replicate-ignore-tabl e options?
e Yes. Does the table match any of them?
* Yes. Ignore the update and exit.
« No. Continue to step 5.
« No. Continue to step 5.
5. Arethereany--replicate-wld-do-tabl e options?
* Yes. Does the table match any of them?
e Yes. Execute the update and exit.
*« No. Continue to step 6.
« No. Continue to step 6.
6. Arethereany--replicate-w |l d-ignore-tabl e options?

* Yes. Does the table match any of them?

204

https://dev.mysql.com/doc/refman/5.7/en/grant.html

Interactions Between Replication Filtering Options

e Yes. Ignore the update and exit.
e No. Continue to step 7.
« No. Continue to step 7.
7. Is there another table to be tested?
* Yes. Go back to step 3.
« No. Continue to step 8.
8. Arethereany--replicate-do-tableor--replicate-w | d-do-tabl e options?
* Yes. Ignore the update and exit.
« No. Execute the update and exit.
Note

Statement-based replication stops if a single SQL statement operates on both
a table that is included by a- -repl i cat e-do-tabl e or--replicate-

wi | d- do-t abl e option, and another table that is ignored by a - - r epl i cat e-
ignore-tableor--replicate-wld-ignore-tabl e option. The
replica must either execute or ignore the complete statement (which forms

a replication event), and it cannot logically do this. This also applies to row-
based replication for DDL statements, because DDL statements are always
logged as statements, without regard to the logging format in effect. The only
type of statement that can update both an included and an ignored table and
still be replicated successfully is a DML statement that has been logged with
bi nl og_f or mat =ROW

5.5.3 Interactions Between Replication Filtering Options

If you use a combination of database-level and table-level replication filtering options, the replica first
accepts or ignores events using the database options, then it evaluates all events permitted by those
options according to the table options. This can sometimes lead to results that seem counterintuitive.
It is also important to note that the results vary depending on whether the operation is logged using
statement-based or row-based binary logging format. If you want to be sure that your replication filters
always operate in the same way independently of the binary logging format, which is particularly
important if you are using mixed binary logging format, follow the guidance in this topic.

The effect of the replication filtering options differs between binary logging formats because of the way
the database name is identified. With statement-based format, DML statements are handled based on
the current database, as specified by the USE statement. With row-based format, DML statements are
handled based on the database where the modified table exists. DDL statements are always filtered
based on the current database, as specified by the USE statement, regardless of the binary logging
format.

An operation that involves multiple tables can also be affected differently by replication filtering options
depending on the binary logging format. Operations to watch out for include transactions involving
multi-table UPDATE statements, triggers, cascading foreign keys, stored functions that update multiple
tables, and DML statements that invoke stored functions that update one or more tables. If these
operations update both filtered-in and filtered-out tables, the results can vary with the binary logging
format.

If you need to guarantee that your replication filters operate consistently regardless of the binary
logging format, particularly if you are using mixed binary logging format (bi nl og_f or mat =M XED),
use only table-level replication filtering options, and do not use database-level replication filtering
options. Also, do not use multi-table DML statements that update both filtered-in and filtered-out tables.

205

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Interactions Between Replication Filtering Options

If you need to use a combination of database-level and table-level replication filters, and want these to
operate as consistently as possible, choose one of the following strategies:

1. If you use row-based binary logging format (bi nl og_f or mat =ROW), for DDL statements, rely on
the USE statement to set the database and do not specify the database name. You can consider
changing to row-based binary logging format for improved consistency with replication filtering. See
Setting The Binary Log Format for the conditions that apply to changing the binary logging format.

2. If you use statement-based or mixed binary logging format (bi nl og_f or mat =STATENMENT or
M XED), for both DML and DDL statements, rely on the USE statement and do not use the database
name. Also, do not use multi-table DML statements that update both filtered-in and filtered-out
tables.

Example 5.1 A--replicate-ignore-dboptionanda--replicate-do-tabl e option

On the source, the following statements are issued:

USE dbl
CREATE TABLE t2 LIKE t1;
I NSERT | NTO db2.t3 VALUES (1);

The replica has the following replication filtering options set:

replicate-ignore-db = dbl
replicate-do-table = db2.t3

The DDL statement CREATE TABLE creates the table in db1, as specified by the preceding USE
statement. The replica filters out this statement according to its - - r epl i cat e-i gnore-db = db1l
option, because db1 is the current database. This result is the same whatever the binary logging
format is on the source. However, the result of the DML | NSERT statement is different depending on
the binary logging format:

« If row-based binary logging format is in use on the source (bi nl og_f or mat =ROW), the replica
evaluates the | NSERT operation using the database where the table exists, which is named as db2.
The database-level option - -repl i cat e-i gnore-db = dbl, which is evaluated first, therefore
does not apply. The table-level option - - repl i cat e- do-t abl e = db2. t 3 does apply, so the
replica applies the change to table t 3.

« If statement-based binary logging format is in use on the source (bi nl og_f or nat =STATEMENT),
the replica evaluates the | NSERT operation using the default database, which was set by the USE
statement to db1 and has not been changed. According to its database-level - - r epl i cat e-

i gnore-db = db1l option, it therefore ignores the operation and does not apply the change to
table t 3. The table-level option - - repl i cat e- do-t abl e = db2.t 3 is not checked, because the
statement already matched a database-level option and was ignored.

Ifthe - -replicate-ignore-db = dbl option on the replica is necessary, and the use of statement-
based (or mixed) binary logging format on the source is also necessary, the results can be made
consistent by omitting the database name from the | NSERT statement and relying on a USE statement
instead, as follows:

USE db1l

CREATE TABLE t2 LIKE t1;
USE db2

I NSERT | NTO t3 VALUES (1);

In this case, the replica always evaluates the | NSERT statement based on the database db2. Whether
the operation is logged in statement-based or row-based binary format, the results remain the same.

206

https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html

	MySQL Replication
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Replication
	Chapter 2 Configuring Replication
	2.1 Binary Log File Position Based Replication Configuration Overview
	2.2 Setting Up Binary Log File Position Based Replication
	2.2.1 Setting the Replication Source Configuration
	2.2.2 Creating a User for Replication
	2.2.3 Obtaining the Replication Source's Binary Log Coordinates
	2.2.4 Choosing a Method for Data Snapshots
	2.2.4.1 Creating a Data Snapshot Using mysqldump
	2.2.4.2 Creating a Data Snapshot Using Raw Data Files

	2.2.5 Setting Up Replicas
	2.2.5.1 Setting the Replica Configuration
	2.2.5.2 Setting the Source Configuration on the Replica
	2.2.5.3 Setting Up Replication between a New Source and Replicas
	2.2.5.4 Setting Up Replication with Existing Data

	2.2.6 Adding Replicas to a Replication Topology

	2.3 Replication with Global Transaction Identifiers
	2.3.1 GTID Format and Storage
	2.3.2 GTID Life Cycle
	2.3.3 GTID Auto-Positioning
	2.3.4 Setting Up Replication Using GTIDs
	2.3.5 Using GTIDs for Failover and Scaleout
	2.3.6 Restrictions on Replication with GTIDs
	2.3.7 Stored Function Examples to Manipulate GTIDs

	2.4 Changing Replication Modes on Online Servers
	2.4.1 Replication Mode Concepts
	2.4.2 Enabling GTID Transactions Online
	2.4.3 Disabling GTID Transactions Online
	2.4.4 Verifying Replication of Anonymous Transactions

	2.5 MySQL Multi-Source Replication
	2.5.1 Configuring Multi-Source Replication
	2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication
	2.5.3 Adding GTID-Based Sources to a Multi-Source Replica
	2.5.4 Adding a Binary Log Based Source to a Multi-Source Replica
	2.5.5 Starting Multi-Source Replicas
	2.5.6 Stopping Multi-Source Replicas
	2.5.7 Resetting Multi-Source Replicas
	2.5.8 Multi-Source Replication Monitoring
	2.5.8.1 Monitoring Channels Using Performance Schema Tables

	2.6 Replication and Binary Logging Options and Variables
	2.6.1 Replication and Binary Logging Option and Variable Reference
	2.6.2 Replication Source Options and Variables
	2.6.3 Replica Server Options and Variables
	2.6.4 Binary Logging Options and Variables
	2.6.5 Global Transaction ID System Variables

	2.7 Common Replication Administration Tasks
	2.7.1 Checking Replication Status
	2.7.2 Pausing Replication on the Replica
	2.7.3 Skipping Transactions
	2.7.3.1 Skipping Transactions With GTIDs
	2.7.3.2 Skipping Transactions Without GTIDs
	Skipping Transactions With SET GLOBAL sql_slave_skip_counter
	Skipping Transactions With CHANGE MASTER TO

	Chapter 3 Replication Solutions
	3.1 Using Replication for Backups
	3.1.1 Backing Up a Replica Using mysqldump
	3.1.2 Backing Up Raw Data from a Replica
	3.1.3 Backing Up a Source or Replica by Making It Read Only

	3.2 Handling an Unexpected Halt of a Replica
	3.3 Using Replication with Different Source and Replica Storage Engines
	3.4 Using Replication for Scale-Out
	3.5 Replicating Different Databases to Different Replicas
	3.6 Improving Replication Performance
	3.7 Switching Sources During Failover
	3.8 Setting Up Replication to Use Encrypted Connections
	3.9 Semisynchronous Replication
	3.9.1 Semisynchronous Replication Administrative Interface
	3.9.2 Semisynchronous Replication Installation and Configuration
	3.9.3 Semisynchronous Replication Monitoring

	3.10 Delayed Replication

	Chapter 4 Replication Notes and Tips
	4.1 Replication Features and Issues
	4.1.1 Replication and AUTO_INCREMENT
	4.1.2 Replication and BLACKHOLE Tables
	4.1.3 Replication and Character Sets
	4.1.4 Replication and CHECKSUM TABLE
	4.1.5 Replication of CREATE ... IF NOT EXISTS Statements
	4.1.6 Replication of CREATE TABLE ... SELECT Statements
	4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	4.1.8 Replication of CURRENT_USER()
	4.1.9 Replication of DROP ... IF EXISTS Statements
	4.1.10 Replication with Differing Table Definitions on Source and Replica
	4.1.10.1 Replication with More Columns on Source or Replica
	4.1.10.2 Replication of Columns Having Different Data Types

	4.1.11 Replication and DIRECTORY Table Options
	4.1.12 Replication and Floating-Point Values
	4.1.13 Replication and Fractional Seconds Support
	4.1.14 Replication and FLUSH
	4.1.15 Replication and System Functions
	4.1.16 Replication of Invoked Features
	4.1.17 Replication and LIMIT
	4.1.18 Replication and LOAD DATA
	4.1.19 Replication and max_allowed_packet
	4.1.20 Replication and MEMORY Tables
	4.1.21 Replication of the mysql System Database
	4.1.22 Replication and the Query Optimizer
	4.1.23 Replication and Partitioning
	4.1.24 Replication and REPAIR TABLE
	4.1.25 Replication and Reserved Words
	4.1.26 Replication and Source or Replica Shutdowns
	4.1.27 Replica Errors During Replication
	4.1.28 Replication and Server SQL Mode
	4.1.29 Replication and Temporary Tables
	4.1.30 Replication Retries and Timeouts
	4.1.31 Replication and Time Zones
	4.1.32 Replication and Transaction Inconsistencies
	4.1.33 Replication and Transactions
	4.1.34 Replication and Triggers
	4.1.35 Replication and TRUNCATE TABLE
	4.1.36 Replication and User Name Length
	4.1.37 Replication and Variables
	4.1.38 Replication and Views

	4.2 Replication Compatibility Between MySQL Versions
	4.3 Upgrading a Replication Topology
	4.4 Troubleshooting Replication
	4.5 How to Report Replication Bugs or Problems

	Chapter 5 Replication Implementation
	5.1 Replication Formats
	5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	5.1.2 Usage of Row-Based Logging and Replication
	5.1.3 Determination of Safe and Unsafe Statements in Binary Logging

	5.2 Replication Channels
	5.2.1 Commands for Operations on a Single Channel
	5.2.2 Compatibility with Previous Replication Statements
	5.2.3 Startup Options and Replication Channels
	5.2.4 Replication Channel Naming Conventions

	5.3 Replication Threads
	5.3.1 Monitoring Replication Main Threads
	5.3.2 Monitoring Replication Applier Worker Threads

	5.4 Relay Log and Replication Metadata Repositories
	5.4.1 The Relay Log
	5.4.2 Replication Metadata Repositories

	5.5 How Servers Evaluate Replication Filtering Rules
	5.5.1 Evaluation of Database-Level Replication and Binary Logging Options
	5.5.2 Evaluation of Table-Level Replication Options
	5.5.3 Interactions Between Replication Filtering Options

