
MySQL Enterprise Backup User's Guide (Version
3.5.4)

MySQL Enterprise Backup User's Guide (Version 3.5.4)

Abstract

This is the User's Guide for the MySQL Enterprise Backup product, the successor to the InnoDB Hot Backup
product.

For legal information, see the Legal Notices.

Document generated on: 2014-10-13 (revision: 5163)

iii

Table of Contents
Preface and Legal Notices .. v
1 Introduction to MySQL Enterprise Backup ... 1

1.1 Hot Backups ... 1
1.2 Backup Commands ... 1
1.3 Performance and Space Considerations ... 1
1.4 Files that Are Backed Up .. 2
1.5 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup 2

2 Installing MySQL Enterprise Backup ... 5
3 ibbackup Command Reference .. 7

3.1 Options Files .. 7
3.2 ibbackup Command-Line Options .. 8

4 Making a Backup ... 11
4.1 Example: Making an Uncompressed Backup of InnoDB Tables .. 11
4.2 Example: Making a Compressed Backup of InnoDB Tables ... 12
4.3 Example: Making an Incremental Backup of InnoDB Tables .. 13
4.4 Making a Point-in-Time Backup of InnoDB, MyISAM, and Other Tables 15

5 Preparing the Backup to be Restored ... 17
5.1 Example: Applying the Log to a Backup ... 17
5.2 Example: Applying the Log to a Compressed Backup ... 18
5.3 Example: Applying an Incremental Backup to a Full Backup .. 19
5.4 Starting mysqld on a Restored Backup ... 20

6 Recovering or Restoring a Database .. 23
6.1 Point-in-Time Recovery from a Hot Backup .. 23
6.2 Setting Up a New Slave from a Hot Backup in Replication .. 23
6.3 Restoring a Master Database in Replication ... 24

7 mysqlbackup Command Reference .. 25
7.1 mysqlbackup Command-Line Options .. 26
7.2 Example: Backing Up InnoDB and MyISAM Tables ... 29
7.3 Example: Verifying a Backup ... 31
7.4 Example: Restoring a Database at its Original Location ... 33
7.5 Specifying MySQL Connection Settings for mysqlbackup .. 34
7.6 Example: Setting MySQL Privileges for mysqlbackup .. 34
7.7 Example: Making an Incremental Backup of InnoDB and MyISAM tables 35

8 Making a Partial Backup .. 41
8.1 Example: Making an Uncompressed Partial Backup .. 41
8.2 Example: Making a Compressed Partial Backup ... 42
8.3 Restoring a Single .ibd File ... 43
8.4 Backing Up Selected Databases .. 44
8.5 Backing Up Files from Different Storage Engines .. 44
8.6 Backing Up In-Memory Database Data ... 45

9 Troubleshooting for MySQL Enterprise Backup .. 47
9.1 Error codes of MySQL Enterprise Backup .. 47
9.2 Working Around Corruption Problems .. 49
9.3 Using the MySQL Enterprise Backup Backup Logs ... 49

A Known Bugs and Limitations .. 53
A.1 Limitations of mysqlbackup and ibbackup Commands .. 53
A.2 Linux-2.4.18 kernel/driver Bugs ... 53
A.3 Known ibbackup and mysqlbackup Bugs .. 53
A.4 MySQL Bugs Affecting mysqlbackup ... 54
A.5 Compatibility with Older MySQL/InnoDB Versions .. 54

B MySQL Enterprise Backup Change History ... 55
B.1 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21) .. 55
B.2 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16) .. 55
B.3 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01) .. 55

C Licenses for Third-Party Components ... 57

MySQL Enterprise Backup User's Guide (Version 3.5.4)

iv

C.1 RegEX-Spencer Library License .. 57
C.2 zlib License .. 57
C.3 Percona Multiple I/O Threads Patch License .. 58
C.4 Google SMP Patch License .. 58
C.5 Google Controlling Master Thread I/O Rate Patch License .. 59
C.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License .. 59

MySQL Enterprise Backup Glossary .. 61
Index .. 73

v

Preface and Legal Notices
This is the User Manual for the MySQL Enterprise Backup product.

For license information, see the Legal Notices. This product may contain third-party code. For license
information on third-party code, see Appendix C, Licenses for Third-Party Components.

Legal Notices
Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government
contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the
safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark
of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written
authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed,
copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle
or as specifically provided below. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Legal Notices

vi

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is
built and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Appendix C, Licenses for Third-Party Components.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you
can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into
other languages, and downloadable versions in variety of formats, including HTML and PDF formats,
see the MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1 Introduction to MySQL Enterprise Backup

Table of Contents
1.1 Hot Backups ... 1
1.2 Backup Commands ... 1
1.3 Performance and Space Considerations ... 1
1.4 Files that Are Backed Up .. 2
1.5 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup ... 2

The MySQL Enterprise Backup product performs hot backup operations for MySQL databases. The
product is architected for efficient and reliable backups of tables created by the InnoDB storage engine.
For completeness, it can also back up tables from MyISAM and other storage engines.

1.1 Hot Backups

Hot backups are performed while the database is running. This type of backup does not block normal
database operations, and it captures even changes that occur while the backup is happening. For
these reasons, hot backups are desirable when your database “grows up” -- when the data is large
enough that the backup takes significant time, and when your data is important enough to your
business so that you must capture every last change, without taking your application, web site, or web
service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For
tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the
database continues to run, but those tables cannot be modified while being backed up. For efficient
backup operations, you can designate InnoDB as the default storage engine for new tables, or convert
existing tables to use the InnoDB storage engine.

1.2 Backup Commands

When using the MySQL Enterprise Backup product, you primarily work with the ibbackup command
and the mysqlbackup command, depending on the kinds of tables you are backing up. ibbackup is
the simple and efficient way to back up InnoDB tables only, with many command-line options so that
you can build your own backup script around it. mysqlbackup is the more flexible way to back up both
InnoDB tables and tables from other storage engines at the same time; it also does other things that
you would otherwise code into your own script, such as creating a timestamped subdirectory for each
backup.

1.3 Performance and Space Considerations

In planning your backup strategy, you choose the balance between the overhead of performing the
backup (CPU cycles, storage space, and network traffic), and the time needed to restore the data
during planned maintenance or when disaster strikes. Using features such as incremental backups
and compressed backups saves on storage space, and network traffic if you keep the backup data
on a different server. Compression adds some CPU overhead to the backup process; incremental
backup requires additional processing to make the backup ready to restore. For disaster recovery,
when speed to restore the data is critical, you might prefer to have the backup data already prepared
and uncompressed, so that the restore operation involves as few steps as possible.

When evaluating the performance of different backup techniques, put more emphasis on the speed of
the restore operation than the speed of the initial backup. It is during a disaster recovery that speed is
most critical. For example, although a logical backup performed with the mysqldump command might
take about the same time as a physical backup with the MySQL Enterprise Backup product (at least
for a small database), the MySQL Enterprise Backup restore operation is typically faster. Copying the

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_compressed_backup

Files that Are Backed Up

2

actual data files back to the data directory skips the overhead of inserting rows and updating indexes
that comes from replaying the SQL statements from mysqldump output.

To minimize any impact on server performance on Linux and Unix systems, MySQL Enterprise
Backup writes the backup data without storing it in the operating system's disk cache, by using the
posix_fadvise() system call. This technique minimizes any slowdown following the backup
operation, by preserving the data blocks in the disk cache rather than filling up the cache with the
output from the backup.

1.4 Files that Are Backed Up
The primary InnoDB-related data files that are backed up include the ibdata* files that represent the
system tablespace and possibly the data for some user tables; any .ibd files, containing data from user
tables created with the file-per-table setting enabled; data extracted from the ib_logfile* files (the redo
log information representing changes that occur while the backup is running), which is stored in a new
backup file ibbackup_logfile.

If you use the compressed backup feature, the .ibd files are renamed in their compressed form to .ibz
files.

The files, as they are originally copied, form a raw backup that requires further processing to be ready
to be restored. You then run the apply step, which updates the backup files based on the changes
recorded in the ibbackup_logfile file, producing a prepared backup. At this point, the backup data
corresponds to a single point in time. The files are now ready to be restored to their original location, or
for some other use, such as testing or deployment as a replication slave.

To restore InnoDB tables to their original state, you must also have the corresponding .frm files along
with the backup data. Otherwise, the table definitions could be missing or outdated, if someone has
run ALTER TABLE or DROP TABLE statements since the backup. The mysqlbackup command
automatically copies the .frm files back and forth during backup and restore operations. If you rely on
the lower-level ibbackup command for the backup, you must copy the .frm files yourself.

The mysqlbackup command can also back up the .MYD files, .MYI files, and associated .FRM files for
MyISAM tables. The same applies to files with other extensions, as shown in this list [25]. MyISAM
tables and these other types of files cannot be backed up in the same non-blocking way as InnoDB
tables can; changes to these tables are prevented while they are being backed up, possibly making the
database unresponsive for a time.

1.5 Comparison of MySQL Enterprise Backup and InnoDB Hot
Backup

In terms of features, the MySQL Enterprise Backup product is a superset of the InnoDB Hot Backup
product that it supersedes:

• The ibbackup command is available on all platforms, with the same options as before plus some
new ones. In particular, the --incremental option enables incremental backups of InnoDB tables.

• The mysqlbackup command, a cross-platform replacement for the innobackup command, is now
available on Windows. Windows users can back up MyISAM tables and tables from other storage
engines besides InnoDB, without writing their own wrapper script for the ibbackup command.

• The mysqlbackup command is a C program connecting to the server through the MySQL API,
rather than a Perl script that runs the mysql command. Because it does not run the actual mysql
command, it does not support the --mysql-extra-args option of innobackup, but otherwise the
syntax is compatible.

This documentation refers to the mysqlbackup command exclusively.

If this implementation change presents any issues for former users of the InnoDB Hot Backup
product (for example, if you customized the innobackup script or relied on specific mysqld options

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_file_per_table
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ib_logfile
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ibbackup_logfile

Comparison of MySQL Enterprise Backup and InnoDB Hot Backup

3

passed through the --mysql-extra-args option), please submit requirements against the new
mysqlbackup command.

• Currently, the old innobackup Perl script is still supplied on Linux and Unix systems, for
troubleshooting in case of upgrade issues as you transition to the mysqlbackup command.

• Backups produced by the InnoDB Hot Backup product can be restored by the MySQL Enterprise
Backup product.

• The incremental backup feature is new to MySQL Enterprise Backup.

• Support for the Barracuda file format is new to MySQL Enterprise Backup.

• The MySQL Enterprise Backup product includes some new performance optimizations, such as the
posix_fadvise() system call.

• A new logging capability records the progress of running backup jobs, and historical details for
completed backup jobs. For details, see Section 9.3, “Using the MySQL Enterprise Backup Backup
Logs”.

• The mysqlbackup command has extra flexibility for specifying the MySQL connection information.
It can read the user, password, port and socket options from the [client] group of your default or
user-specified configuration file. If you supply the --password option without an argument, you are
prompted to enter the password interactively.

4

5

Chapter 2 Installing MySQL Enterprise Backup
The MySQL Enterprise Backup product is packaged as either an archive file (.tgz, archived with tar
and compressed with gzip), or as a platform-specific installer that is more automated and convenient
than with the former InnoDB Hot Backup product.

Installing on Unix and Linux Systems

For all Linux and Unix systems, the product is available as a .tgz file. Unpack this file as follows:

tar xvzf package.tgz

The ibbackup and mysqlbackup commands are unpacked into a subdirectory. You can either copy
them into a system directory (preserving their execute permission bits), or add to your $PATH setting
the directory where you unpacked them.

For certain Linux distributions, the product is also available as an RPM archive. When you install the
RPM, using the command sudo rpm -i package_name.rpm, the ibbackup and mysqlbackup
commands are installed in the directory /opt/mysql/meb-3.5. You must add this directory to your
$PATH setting.

Installing on Windows Systems

Specify the installation location, preferably relative to the directory where the MySQL Server product
is installed. (You can also install the MySQL Enterprise Backup product on a computer that is used for
storing backup data, and does not have the MySQL Server product.)

Choose the option to add this directory to the windows %PATH% setting, so that you can run the
ibbackup command from a command prompt.

Verify the installation by selecting the menu item Start > Programs > MySQL Enterprise Backup 3.5 >
MySQL Enterprise Backup Command Line. This menu item opens a command prompt and runs the
ibbackup command to display its help message showing the option syntax.

6

7

Chapter 3 ibbackup Command Reference

Table of Contents
3.1 Options Files .. 7
3.2 ibbackup Command-Line Options .. 8

The ibbackup of MySQL Enterprise Backup backs up InnoDB tables from a running MySQL database
without disturbing normal database processing. You get a consistent copy of your database, as if
the copy were taken at a precise point in time, even though the backup job could take minutes or
hours. MySQL Enterprise Backup is also the ideal method of setting up new slaves if you use MySQL
replication on InnoDB tables.

The basic command to take a backup is ibbackup my.cnf my2.cnf. This command reads from the
my.cnf file the information where the ibdata and ib_logfiles are, and makes a backup of them to
the locations specified in my2.cnf file.

3.1 Options Files

You specify two filenames on the ibbackup command line. These .cnf files represent MySQL options
files and use similar syntax. These options file have the following requirements:

• Each options file must contain the following parameter values:

datadir=...
innodb_data_home_dir=...
innodb_data_file_path=...
innodb_log_group_home_dir=...
innodb_log_files_in_group=...
innodb_log_file_size=...

• The directory paths must be absolute. Because backup is such a critical procedure, to avoid the
possibility of backing up the wrong files, ibbackup does not assume any defaults for file locations.

• The number of data files and their sizes must match in my.cnf and my2.cnf. For example, if the
last data file is specified as auto-extending in my.cnf, it must be specified as auto-extending also in
my2.cnf.

• The number of log files and their size must be explicitly specified, but their number and size can be
different between my.cnf and my2.cnf.

• Any other options in these files are ignored. You can prepare new, minimal files with just these
options, or use existing configuration files that have the appropriate options.

For example, suppose your my.cnf contains the following:

[mysqld]
datadir = /home/heikki/data
innodb_data_home_dir = /home/heikki/data
innodb_data_file_path = ibdata1:10M:autoextend
innodb_log_group_home_dir = /home/heikki/data
innodb_log_files_in_group=2
innodb_log_file_size=20M

To back up your database to directory /home/heikki/backup, create my2.cnf like the following:

datadir = /home/heikki/backup

ibbackup Command-Line Options

8

innodb_data_home_dir = /home/heikki/backup
innodb_data_file_path = ibdata1:10M:autoextend
innodb_log_group_home_dir = /home/heikki/backup
innodb_log_files_in_group=2
innodb_log_file_size=20M

Because ibbackup does not overwrite any files during the initial backup step, the backup directory
must not contain any old backup files. ibbackup stops when asked to create a file that already exists,
to avoid harming an existing backup.

3.2 ibbackup Command-Line Options
The command ibbackup --help displays usage information for the command-line options:

$ ibbackup --help
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Usage:
ibbackup [--incremental lsn]
 [--sleep ms] [--suspend-at-end] [--compress [level]]
 [--include regexp] my.cnf backup-my.cnf
or
ibbackup --apply-log
 [--use-memory mb] [--uncompress]
 backup-my.cnf
or
ibbackup --apply-log --incremental
 [--use-memory mb] [--uncompress]
 incremental-backup-my.cnf full-backup-my.cnf

The first command line call above reads the data file and log file
information from my.cnf, and stores the backup data files and a backup
log file (named 'ibbackup_logfile') in the directories specified in the
backup-my.cnf file.

If --incremental is specified in the first command above, it instructs
ibbackup to make an INCREMENTAL backup that only contains data pages
whose latest modification has a log sequence number (lsn) greater than
lsn. Make sure that you have earlier taken a full
backup!

The .cnf files must contain explicit values of (ibbackup is not aware of defaults):
datadir=...
innodb_data_home_dir=...
innodb_data_file_path=...
innodb_log_group_home_dir=...
set-variable = innodb_log_files_in_group=...
set-variable = innodb_log_file_size=...

If --apply-log is specified, then the program prepares a backup for
starting mysql server on the backup. It applies the log records in
'ibbackup_logfile' to the data files, and creates new log files as
specified in backup-my.cnf. If you run with the --apply-log option,
then ibbackup does not check the hostname of the computer. You are allowed
to use ibbackup --apply-log in any computer without a need for a
MySQL Enterprise Backup license for that computer.

If --incremental is specified after --apply-log, then ibbackup
applies the incremental backup at incremental-backup-my.cnf to the FULL
backup at full-backup-my.cnf.

If --include regexp is specified, only those per-table data files which
match the given regular expression are included in the backup.
For each table with per-table data file a string of the form
db_name.table_name is checked against the regular expression.
If the regular expression matches the complete string db_name.table_name,
the table is included in the backup. The regular expression should be of
the POSIX 1003.2 "extended" form. Example: expression 'sales\.den.*'

ibbackup Command-Line Options

9

matches all tables starting with "den" in database "sales".
Note that on Unix (not on Windows) the regular expression should be placed
in single quotes to prevent interpretation by the shell. This feature
is implemented with Henry Spencer's regular expression library.

--restore is an obsolete synonym for --apply-log. The use of --restore
is deprecated, because it may be dropped in the future.

--sleep ms instructs the program to sleep ms milliseconds after each 1 MB
of copied data. You can use this parameter to tune the additional disk i/o
load the backup program causes on the computer. ms must be < 1000000.
The default for ms is 0.

--suspend-at-end makes ibbackup to behave like this: when the backup
procedure is close to ending, ibbackup creates a file called
'ibbackup_suspended' to the log group home dir specified in backup-my.cnf
and waits until the user deletes that file 'ibbackup_suspended'.
You can use this option if you want to write a script which locks
and backs up your MyISAM tables at the end of ibbackup. In that way you
get a consistent snapshot of both InnoDB and MyISAM tables.

--use-memory mb is relevant only when --apply-log is specified.
It tells ibbackup that it can use mb megabytes of memory in recovery.
The default is 100 MB.

--compress instructs the program to compress the backup copies of data
files. Compressed data files are named by adding suffix '.ibz' to the
file name. Compression level can be specified as an optional argument
following --compress option. Compression level is an integer
between 0 and 9: 1 gives fastest compression, 9 gives best compression,
and 0 means no compression. If compression level is not given,
the default level 1 (fastest compression) is used.
Note that data files of per-table tablespaces for compressed tables do not
benefit from a second level of compression, so they are never compressed
in a backup.

--uncompress is relevant only when --apply-log is specified.
It tells ibbackup to recover data files from compressed copies.
Compressed data files are named with suffix '.ibz'.

The backup program does NOT make a backup of the .frm files of the tables,
and it does not make backups of MyISAM tables. To back up these items, either:

- Use the mysqlbackup program.

- Make backups of the .frm files with the Unix 'tar' or the Windows WinZip
or an equivalent tool both BEFORE and AFTER ibbackup finishes its work,
and also store the MySQL binlog segment that is generated between the moment
you copy the .frm files to a backup and the moment ibbackup finishes its work.
For extra safety, also use:

mysqldump -l -d yourdatabasename

to dump the table CREATE statements in a human-readable form before
ibbackup finishes its work.

From the binlog segment you see if any of the .frm files changed between the
moment you took a .frm files backup and the moment ibbackup finished
its work.

Please send bug reports to
http://bugs.mysql.com.

10

11

Chapter 4 Making a Backup

Table of Contents
4.1 Example: Making an Uncompressed Backup of InnoDB Tables ... 11
4.2 Example: Making a Compressed Backup of InnoDB Tables ... 12
4.3 Example: Making an Incremental Backup of InnoDB Tables .. 13
4.4 Making a Point-in-Time Backup of InnoDB, MyISAM, and Other Tables 15

ibbackup makes a backup of:

• The InnoDB system tablespace, which by default contains all the InnoDB tables.

• Any separate data files produced under the InnoDB file-per-table setting.

• Indexes associated with InnoDB tables.

• Data stored in both the original Antelope and new Barracuda file formats. Barracuda is a relatively
recent file format that was first introduced with the InnoDB plugin. In particular, it includes support
for compression within table data. Barracuda file format support is new in MySQL Enterprise Backup
Version 3.5. It is automatic, without any option required for ibbackup.

ibbackup does not, however, copy .frm files, MyISAM tables, or MyISAM indexes to the backup.
See Section 4.4, “Making a Point-in-Time Backup of InnoDB, MyISAM, and Other Tables” for details on
how to make a complete backup.

4.1 Example: Making an Uncompressed Backup of InnoDB Tables

In this example, the options file /home/pekka/.backup-my.cnf defines the location of the backup
(as described in the previous section). The options file /home/pekka/.my.cnf defines the MySQL
installation to back up. Running ibbackup performs the first phase of the process:

$ ibbackup /home/pekka/.my.cnf /home/pekka/.backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/simple
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/simple
innodb_log_group_home_dir got value /sqldata/simple
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.backup-my.cnf:
innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

ibbackup: System tablespace file format is Antelope.
ibbackup: Found checkpoint at lsn 32164666892.
ibbackup: Starting log scan from lsn 32164666880.
101208 15:32:32 ibbackup: Copying log...
101208 15:32:32 ibbackup: Log copied, lsn 32164666892.
ibbackup: We wait 1 second before starting copying the data files...
101208 15:32:33 ibbackup: Copying /sqldata/simple/ibdata1 (Antelope file format).

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_file_per_table

Next Steps:

12

101208 15:32:34 ibbackup: Copying /sqldata/simple/ibdata2 (Antelope file format).
101208 15:32:36 ibbackup: Copying /sqldata/simple/ibdata3 (Antelope file format).
ibbackup: Progress in MB: 200 400
ibbackup: A copied database page was modified at 32164665879.
ibbackup: Scanned log up to lsn 32164666892.
ibbackup: Was able to parse the log up to lsn 32164666892.
ibbackup: Maximum page number for a log record 0
101208 15:33:11 ibbackup: Full backup completed!

The backup directory now contains a backup log file and copies of InnoDB data files:

$ ls -l /sqldata-backup
total 499728
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:33 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 15:33 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:32 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 15:32 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 15:33 ibdata3

Next Steps:

• Make a note of the LSN value in the message at the end of both full and incremental backups, for
example, ibbackup: Was able to parse the log up to lsn LSN_number. You specify
this value when performing incremental backups of changes that occur after this full backup.

• Apply the log to the uncompressed backup files, so that the full backup is ready to be restored at any
time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of
performing this operation on the database server.

• After applying the log, periodically take incremental backups, which are much faster and smaller than
a full backup like this.

4.2 Example: Making a Compressed Backup of InnoDB Tables

To save disk space, you can compress backup data files by using the --compress option of
ibbackup. Compression lets you keep more sets of backup data on hand, and saves on transmission
time when sending the backup data to another server. The downside is extra CPU overhead during the
backup itself, and extra time needed during the restore process as the data is uncompressed.

When tablespace files are compressed during backup, they receive the extension .ibz rather than
the usual .ibd extension. To avoid wasting CPU cycles without saving additional disk space, --
compress does not attempt to compress already-compressed tables that use the Barracuda file
format; such tablespace files keep the usual .ibd extension.

You can use the --compress option for full backups, or for incremental backups in combination with
the --incremental option.

$ ibbackup --compress /home/pekka/.my.cnf /home/pekka/.backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/simple
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/simple
innodb_log_group_home_dir got value /sqldata/simple
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.backup-my.cnf:

Next steps:

13

innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

ibbackup: System tablespace file format is Antelope.
ibbackup: Found checkpoint at lsn 32164666892.
ibbackup: Starting log scan from lsn 32164666880.
101208 15:47:39 ibbackup: Copying log...
101208 15:47:39 ibbackup: Log copied, lsn 32164666892.
ibbackup: We wait 1 second before starting copying the data files...
101208 15:47:40 ibbackup: Copying /sqldata/simple/ibdata1 (Antelope file format).
101208 15:47:41 ibbackup: Copying /sqldata/simple/ibdata2 (Antelope file format).
101208 15:47:42 ibbackup: Copying /sqldata/simple/ibdata3 (Antelope file format).
ibbackup: Progress in MB: 200 400
ibbackup: A copied database page was modified at 32164665879.
ibbackup: Scanned log up to lsn 32164666892.
ibbackup: Was able to parse the log up to lsn 32164666892.
ibbackup: Maximum page number for a log record 0

ibbackup: Compressed 488 MB of data files to 53 MB (compression 89%).

101208 15:48:09 ibbackup: Full backup completed!

The backup directory is shown below. Compressed data files have the suffix .ibz. Typically,
compression ratios of more than 70% are achieved:

$ ls -l /sqldata-backup
total 54676
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:48 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 15:48 ibbackup_logfile
-rw-r----- 1 pekka pekka 1095854 2010-12-08 15:47 ibdata1.ibz
-rw-r----- 1 pekka pekka 811625 2010-12-08 15:47 ibdata2.ibz
-rw-r----- 1 pekka pekka 54058462 2010-12-08 15:48 ibdata3.ibz

Next steps:

• Make a note of the LSN value in the message at the end of both full and incremental backups, for
example, ibbackup: Was able to parse the log up to lsn LSN_number. You specify
this value when performing incremental backups of changes that occur after this full backup.

• Apply the log to the compressed backup files, so that the full backup is ready to be restored at any
time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of
performing this operation on the database server.

• After applying the log, periodically take incremental backups, which are much faster and smaller than
a full backup like this.

4.3 Example: Making an Incremental Backup of InnoDB Tables

An incremental backup only backs up data that changed since the previous backup. This technique
provides additional flexibility in designing a backup strategy and reduces required storage for
backups. Because an incremental backup always adds to an existing set of backup files, make a full
uncompressed or compressed backup before doing any incremental backups.

Incremental backups detect changes at the level of pages in the data file, as opposed to table
rows; each page that has changed is backed up. Thus, the space and time savings are not exactly
proportional to the percentage of changed rows or columns.

Incremental backup is enabled through the --incremental option of the ibbackup command.
You must also indicate the point in time of the previous full or incremental backup, through the --lsn
option, where you specify the highest log sequence number from a previous full or incremental backup.

Example: Making an Incremental Backup of InnoDB Tables

14

When running the “apply log” step for an incremental backup, you specify the option sequence --
apply-log --incremental, and the paths to 2 MySQL configuration files, first the .cnf file
pointing to the full backup that you are updating, then the .cnf file pointing to the incremental backup
data files. If you have taken several incremental backups since the last full backup, you might run
several such “apply log” steps, one after the other, to bring the full backup entirely up to date.

If you use the mysqlbackup command to back up tables from MyISAM and other storage engines,
you can perform an incremental backup with that command also, using slightly different command-line
syntax.

This example shows an incremental backup. The last full backup we ran reported that the highest LSN
was 2638548215:

ibbackup: Was able to parse the log up to lsn 2638548215

We specify that number again in the command here; the incremental backup includes all changes that
came after the specified LSN.

$ ibbackup --incremental 2638548215 /home/pekka/.my.cnf /home/pekka/.incr-backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/mts
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/mts
innodb_log_group_home_dir got value /sqldata/mts
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.incr-backup-my.cnf:
innodb_data_home_dir got value /incr-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /incr-backup
innodb_log_group_home_dir got value /incr-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

ibbackup: System tablespace file format is Barracuda.
ibbackup: Found checkpoint at lsn 2654252454.
ibbackup: Starting log scan from lsn 2654252032.
101208 17:12:16 ibbackup: Copying log...
101208 17:12:16 ibbackup: Log copied, lsn 2654252454.
ibbackup: We wait 1 second before starting copying the data files...
101208 17:12:17 ibbackup: Copying /sqldata/mts/ibdata1 (Barracuda file format).
101208 17:12:17 ibbackup: Copying /sqldata/mts/ibdata2 (Barracuda file format).
101208 17:12:18 ibbackup: Copying /sqldata/mts/ibdata3 (Barracuda file format).
101208 17:12:21 ibbackup: Copying /sqldata/mts/test/alex1.ibd (Antelope file format).
101208 17:12:22 ibbackup: Copying /sqldata/mts/test/alex2.ibd (Antelope file format).
101208 17:12:22 ibbackup: Copying /sqldata/mts/test/alex3.ibd (Antelope file format).
101208 17:12:22 ibbackup: Copying /sqldata/mts/test/blobt3.ibd (Antelope file format).
101208 17:12:23 ibbackup: Copying /sqldata/mts/test/ibstest0.ibd (Antelope file format).
101208 17:12:24 ibbackup: Copying /sqldata/mts/test/ibtest09.ibd (Antelope file format).
ibbackup: A copied database page was modified at 2654252454.
ibbackup: Scanned log up to lsn 2654252454.
ibbackup: Was able to parse the log up to lsn 2654252454.
ibbackup: Maximum page number for a log record 0
ibbackup: Backup contains changes from lsn 2638548216 to lsn 2654252454
101208 17:12:24 ibbackup: Incremental backup completed!

This is the initial state of the backup files from the full backup:

$ ls -hlR /full-backup/

Next steps:

15

/full-backup/:
total 105M
-rw-r--r-- 1 pekka pekka 155 2010-12-08 17:11 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1.0K 2010-12-08 17:11 ibbackup_logfile
-rw-r----- 1 pekka pekka 10M 2010-12-08 17:11 ibdata1
-rw-r----- 1 pekka pekka 20M 2010-12-08 17:11 ibdata2
-rw-r----- 1 pekka pekka 74M 2010-12-08 17:11 ibdata3
drwxr-x--- 2 pekka pekka 48 2010-12-08 17:11 test

/full-backup/test:
total 69M
-rw-r----- 1 pekka pekka 23M 2010-12-08 17:11 alex1.ibd
-rw-r----- 1 pekka pekka 240K 2010-12-08 17:11 alex2.ibd
-rw-r----- 1 pekka pekka 240K 2010-12-08 17:11 alex3.ibd
-rw-r----- 1 pekka pekka 19M 2010-12-08 17:11 blobt3.ibd
-rw-r----- 1 pekka pekka 25M 2010-12-08 17:11 ibstest0.ibd
-rw-r----- 1 pekka pekka 912K 2010-12-08 17:11 ibtest09.ibd

These are the (much smaller) files created by the incremental backup:

$ ls -hlR /incr-backup/
/incr-backup/:
total 2.7M
-rw-r--r-- 1 pekka pekka 155 2010-12-08 17:12 ibbackup_export_variables.txt
-rw-r--r-- 1 pekka pekka 118 2010-12-08 17:12 ibbackup_ibd_files
-rw-r----- 1 pekka pekka 1.0K 2010-12-08 17:12 ibbackup_logfile
-rw-r----- 1 pekka pekka 2.2M 2010-12-08 17:12 ibdata1
-rw-r----- 1 pekka pekka 481K 2010-12-08 17:12 ibdata2
drwxr-x--- 2 pekka pekka 24 2010-12-08 17:12 test

/incr-backup/test:
total 14M
-rw-r----- 1 pekka pekka 14M 2010-12-08 17:12 blobt3.ibd

Next steps:

• Make a note of the LSN value in the message at the end of the backup, for example, ibbackup:
Was able to parse the log up to lsn LSN_number. You specify this value when
performing incremental backups of changes that occur after this incremental backup.

• Apply the incremental backup to the backup files, so that the backup is ready to be restored at any
time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of
this operation on the database server itself.

• On a regular schedule, determined by date or amount of database activity, take further take
incremental backups.

• Optionally, periodically start the cycle over again by taking a full uncompressed or compressed
backup. Typically, this milestone happens when you can archive and clear out your oldest backup
data.

4.4 Making a Point-in-Time Backup of InnoDB, MyISAM, and Other
Tables

Note

This section describes low-level backup techniques that are intended for expert
users. You can use the mysqlbackup command to automate the procedure
presented in this section, as described in Chapter 7, mysqlbackup Command
Reference.

You can use the ibbackup option --suspend-at-end to make a point-in-time backup of tables
from MyISAM and other storage engines, in addition to InnoDB tables. This option pauses the
backup process when an ibbackup run is close to ending, so that a script written by you can copy

Making a Point-in-Time Backup of InnoDB, MyISAM, and Other Tables

16

the MyISAM tables and other non-InnoDB files to a backup. Since the backup taken by ibbackup
corresponds to the time at the end of the run, and your script blocks modifications to the MyISAM
tables at that point, the backup contains a snapshot of MyISAM tables at the same point in time. Your
script must follow this outline:

• Issue the command ibbackup --suspend-at-end ...;

• Periodically check for the existence of the file ibbackup_suspended. When this file appears, your
script must:

1. Issue the statement FLUSH TABLES WITH READ LOCK;

2. Manually copy all .frm files, MyISAM tables, and other non-InnoDB files from database
directories to a backup location.

3. Resume the ibbackup run by deleting the file ibbackup_suspended.

4. Wait until the ibbackup command finishes.

5. Issue the statement UNLOCK TABLES;.

17

Chapter 5 Preparing the Backup to be Restored

Table of Contents
5.1 Example: Applying the Log to a Backup ... 17
5.2 Example: Applying the Log to a Compressed Backup ... 18
5.3 Example: Applying an Incremental Backup to a Full Backup .. 19
5.4 Starting mysqld on a Restored Backup ... 20

The initial backup files might not be in a consistent state, because data could be changed while the
backup is running. These initial files are known as the raw backup. The next step is to update the
backup files so that they reflect the state of the database corresponding to a specific InnoDB log
sequence number. (The same kind of operation as crash recovery. When this step is complete, these
final files are known as the prepared backup.

During the backup, ibbackup copies the accumulated InnoDB log to a file called
ibbackup_logfile. This log file is used to “roll forward” the backed-up data files, so that every page
in the data files corresponds to the same log sequence number of the InnoDB log.

The option for applying the log is --apply-log. In the prior InnoDB Hot Backup Product, this option
was called --restore, but that option was renamed because it prepares the data to be restored,
rather than actually restoring it.

This phase also creates new ib_logfiles that correspond to the data files.

5.1 Example: Applying the Log to a Backup

This example continues from Section 4.1, “Example: Making an Uncompressed Backup of InnoDB
Tables”.

The backup directory looks like this before applying the log to the backup:

$ ls -l /sqldata-backup
total 499728
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:33 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 15:33 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:32 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 15:32 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 15:33 ibdata3

We run ibbackup to roll forward the data files so that they correspond to the same log sequence
number:

$ ibbackup --apply-log /home/pekka/.backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.backup-my.cnf:
innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Example: Applying the Log to a Compressed Backup

18

101208 15:47:17 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 32164666880, end lsn 32164666892,
ibbackup: start checkpoint 32164666892.
InnoDB: Doing recovery: scanned up to log sequence number 32164666892
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 32164666892.
ibbackup: Last MySQL binlog file position 0 534, file name ./MySQL-bin.000008
ibbackup: The first data file is '/sqldata-backup/ibdata1'
ibbackup: and the new created log files are at '/sqldata-backup/'
ibbackup: System tablespace file format is Antelope.
101208 15:47:18 ibbackup: Full backup prepared for recovery successfully!

The contents of the backup directory after applying the log. ibbackup created InnoDB log files
(ib_logfile*) and applied log records to the InnoDB data files (ibdata*):

$ ls -l /sqldata-backup
total 530448
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:33 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 15:33 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:32 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 15:32 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 15:33 ibdata3
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:47 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:47 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 15:47 ib_logfile2

5.2 Example: Applying the Log to a Compressed Backup

This example continues from Section 4.2, “Example: Making a Compressed Backup of InnoDB Tables”.

If the backup is compressed, specify the --uncompress option to ibbackup when applying the log to
the backup:

$ ibbackup --apply-log --uncompress /home/pekka/.backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.backup-my.cnf:
innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

ibbackup: Uncompressing data file '/sqldata-backup/ibdata1.ibz'
ibbackup: Uncompressing data file '/sqldata-backup/ibdata2.ibz'
ibbackup: Uncompressing data file '/sqldata-backup/ibdata3.ibz'
 400
101208 16:06:16 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 32164666880, end lsn 32164666892,
ibbackup: start checkpoint 32164666892.
InnoDB: Doing recovery: scanned up to log sequence number 32164666892
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 32164666892.
ibbackup: Last MySQL binlog file position 0 534, file name ./MySQL-bin.000008
ibbackup: The first data file is '/sqldata-backup/ibdata1'

Example: Applying an Incremental Backup to a Full Backup

19

ibbackup: and the new created log files are at '/sqldata-backup/'
ibbackup: System tablespace file format is Antelope.
101208 16:06:21 ibbackup: Full backup prepared for recovery successfully!

The contents of the backup directory after successfully applying the log to the backup are shown
below. The ibbackup output above shows that data files were rolled forward to log sequence
number (lsn) 32164666892. Since ibbackup does not modify any of the original files in the backup
(compressed data files and ibbackup log file), nothing is lost if the apply-log operation fails for some
reason (for example, insufficient disk space). After fixing the problem, you can safely try the apply-log
operation again.

$ ls -l /sqldata-backup
total 585120
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:48 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 15:48 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:05 ibdata1
-rw-r----- 1 pekka pekka 1095854 2010-12-08 15:47 ibdata1.ibz
-rw-r----- 1 pekka pekka 20971520 2010-12-08 16:05 ibdata2
-rw-r----- 1 pekka pekka 811625 2010-12-08 15:47 ibdata2.ibz
-rw-r----- 1 pekka pekka 480247808 2010-12-08 16:06 ibdata3
-rw-r----- 1 pekka pekka 54058462 2010-12-08 15:48 ibdata3.ibz
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:06 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:06 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:06 ib_logfile2

5.3 Example: Applying an Incremental Backup to a Full Backup

This example continues from Section 4.3, “Example: Making an Incremental Backup of InnoDB
Tables”.

After you take an incremental backup, the changes reflected in those backup files must be applied to a
full backup to bring the full backup up-to-date, in the same way that you apply changes from the binary
log.

To bring the data files from the full backup up to date, first we run the apply log step so that the data
files include any changes that occurred while the full backup was running:

$ ibbackup --apply-log /home/pekka/.full-backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.full-backup-my.cnf:
innodb_data_home_dir got value /full-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /full-backup
innodb_log_group_home_dir got value /full-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

101208 17:13:47 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 2638547968, end lsn 2638548215,
ibbackup: start checkpoint 2638548215.
InnoDB: Doing recovery: scanned up to log sequence number 2638548215
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 2638548215.
ibbackup: Last MySQL binlog file position 0 538, file name ./MySQL-bin.000046
ibbackup: The first data file is '/full-backup/ibdata1'
ibbackup: and the new created log files are at '/full-backup/'
ibbackup: System tablespace file format is Barracuda.

Starting mysqld on a Restored Backup

20

101208 17:13:48 ibbackup: Full backup prepared for recovery successfully!

Then we apply the changes from the incremental backup, to the data files produced by the full backup:

$ ibbackup --apply-log --incremental /home/pekka/.incr-backup-my.cnf /home/pekka/.full-backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.incr-backup-my.cnf:
innodb_data_home_dir got value /incr-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /incr-backup
innodb_log_group_home_dir got value /incr-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.full-backup-my.cnf:
innodb_data_home_dir got value /full-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /full-backup
innodb_log_group_home_dir got value /full-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

101208 17:13:49 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 2654252032, end lsn 2654252454,
ibbackup: start checkpoint 2654252454.
InnoDB: Doing recovery: scanned up to log sequence number 2654252454
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 2654252454.
ibbackup: Last MySQL binlog file position 0 538, file name ./MySQL-bin.000046
ibbackup: The first data file is '/full-backup/ibdata1'
ibbackup: and the new created log files are at '/full-backup/'
ibbackup: System tablespace file format is Barracuda.
101208 17:13:51 ibbackup: Incremental backup applied successfully!

Now the data files that are labelled as the full backup are fully up-to-date, as of the time of the
incremental backup:

$ ls -hlR /full-backup/
/full-backup/:
total 135M
-rw-r--r-- 1 pekka pekka 155 2010-12-08 17:11 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1.0K 2010-12-08 17:13 ibbackup_logfile
-rw-r----- 1 pekka pekka 10M 2010-12-08 17:13 ibdata1
-rw-r----- 1 pekka pekka 20M 2010-12-08 17:13 ibdata2
-rw-r----- 1 pekka pekka 74M 2010-12-08 17:11 ibdata3
-rw-r----- 1 pekka pekka 10M 2010-12-08 17:13 ib_logfile0
-rw-r----- 1 pekka pekka 10M 2010-12-08 17:13 ib_logfile1
-rw-r----- 1 pekka pekka 10M 2010-12-08 17:13 ib_logfile2
drwxr-x--- 2 pekka pekka 48 2010-12-08 17:11 test

/full-backup/test:
total 73M
-rw-r----- 1 pekka pekka 23M 2010-12-08 17:11 alex1.ibd
-rw-r----- 1 pekka pekka 240K 2010-12-08 17:11 alex2.ibd
-rw-r----- 1 pekka pekka 240K 2010-12-08 17:11 alex3.ibd
-rw-r----- 1 pekka pekka 23M 2010-12-08 17:13 blobt3.ibd
-rw-r----- 1 pekka pekka 25M 2010-12-08 17:11 ibstest0.ibd
-rw-r----- 1 pekka pekka 912K 2010-12-08 17:11 ibtest09.ibd

5.4 Starting mysqld on a Restored Backup

Starting mysqld on a Restored Backup

21

After applying the log and creating the new ib_logfiles, we are ready to start mysqld on our
backup database.

The backup database directory looks like this before we start mysqld. Note that the backup directory
contains database subdirectories mysql, test, test115. These are not created by ibbackup, but
they are created either manually by the user or automatically by the mysqlbackup command (see
Chapter 7, mysqlbackup Command Reference).

$ ls -lh /sqldata-backups
total 872M
-rw-r----- 1 pekka dev 41M Jan 22 15:33 ibbackup_logfile
-rw-r----- 1 pekka dev 100M Jan 22 15:38 ibdata1
-rw-r----- 1 pekka dev 200M Jan 22 15:38 ibdata2
-rw-r----- 1 pekka dev 500M Jan 22 15:32 ibdata3
-rw-r----- 1 pekka dev 10M Jan 22 15:40 ib_logfile0
-rw-r----- 1 pekka dev 10M Jan 22 15:38 ib_logfile1
-rw-r----- 1 pekka dev 10M Jan 22 15:38 ib_logfile2
drwxr-xr-x 2 pekka dev 4.0k Jan 22 15:33 mysql
drwxr-xr-x 2 pekka dev 4.0k Jan 22 15:33 test
drwxr-xr-x 2 pekka dev 4.0k Jan 22 15:33 test115

We start mysqld on the backup database:

$ mysqld --defaults-file=/home/pekka/.backup-my.cnf
040122 15:41:57 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
040122 15:41:57 InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 646218252.
InnoDB: Doing recovery: scanned up to log sequence number 0 646218252
InnoDB: 2 transaction(s) which must be rolled back or cleaned up
InnoDB: in total 18 row operations to undo
InnoDB: Trx id counter is 0 239872
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx with id 0 239533, 16 rows to undo
InnoDB: Rolling back of trx id 0 239533 completed
InnoDB: Rolling back trx with id 0 239532, 2 rows to undo
InnoDB: Rolling back of trx id 0 239532 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Last MySQL binlog file position 0 27183537, file name ./binlog.000005
040122 15:41:57 InnoDB: Flushing modified pages from the buffer pool...
040122 15:41:59 InnoDB: Started; log sequence number 0 646218252
040122 15:41:59 mysql.user table is not updated to new password format;
Disabling new password usage until mysql_fix_privilege_tables is run
mysqld: ready for connections.

Now mysqld is running on the restored backup database and ready to serve clients.

If you originally took the backup from a MySQL replication slave, then mysqld also prints the master
database binlog position when you start mysqld on the backup.

22

23

Chapter 6 Recovering or Restoring a Database

Table of Contents
6.1 Point-in-Time Recovery from a Hot Backup .. 23
6.2 Setting Up a New Slave from a Hot Backup in Replication .. 23
6.3 Restoring a Master Database in Replication ... 24

6.1 Point-in-Time Recovery from a Hot Backup
InnoDB only stores the binlog position information to its tablespace at a transaction commit. To
make InnoDB aware of the current binlog position, you must run at least one transaction
while binlogging is enabled. When you run ibbackup --apply-log on your backup, ibbackup
versions >= 1.03 print the latest MySQL binlog position the backup knows of. Also, mysqld prints it
when you start it on the backup after the --apply-log:

$ mysqld --defaults-file=/home/pekka/.backup-my.cnf
040122 15:41:57 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
…
InnoDB: Last MySQL binlog file position 0 27183537, file name ./binlog.000005
…
mysqld: ready for connections.

The MySQL version must be >= 5.1.

The printed position is the MySQL binlog byte position from the moment when MySQL Enterprise
Backup finished the copying of your data files. Then you can apply the binlog file(s) starting from that
position to the restored database:

$ mysqlbinlog --start-position=27183537 /sqldata/binlog.000005 | mysql

To recover the database to a specific point in time, direct the output of mysqlbinlog to an output file,
instead of piping it directly to mysql. This output file contains timestamps for all SQL statements in the
binlog. In an editor, remove all statements after the specified point in time. Process the modified file
with mysql, like this:

$ mysql < modified_output_file

6.2 Setting Up a New Slave from a Hot Backup in Replication
If you use MySQL replication to replicate InnoDB tables, MySQL Enterprise Backup allows you to set
up a slave database without stopping the master because you can make a restored hot backup a new
slave database.

1. Take the backup, use ibbackup --apply-log to restore it, and put the restored backup and the
log files to the right places for the new slave.

2. Edit the my.cnf file of the new slave so that you put skip-slave-start to the [mysqld]
section.

3. Start the new slave mysqld (version >= 5.1). It prints the latest MySQL binlog position the backup
knows of.

Restoring a Master Database in Replication

24

…
InnoDB: Last MySQL binlog file position 0 128760128, file name ./hundin-bin.006
…

Note that InnoDB only stores the binlog position information to its tablespace at a transaction
commit. To make InnoDB aware of the current binlog position, you must run at least one
transaction while binlogging is enabled.

4. Use the CHANGE MASTER SQL command on the slave to initialize it properly. For example:

CHANGE MASTER TO
MASTER_LOG_FILE='hundin-bin.006',
MASTER_LOG_POS=128760128;

5. Start replication in the new slave with the SLAVE START SQL command.

6. Remove the line skip-slave-start from the my.cnf file of the slave.

6.3 Restoring a Master Database in Replication

Let us assume a master database gets corrupt.

1. Use the backup of the master database, do ibbackup --apply-log yourbackupmy.cnf
and put the ibdata and ib_logfile files to the right places. Then put the .frm files to the
right place. Let us assume you have a tar file of the .frm files: cd mysqldatadir; tar xvf
yourtarfile

2. Edit the master my.cnf file so that you comment out log-bin in it so that the slaves do not
receive twice the binlog needed to recover the master.

3. Replication in the slaves must be stopped temporarily when you do the piping of the binlog to the
master. In the slaves, do

mysql> STOP SLAVE;

4. Start the master mysqld on the restored backup:

$ mysqld
…
InnoDB: Doing recovery: scanned up to log sequence number 0 64300044
InnoDB: Last MySQL binlog file position 0 5585832, file name
./omnibook-bin.002
…

InnoDB printed the binlog file and position it was able to recover to.

5. Next you should pipe the remaining binlog files to the restored backup:

$ mysqlbinlog --start-position=5585832mysqldatadir/omnibook-bin.002 | mysql
$ mysqlbinlog /mysqldatadir/omnibook-bin.003 | mysql

6. The master database is now recovered. Shut down the master and edit my.cnf to uncomment
log-bin.

7. Start the master again.

8. Start replication in the slaves again:

mysql> START SLAVE;

25

Chapter 7 mysqlbackup Command Reference

Table of Contents
7.1 mysqlbackup Command-Line Options .. 26
7.2 Example: Backing Up InnoDB and MyISAM Tables ... 29
7.3 Example: Verifying a Backup ... 31
7.4 Example: Restoring a Database at its Original Location .. 33
7.5 Specifying MySQL Connection Settings for mysqlbackup .. 34
7.6 Example: Setting MySQL Privileges for mysqlbackup .. 34
7.7 Example: Making an Incremental Backup of InnoDB and MyISAM tables 35

The mysqlbackup command is an easy-to-use tool for making a more complete backup than by using
just the ibbackup command. The mysqlbackup command backs up:

• All the same InnoDB tables, indexes, and so on as ibbackup. (mysqlbackup runs ibbackup to
perform this part of the backup.)

• MyISAM tables.

• By default, all files in the data directory are included in the backup. If the --only-known-file-
types option is specified, the backup includes additional files with only these file extensions:

• .ARM: Archive storage engine metadata

• .ARZ: Archive storage engine data

• .FRM: table definitions

• .MRG: Merge storage engine references to other tables

• .MYD: MyISAM data

• .MYI: MyISAM indexes

• .OPT: database configuration information

• .PAR: partition definitions

• .TRG: trigger parameters

• .TRN: trigger namespace information

In addition to creating backups, mysqlbackup can prepare a backup for starting a MySQL server
on the backup, and it can copy data, index, and log files from backup directory back to their original
locations.

mysqlbackup is a command that you can use to take an online backup of your InnoDB tables, and
a snapshot of your MyISAM tables which correspond to the same binlog position as the backup of
InnoDB tables. It also backs up the .frm files of the tables.

A sample command line to start mysqlbackup is:

$ mysqlbackup --user=dba --password=xyz --compress /etc/my.cnf /backups

The --user and the --password you specify are used to connect to the MySQL server. This MySQL
user must have enough rights in the MySQL server to execute FLUSH TABLES WITH READ LOCK
and to create a dummy marker table ibbackup_binlog_marker in the mysql system database in
the server (see Section 7.6, “Example: Setting MySQL Privileges for mysqlbackup” for details on the
required MySQL privileges). In a backup run, mysqlbackup places the backup in a subdirectory it

mysqlbackup Command-Line Options

26

creates under the directory /backups you specified above. The name of the backup subdirectory is
formed from the date and the clock time of the backup run.

Make sure that the user or the cron job running mysqlbackup has the rights to copy files from the
MySQL database directories to the backup directory.

Make sure that your connection timeouts are long enough so that the command can keep the
connection to the server open for the duration of the backup run. mysqlbackup pings the server after
copying each database to keep the connection alive.

When mysqlbackup is run, it first tests a connection to the MySQL server. Then, it calls ibbackup
and takes an online backup of InnoDB tables. (This phase does not disturb normal database
processing.) When the ibbackup run has almost completed, mysqlbackup executes the SQL
command FLUSH TABLES WITH READ LOCK and then copies the MyISAM tables and .frm files to
the backup directory. If you do not run long SELECT or other queries in the database at this time, and
your MyISAM tables are small, the locked phase only lasts a couple of seconds. Otherwise, the whole
database, including InnoDB type tables, can be locked for quite a while. After this, mysqlbackup lets
ibbackup run to completion and UNLOCKs the tables.

IMPORTANT:

• Although the mysqlbackup command backs up InnoDB tables (ideally,
the bulk of your data) without interrupting database use, the final stage that
copies non-InnoDB files does temporarily put the database into a read-
only state. For best backup performance and minimal impact on database
processing:

1. Do not run long SELECT or other SQL queries at the time of the backup
run.

2. Keep your MyISAM tables relatively small.

Then the locked phase at the end of an mysqlbackup run is short (maybe a
few seconds), and does not disturb the normal processing of mysqld much.
If the above two conditions are not met in your database application, use the
plain ibbackup binary to take the backups.

• For a large database, a backup run may take a long time. Always check
that mysqlbackup has completed successfully, either by verifying that
the mysqlbackup command returned exit code 0, or by observing that
mysqlbackup has printed the text “mysqlbackup completed OK!”.

• The mysqlbackup command is not the same as the former “MySQL Backup”
open source project from the MySQL 6.0 source tree. The MySQL Enterprise
Backup product supersedes the MySQL Backup initiative.

• Schedule backups during periods when no DDL operations involving tables
are running. See Section A.1, “Limitations of mysqlbackup and ibbackup
Commands” for restrictions on backups at the same time as DDL operations.

7.1 mysqlbackup Command-Line Options

$ mysqlbackup --help
Usage:
mysqlbackup [--sleep=MS] [--compress[=LEVEL]] [--include=REGEXP]
 [--user=WORD][--password=WORD] [--port=PORT]
 [--socket=SOCKET] [--no-timestamp]
 [--ibbackup=IBBACKUP-BINARY] [--slave-info]
 [--backup-and-apply-log] [--databases=LIST]
 [--exec-when-locked="utility arg1 arg2 ..."]
 [--incremental --lsn=LSN]

mysqlbackup Command-Line Options

27

 [--only-known-file-types]
 MY.CNF BACKUP-ROOT-DIR

mysqlbackup --apply-log [--use-memory=MB] [--uncompress]
 [--ibbackup=IBBACKUP-BINARY] MY.CNF BACKUP-DIR

mysqlbackup --apply-log --incremental [--use-memory=MB] [--uncompress]
 [--ibbackup=IBBACKUP-BINARY]
 INCREMENTAL-BACKUP-MY.CNF FULL-BACKUP-MY.CNF

mysqlbackup --copy-back MY.CNF BACKUP-DIR

The first command line above makes a hot backup of a MySQL database. By
default it creates a backup directory (named by the current date and time)
in the given backup root directory. With the --no-timestamp option it
does not create a time-stamped backup directory, but it puts the backup in
the given directory (which must not exist). This command makes a complete
backup of all MyISAM and InnoDB tables and indexes in all databases or in
all of the databases specified with the --databases option. The created
backup contains by default all InnoDB data and log files, .frm files, and
all files in the subdirectories of the database directory. Please notice
that backups of other than MyISAM and InnoDB engines may not be valid,
even if mysqlbackup copies all files associated with them, because the
engine might not flush all data to disk when mysqlbackup locks all
databases.

If --incremental is specified, it instructs ibbackup to make an INCREMENTAL
backup that only contains data pages whose latest modification has a log
sequence number (lsn) greater than LSN. This LSN must be specified via the
--lsn switch. Make sure that you have taken a full backup before taking an
incremental backup or you will not be able to restore your database.

The MY.CNF options file defines the location
of the database. This command connects to the MySQL server using
mysql client API, and runs ibbackup (InnoDB Hot Backup program) as
a child process.

The command with --apply-log option prepares a backup for starting a MySQL
server on the backup. This command expands InnoDB data files as specified
in BACKUP-DIR/backup-my.cnf using BACKUP-DIR/ibbackup_logfile,
and creates new InnoDB log files as specified in BACKUP-DIR/backup-my.cnf.
The BACKUP-DIR should be a path name of a backup directory created by
mysqlbackup. This command runs ibbackup as a child process, but it does not
connect to the database server.

If --incremental is specified after --apply-log, then ibbackup applies the
incremental backup at INCREMENTAL-BACKUP-MY.CNF to the FULL backup at
FULL-BACKUP-MY.CNF.

The command with --copy-back option copies data, index, and log files
from backup directory back to their original locations.
The MY.CNF options file defines the original location of the database.
The BACKUP-DIR is a path name of a backup directory created by mysqlbackup.

mysqlbackup reads [client] group only from the configuration files.
The configuration file MY.CNF or INCREMENTAL-BACKUP.CNF is read after all
the default configuration files are read. mysqlbackup acts only on user,
password, port and socket options from [client] group and ignores the rest
of the options.
On success the exit code of mysqlbackup process is 0. A non-zero exit code
indicates an error.

Options:
 --help Display this helpscreen and exit.

 --version Print version information and exit.

 --apply-log Prepare a backup for starting mysql server on the backup.
 Expand InnoDB data files as specified in
 backup-dir/backup-my.cnf, using backup-dir/ibbackup_logfile,
 and create new log files as specified in
 backup-dir/backup-my.cnf.

mysqlbackup Command-Line Options

28

 --backup-and-apply-log
 Make a backup and prepare it for starting mysql server on it
 as if --apply-log option had been given. The --incremental
 option is not allowed with this option. The --compress and
 --uncompress options are ignored with this option.

 --copy-back Copy data and index files from backup directory back to
 their original locations.

 --use-memory=MB
 This option is passed to the ibbackup child process.
 It tells ibbackup that it can use MB megabytes of
 memory in restoration.
 Try 'ibbackup --help' for more details on this option.

 --sleep=MS This option is passed to the ibbackup child process.
 You can use this parameter to tune the additional
 MS milliseconds after each 1 MB of copied data.
 disk i/o load the ibbackup program causes on the computer.
 Try 'ibbackup --help' for more details on this option.

 --compress[=LEVEL]
 This option is passed to the ibbackup child process.
 It instructs ibbackup to compress the backup copies of
 InnoDB data files. Compression level can be
 specified as an optional argument. Compression level is
 an integer between 0 and 9: 1 gives fastest compression,
 9 gives best compression, and 0 means no compression.
 If compression level is not given, the default level 1 is
 used. Try 'ibbackup --help' for more details on this option.

 --include=REGEXP
 This option is passed to the ibbackup child process.
 It tells ibbackup to backup only those per-table data
 files which match the given regular expression. For
 each table with a per-table data file a string of the
 form db_name.table_name is checked against the regular
 expression. If the regular expression matches the
 complete string db_name.table_name, the table is
 included in the backup. The regular expression should
 be of the POSIX 1003.2 "extended" form.
 Try 'ibbackup --help' for more details on this option.

 --databases=LIST
 This option is used to specify the list of databases that
 mysqlbackup should backup. The list is of the form
 "db_name[.table_name] db_name1[.table_name1] ...".
 If this option is not specified all databases containing
 MyISAM and InnoDB tables will be backed up.
 Please make sure that --databases contains all of the
 Innodb databases & tables so that all of the innodb .frm
 files are also backed up. In Unix variant systems, if the LIST
 argument begins with a slash, mysqlbackup assumes that it is
 a pathname of file and tries to read the list of databases
 from that file. In Windows systems, if the list argument
 begins with a "<drive_letter>:\", mysqlbackup assumes
 that it is a pathname of file and tries to read the list
 of databases from that file.

 --uncompress
 This option is passed to the ibbackup child process.
 It tells ibbackup to uncompress compressed InnoDB data files.
 Try 'ibbackup --help' for more details on this option.

 --user=NAME It defines the user for database login if not current user.

 --password=WORD
 It defines the password to use when connecting to database.
 If WORD is not given, a prompt for the same is issued on the
 tty.

Example: Backing Up InnoDB and MyISAM Tables

29

 --port=PORT It defines the port to use when connecting to local database
 server with TCP/IP.

 --slave-info
 This option is useful when backing up a replication
 slave server. It prints the binary log position and
 name of the binary log file of the master server.
 It also writes this information to the 'ibbackup_slave_info'
 file as a 'CHANGE MASTER' command. A new slave for this
 master can be set up by starting a slave server on this
 backup and issuing a 'CHANGE MASTER' command with the
 binary log position saved in the 'ibbackup_slave_info' file.

 --socket=SOCKET
 It defines the socket to use when connecting to local
 database server with UNIX domain socket.

 --no-timestamp
 This option prevents the creation of a new backup
 directory (named by the current date and time) under
 the backup root directory. Instead, the backup is put
 in the directory given on the command-line (in the
 place of BACKUP-ROOT-DIR argument). The directory must not
 exist, because mysqlbackup creates it while making a backup.

 --ibbackup=IBBACKUP-BINARY
 Use this option to specify which ibbackup (InnoDB Hot
 Backup) binary should be used. IBBACKUP-BINARY
 should be the command used to run ibbackup. This can
 be useful if ibbackup is not in your search path or
 working directory. If this option is not given,
 ibbackup is run with command "./ibbackup" in Unix
 like systems and "ibbackup.exe" in Windows systems.

 --exec-when-locked="utility arg1 arg2 ..."
 The specified utility is executed when all tables are
 locked near the end of the execution. This can be used
 to mysqldump memory tables (engine=memory) and get a
 consistent backup.
 BACKUP_DIR will be set in the environment of the utility
 to the directory that contains the backup (a subdirectory
 of the specified BACKUP-ROOT-DIR).
 For example, in Unix like systems:
 --exec-when-locked='mysqldump mydb t1 > $BACKUP_DIR/t1.sql'
 Note the single quotes that prevent your shell from
 interpreting $BACKUP_DIR before starting mysqlbackup.
 In Windows systems:
 --exec-when-locked="mysqldump mydb t1 > %BACKUP_DIR%/t1.sql"
 If the utility cannot be executed or if it returns
 failure (non-zero exit status), then the whole backup
 process will be aborted.

 --only-known-file-types
 Backup only files used in MySQL 5.1 by InnoDB, MyISAM, and
 ARCHIVE engines. With this option the backup contains
 InnoDB data and log files, table definitions (.frm files),
 merge tables (.MRG), MyISAM tables and indexes (.MYD and
 .MYI), triggers (.TRG and .TRN), database characteristics
 (.opt), partitions (.par) and ARCHIVE tables (.ARM and .ARZ).

7.2 Example: Backing Up InnoDB and MyISAM Tables
In this example, mysqlbackup takes two arguments: the options file of the MySQL installation to
be backed up, and a backup root directory. The last command line argument /backups is the root
directory in which mysqlbackup creates the backup directory.

$ mysqlbackup /home/pekka/.my.cnf /backups
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup /home/pekka/.my.cnf /backups

Example: Backing Up InnoDB and MyISAM Tables

30

mysqlbackup: The unique backup id generated for the current backup operation is 12918179022011620

mysqlbackup: IMPORTANT: Please check that backup run completes successfully.
 At the end of a successful 'backup' run mysqlbackup
 prints "mysqlbackup completed OK!".

mysqlbackup: Created backup directory '/backups/2010-12-08_16-18-22'
mysqlbackup: Using ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
mysqlbackup: Using MySQL client version: 5.1.47
mysqlbackup: Checking a connection to MySQL Server with parameters:
mysqlbackup: port=3306, socket=/home/pekka/mysql/MySQL.socket
mysqlbackup: Using MySQL server version: 5.1.37

101208 16:18:22 mysqlbackup: Starting ibbackup binary with args:

./ibbackup --suspend-at-end /home/pekka/.my.cnf /backups/2010-12-08_16-18-22/backup-my.cnf
mysqlbackup: Waiting for ibbackup process to suspend
mysqlbackup: Suspend file '/backups/2010-12-08_16-18-22/ibbackup_suspended'
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/simple
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/simple
innodb_log_group_home_dir got value /sqldata/simple
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /backups/2010-12-08_16-18-22/backup-my.cnf:
innodb_data_home_dir got value /backups/2010-12-08_16-18-22
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /backups/2010-12-08_16-18-22
innodb_log_group_home_dir got value /backups/2010-12-08_16-18-22
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

ibbackup: System tablespace file format is Antelope.
ibbackup: Found checkpoint at lsn 32164666892.
ibbackup: Starting log scan from lsn 32164666880.
101208 16:18:22 ibbackup: Copying log...
101208 16:18:22 ibbackup: Log copied, lsn 32164666892.
ibbackup: We wait 1 second before starting copying the data files...
101208 16:18:23 ibbackup: Copying /sqldata/simple/ibdata1 (Antelope file format).
101208 16:18:24 ibbackup: Copying /sqldata/simple/ibdata2 (Antelope file format).
101208 16:18:25 ibbackup: Copying /sqldata/simple/ibdata3 (Antelope file format).
ibbackup: Progress in MB: 200 400

ibbackup: You specified the option --suspend-at-end.

101208 16:19:05 mysqlbackup: Continuing after ibbackup has suspended

101208 16:19:05 mysqlbackup: Starting to lock all the tables....

101208 16:19:06 mysqlbackup: All tables are locked and flushed to disk
mysqlbackup: Opening backup source directory '/sqldata/simple'

101208 16:19:06 mysqlbackup: Starting to backup all files in subdirectories of '/sqldata/simple'
mysqlbackup: Backing up the database directory 'mysql'
mysqlbackup: Backing up the database directory 'test'
mysqlbackup: Resuming ibbackup

101208 16:19:05 ibbackup: Suspending the backup procedure to wait
ibbackup: until you delete the marker file /backups/2010-12-08_16-18-22/ibbackup_suspended.
101208 16:19:06 ibbackup: Suspension ends. Continuing the backup procedure.

101208 16:19:06 ibbackup: Copying of the last data file is close to ending...
ibbackup: We still once copy the latest flushed log to ibbackup_logfile.
ibbackup: A copied database page was modified at 32164665879.

Example: Verifying a Backup

31

ibbackup: Scanned log up to lsn 32164666892.
ibbackup: Was able to parse the log up to lsn 32164666892.
ibbackup: Maximum page number for a log record 0
101208 16:19:06 ibbackup: Full backup completed!

101208 16:19:06 mysqlbackup: All tables unlocked
mysqlbackup: All MySQL tables were locked for 0.887 seconds
mysqlbackup: Backup created in directory '/backups/2010-12-08_16-18-22'
mysqlbackup: start_lsn: 32164666880
mysqlbackup: incremental_base_lsn: 32164665879
mysqlbackup: end_lsn: 32164666892

101208 16:19:07 mysqlbackup: mysqlbackup completed OK!

Now we see the backup directory under the BACKUP-ROOT-DIR we specified. The directory name for
each new backup is formed from the date and the clock time when the backup run was started, in the
local time zone.

$ ls -l /backups
total 72
drwxr-xr-x 4 pekka pekka 4096 2010-03-18 15:34 2009-10-27_16-44-38
drwxr-xr-x 4 pekka pekka 4096 2009-12-14 18:56 2009-12-14_18-56-02
drwxr-xr-x 4 pekka pekka 88 2010-03-25 17:04 2010-03-25_17-03-34
drwxr-xr-x 4 pekka pekka 4096 2010-05-17 18:26 2010-05-17_18-23-52
drwxr-xr-x 4 pekka pekka 4096 2010-10-04 12:14 2010-05-17_18-35-41
drwx------ 4 pekka pekka 80 2010-09-15 13:17 2010-09-15_13-16-19
drwx------ 4 pekka pekka 80 2010-09-16 14:19 2010-09-16_14-17-59
drwx------ 4 pekka pekka 80 2010-09-20 13:37 2010-09-20_13-36-07
drwx------ 4 pekka pekka 80 2010-09-27 12:56 2010-09-27_12-54-57
drwx------ 4 pekka pekka 80 2010-09-30 15:25 2010-09-30_15-24-23
drwx------ 4 pekka pekka 4096 2010-12-08 16:18 2010-10-04_12-14-47
drwx------ 2 pekka pekka 1 2010-12-08 14:57 2010-12-08_14-57-34
drwx------ 4 pekka pekka 80 2010-12-08 15:17 2010-12-08_15-16-42
drwx------ 4 pekka pekka 80 2010-12-08 16:19 2010-12-08_16-18-22

The backup directory contains the backed-up ibdata files and ibbackup_logfile. Its
subdirectories mysql, test, test115 are copies of the database directories, and contain copies of
.frm, .MYD, and .MYI files:

$ ls -l /backups/2010-12-08_16-18-22
total 499740
-rw-r--r-- 1 pekka pekka 347 2010-12-08 16:18 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 16:19 ibbackup_binlog_info
-rw-r--r-- 1 pekka pekka 158 2010-12-08 16:19 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 16:19 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:18 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 16:18 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 16:19 ibdata3
drwx------ 2 pekka pekka 4096 2010-12-08 16:19 mysql
drwx------ 2 pekka pekka 24 2010-12-08 16:19 test

7.3 Example: Verifying a Backup
This example continues from where we ended up at the end of the previous example. To verify the
backup, we will run the MySQL daemon (mysqld) on the backup data. Then we can execute queries to
verify the data.

We prepare the backup for starting the database server on it by applying the log records (in file
ibbackup_logfile) to the InnoDB data files (ibdata*).

$ mysqlbackup --apply-log /home/pekka/.my.cnf /backups/2010-12-08_16-18-22
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup --apply-log /home/pekka/.my.cnf /backups/2010-12-08_16-18-22
mysqlbackup: IMPORTANT: Please check that apply-log run completes successfully.
 At the end of a successful 'apply-log' run mysqlbackup
 prints "mysqlbackup completed OK!".

Example: Verifying a Backup

32

mysqlbackup: Using ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
mysqlbackup: Starting ibbackup binary with args:

./ibbackup --apply-log /backups/2010-12-08_16-18-22/backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /backups/2010-12-08_16-18-22/backup-my.cnf:
innodb_data_home_dir got value /backups/2010-12-08_16-18-22
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /backups/2010-12-08_16-18-22
innodb_log_group_home_dir got value /backups/2010-12-08_16-18-22
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

101208 16:23:44 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 32164666880, end lsn 32164666892,
ibbackup: start checkpoint 32164666892.
InnoDB: Doing recovery: scanned up to log sequence number 32164666892
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 32164666892.
ibbackup: Last MySQL binlog file position 0 534, file name ./MySQL-bin.000008
ibbackup: The first data file is '/backups/2010-12-08_16-18-22/ibdata1'
ibbackup: and the new created log files are at '/backups/2010-12-08_16-18-22/'
ibbackup: System tablespace file format is Antelope.
101208 16:23:45 ibbackup: Full backup prepared for recovery successfully!

101208 16:23:45 mysqlbackup: mysqlbackup completed OK!

Here is the backup directory after successfully applying the log to the backup. The ibbackup output
above shows that data files were rolled forward to log sequence number (lsn) 928223244.

$ ls -l /backups/2010-12-08_16-18-22
total 530464
-rw-r--r-- 1 pekka pekka 347 2010-12-08 16:18 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 16:19 ibbackup_binlog_info
-rw-r--r-- 1 pekka pekka 158 2010-12-08 16:19 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 16:19 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:18 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 16:18 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 16:19 ibdata3
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:23 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:23 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:23 ib_logfile2
drwx------ 2 pekka pekka 4096 2010-12-08 16:19 mysql
drwx------ 2 pekka pekka 24 2010-12-08 16:19 test

We are now almost ready to start a server on this backup. The final requirement is to prepare a valid
my.cnf file for the backup. We cannot reuse the backup-my.cnf in the backup directory, because
it contains only the small subset of parameters required by ibbackup. We must create a my.cnf file
by copying these parameters from the backup-my.cnf file, and copying the other parameters from
the original my.cnf file (which is /home/pekka/.my.cnf in this example). We make a copy of the
original file and append the additional parameters in backup-my.cnf.

$ cat /home/pekka/.my.cnf /backups/2010-12-08_16-18-22/backup-my.cnf > /backups/2010-12-08_16-18-22/my.cnf

Now we can start a server on the backup, specifying this new my.cnf as the configuration file:

$ mysqld --defaults-file=/backups/2010-12-08_16-18-22/my.cnf

Example: Restoring a Database at its Original Location

33

101208 16:23:45 [Warning] Changed limits: max_open_files: 1024 max_connections: 200 table_cache: 407
101208 16:23:45 [Note] Plugin 'FEDERATED' is disabled.
InnoDB: The log file was created by ibbackup --apply-log at
InnoDB: ibbackup 101208 16:23:45
InnoDB: NOTE: the following crash recovery is part of a normal restore.
InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
101208 16:23:46 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
InnoDB: Last MySQL binlog file position 0 534, file name ./MySQL-bin.000008
101208 16:23:46 InnoDB: Started; log sequence number 7 2099896332
101208 16:23:46 [Note] Event Scheduler: Loaded 0 events
101208 16:23:46 [Note] mysqld: ready for connections.

7.4 Example: Restoring a Database at its Original Location
The log files have been applied to the backup (in /backups/2004-02-03_13-27-09):

$ ls -l /backups/2010-12-08_16-18-22
total 530468
-rw-r--r-- 1 pekka pekka 347 2010-12-08 16:18 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 16:19 ibbackup_binlog_info
-rw-r--r-- 1 pekka pekka 158 2010-12-08 16:19 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 1024 2010-12-08 16:19 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:24 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 16:24 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 16:24 ibdata3
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:24 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:23 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:23 ib_logfile2
-rw-r--r-- 1 pekka pekka 3600 2010-12-08 16:23 my.cnf
drwx------ 2 pekka pekka 4096 2010-12-08 16:19 mysql
drwx------ 2 pekka pekka 24 2010-12-08 16:19 test

We copy InnoDB and MyISAM indexes, and .frm files back to their original locations (defined by /
home/pekka/.my.cnf file):

$ mysqlbackup --copy-back /home/pekka/.my.cnf /backups/2010-12-08_16-18-22
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup --copy-back /home/pekka/.my.cnf /backups/2010-12-08_16-18-22
mysqlbackup: IMPORTANT: Please check that copy-back run completes successfully.
 At the end of a successful 'copy-back' run mysqlbackup
 prints "mysqlbackup completed OK!".

mysqlbackup: Starting to copy back files
mysqlbackup: in '/backups/2010-12-08_16-18-22' directory
mysqlbackup: back to original data directory '/sqldata/simple'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ibbackup_binlog_info'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/my.cnf'
mysqlbackup: Copying back directory '/backups/2010-12-08_16-18-22/mysql'
mysqlbackup: Copying back directory '/backups/2010-12-08_16-18-22/test'
mysqlbackup: Starting to copy back InnoDB tables and indexes
mysqlbackup: in '/backups/2010-12-08_16-18-22'
mysqlbackup: back to original InnoDB datadirectory '/sqldata/simple'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ibdata1'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ibdata2'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ibdata3'
mysqlbackup: Starting to copy back InnoDB log files
mysqlbackup: in '/backups/2010-12-08_16-18-22'
mysqlbackup: back to original InnoDB log directory '/sqldata/simple'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ib_logfile0'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ib_logfile1'
mysqlbackup: Copying back file '/backups/2010-12-08_16-18-22/ib_logfile2'
mysqlbackup: Finished copying backup files.

Specifying MySQL Connection Settings for mysqlbackup

34

101208 16:48:13 mysqlbackup: mysqlbackup completed OK!

The original database directory is now restored from the backup:

$ ls -l /sqldata/simple
total 531292
-rw-r--r-- 1 pekka pekka 533 2010-12-08 15:47 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 16:47 ibbackup_binlog_info
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:47 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 16:47 ibdata2
-rw-r----- 1 pekka pekka 480247808 2010-12-08 16:48 ibdata3
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:48 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:48 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 16:48 ib_logfile2
-rw-r--r-- 1 pekka pekka 3600 2010-12-08 16:47 my.cnf
drwx------ 2 pekka pekka 4096 2010-05-17 18:41 mysql
drwx------ 2 pekka pekka 827392 2010-03-22 16:13 test

and we can start a server on it:

$ mysqld
101208 16:48:14 [Warning] Changed limits: max_open_files: 1024 max_connections: 200 table_cache: 407
101208 16:48:14 [Warning] One can only use the --user switch if running as root

101208 16:48:14 [Note] Plugin 'FEDERATED' is disabled.
101208 16:48:15 InnoDB: Started; log sequence number 7 2099896332
101208 16:48:15 [Note] Event Scheduler: Loaded 0 events
101208 16:48:15 [Note] mysqld: ready for connections.

7.5 Specifying MySQL Connection Settings for mysqlbackup
When mysqlbackup creates a backup, it sends SQL commands to MySQL server. As part of the
mysqlbackup invocation, specify the appropriate --user, --password, --port, and/or --socket
options that are necessary to connect to the MySQL server. These connection options can be a part
of [client] group in configuration files. mysqlbackup reads your default configuration files and then
the my.cnf file specified on the command line. mysqlbackup reads only --user, --password, --
port, and --socket options from the [client] group, and ignores any other options. If you do not
provide a value for --password, the command prompts for one from the keyboard.

7.6 Example: Setting MySQL Privileges for mysqlbackup
The minimum privileges for the MySQL user that mysqlbackup connects are:

• RELOAD on all databases and tables.

• CREATE, INSERT, and DROP on the tables mysql.ibbackup_binlog_marker,
mysql.backup_progress, and mysql.backup_history, and also SELECT on
mysql.backup_history.

• SUPER, used to optimize locking and minimize disruption to database processing. This privilege is
only needed to back up MySQL 5.5 and higher servers.

• CREATE TEMPORARY TABLES for the mysql database. This privilege is only needed to back up
MySQL 5.5 and higher servers.

• REPLICATION CLIENT, to retrieve the binlog position, which is stored with the backup.

To set these privileges for a MySQL user (dba in this example) connecting from localhost, issue
statements like the following from the mysql client program:

$ mysql -u root

mysql> GRANT RELOAD ON *.* TO 'dba'@'localhost';

Example: Making an Incremental Backup of InnoDB and MyISAM tables

35

mysql> GRANT CREATE, INSERT, DROP ON mysql.ibbackup_binlog_marker TO 'dba'@'localhost';

mysql> GRANT CREATE, INSERT, DROP ON mysql.backup_progress TO 'dba'@'localhost';

mysql> GRANT CREATE, INSERT, SELECT, DROP ON mysql.backup_history TO 'dba'@'localhost';

mysql> GRANT REPLICATION CLIENT ON *.* TO 'dba'@'localhost';

mysql> GRANT SUPER ON *.* TO 'dba'@'localhost';

mysql> GRANT CREATE TEMPORARY TABLES ON `mysql.*` TO 'dba'@'localhost';

mysql> FLUSH PRIVILEGES;

7.7 Example: Making an Incremental Backup of InnoDB and
MyISAM tables

In this example, we use the mysqlbackup command to make an incremental backup of a database
that includes both InnoDB tables and MyISAM tables. We specify --lsn 2654255716 on the
command line because the previous backup displayed this line near the end of the output:

ibbackup: Scanned log up to lsn 2654255716.

The test/ subdirectory within the backup directory includes several .frm files:

$ mysqlbackup --incremental --lsn 2654255716 /home/pekka/.my.cnf /incr-backup
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup --incremental --lsn 2654255716 /home/pekka/.my.cnf /incr-backup
mysqlbackup: The unique backup id generated for the current backup operation is 12918212880165500

mysqlbackup: IMPORTANT: Please check that backup run completes successfully.
 At the end of a successful 'backup' run mysqlbackup
 prints "mysqlbackup completed OK!".

mysqlbackup: Created backup directory '/incr-backup/2010-12-08_17-14-48'
mysqlbackup: Using ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
mysqlbackup: Using MySQL client version: 5.1.47
mysqlbackup: Checking a connection to MySQL Server with parameters:
mysqlbackup: port=3308, socket=/home/pekka/mysql/MySQL.socket
mysqlbackup: Using MySQL server version: 5.1.37

101208 17:14:48 mysqlbackup: Starting ibbackup binary with args:

./ibbackup --suspend-at-end --incremental 2654255716 /home/pekka/.my.cnf /incr-backup/2010-12-08_17-14-48/backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/mts
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/mts
innodb_log_group_home_dir got value /sqldata/mts
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /incr-backup/2010-12-08_17-14-48/backup-my.cnf:
innodb_data_home_dir got value /incr-backup/2010-12-08_17-14-48
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /incr-backup/2010-12-08_17-14-48
innodb_log_group_home_dir got value /incr-backup/2010-12-08_17-14-48
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Example: Making an Incremental Backup of InnoDB and MyISAM tables

36

ibbackup: System tablespace file format is Barracuda.
ibbackup: Found checkpoint at lsn 2666733462.
ibbackup: Starting log scan from lsn 2666733056.
101208 17:14:48 ibbackup: Copying log...
mysqlbackup: Waiting for ibbackup process to suspend
mysqlbackup: Suspend file '/incr-backup/2010-12-08_17-14-48/ibbackup_suspended'
101208 17:14:48 ibbackup: Log copied, lsn 2666733462.
ibbackup: We wait 1 second before starting copying the data files...
101208 17:14:49 ibbackup: Copying /sqldata/mts/ibdata1 (Barracuda file format).
101208 17:14:49 ibbackup: Copying /sqldata/mts/ibdata2 (Barracuda file format).
101208 17:14:50 ibbackup: Copying /sqldata/mts/ibdata3 (Barracuda file format).
101208 17:14:53 ibbackup: Copying /sqldata/mts/test/alex1.ibd (Antelope file format).
101208 17:14:54 ibbackup: Copying /sqldata/mts/test/alex2.ibd (Antelope file format).
101208 17:14:54 ibbackup: Copying /sqldata/mts/test/alex3.ibd (Antelope file format).
101208 17:14:54 ibbackup: Copying /sqldata/mts/test/blobt3.ibd (Antelope file format).
101208 17:14:55 ibbackup: Copying /sqldata/mts/test/ibstest0.ibd (Antelope file format).
101208 17:14:56 ibbackup: Copying /sqldata/mts/test/ibtest09.ibd (Antelope file format).

ibbackup: You specified the option --suspend-at-end.

101208 17:14:56 mysqlbackup: Continuing after ibbackup has suspended

101208 17:14:56 mysqlbackup: Starting to lock all the tables....

101208 17:14:56 mysqlbackup: All tables are locked and flushed to disk
mysqlbackup: Opening backup source directory '/sqldata/mts'

101208 17:14:56 mysqlbackup: Starting to backup all files in subdirectories of '/sqldata/mts'
mysqlbackup: Backing up the database directory 'mysql'
mysqlbackup: Backing up the database directory 'test'
mysqlbackup: Resuming ibbackup

101208 17:14:56 ibbackup: Suspending the backup procedure to wait
ibbackup: until you delete the marker file /incr-backup/2010-12-08_17-14-48/ibbackup_suspended.
101208 17:14:57 ibbackup: Suspension ends. Continuing the backup procedure.

101208 17:14:57 ibbackup: Copying of the last data file is close to ending...
ibbackup: We still once copy the latest flushed log to ibbackup_logfile.
101208 17:14:57 ibbackup: Copying /sqldata/mts/mysql/ibbackup_binlog_marker.ibd (Antelope file format).
ibbackup: A copied database page was modified at 2666733462.
ibbackup: Scanned log up to lsn 2666736714.
ibbackup: Was able to parse the log up to lsn 2666736714.
ibbackup: Maximum page number for a log record 51
ibbackup: Backup contains changes from lsn 2654255717 to lsn 2666736714
101208 17:14:57 ibbackup: Incremental backup completed!

101208 17:14:57 mysqlbackup: All tables unlocked
mysqlbackup: All MySQL tables were locked for 1.023 seconds
mysqlbackup: Backup created in directory '/incr-backup/2010-12-08_17-14-48'
mysqlbackup: start_lsn: 2654255717
mysqlbackup: incremental_base_lsn: 2666733462
mysqlbackup: end_lsn: 2666736714

101208 17:14:58 mysqlbackup: mysqlbackup completed OK!

The incremental backup directory also contains these .frm files:

$ ls -l /full-backup/2010-12-08_17-14-11/{.,test}
/full-backup/2010-12-08_17-14-11/.:
total 106540
-rw-r--r-- 1 pekka pekka 359 2010-12-08 17:14 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 17:14 ibbackup_binlog_info
-rw-r--r-- 1 pekka pekka 155 2010-12-08 17:14 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 4608 2010-12-08 17:14 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 17:14 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 17:14 ibdata2
-rw-r----- 1 pekka pekka 77594624 2010-12-08 17:14 ibdata3
drwx------ 2 pekka pekka 4096 2010-12-08 17:14 mysql
drwxr-x--- 2 pekka pekka 4096 2010-12-08 17:14 test

Example: Making an Incremental Backup of InnoDB and MyISAM tables

37

/full-backup/2010-12-08_17-14-11/test:
total 74216
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:14 alex1.frm
-rw-r----- 1 pekka pekka 24117248 2010-12-08 17:14 alex1.ibd
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:14 alex2.frm
-rw-r----- 1 pekka pekka 245760 2010-12-08 17:14 alex2.ibd
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:14 alex3.frm
-rw-r----- 1 pekka pekka 245760 2010-12-08 17:14 alex3.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 blobt3.frm
-rw-r----- 1 pekka pekka 24117248 2010-12-08 17:14 blobt3.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 ibstest0.frm
-rw-r----- 1 pekka pekka 26214400 2010-12-08 17:14 ibstest0.ibd
-rw-r----- 1 pekka pekka 8722 2010-12-08 17:14 ibtest09.frm
-rw-r----- 1 pekka pekka 933888 2010-12-08 17:14 ibtest09.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 ibtest11a.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 ibtest11b.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 ibtest11c.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:14 ibtest11d.frm

Once again, we apply to the full backup any changes that occurred while the backup was running:

$ mysqlbackup --apply-log /home/pekka/.my.cnf /full-backup/2010-12-08_17-14-11
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup --apply-log /home/pekka/.my.cnf /full-backup/2010-12-08_17-14-11
mysqlbackup: IMPORTANT: Please check that apply-log run completes successfully.
 At the end of a successful 'apply-log' run mysqlbackup
 prints "mysqlbackup completed OK!".

mysqlbackup: Using ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
mysqlbackup: Starting ibbackup binary with args:

./ibbackup --apply-log /full-backup/2010-12-08_17-14-11/backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /full-backup/2010-12-08_17-14-11/backup-my.cnf:
innodb_data_home_dir got value /full-backup/2010-12-08_17-14-11
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /full-backup/2010-12-08_17-14-11
innodb_log_group_home_dir got value /full-backup/2010-12-08_17-14-11
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

101208 17:15:08 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 2654252032, end lsn 2654255716,
ibbackup: start checkpoint 2654252464.
InnoDB: Doing recovery: scanned up to log sequence number 2654255716
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 2654255716.
ibbackup: Last MySQL binlog file position 0 538, file name ./MySQL-bin.000046
ibbackup: The first data file is '/full-backup/2010-12-08_17-14-11/ibdata1'
ibbackup: and the new created log files are at '/full-backup/2010-12-08_17-14-11/'
ibbackup: System tablespace file format is Barracuda.
101208 17:15:10 ibbackup: Full backup prepared for recovery successfully!

101208 17:15:10 mysqlbackup: mysqlbackup completed OK!

Then, we apply the changes from the incremental backup:

$ mysqlbackup --apply-log --incremental /incr-backup/2010-12-08_17-14-48/backup-my.cnf /full-backup/2010-12-08_17-14-11/backup-my.cnf
mysqlbackup: Starting mysqlbackup with following arguments:
mysqlbackup --apply-log --incremental /incr-backup/2010-12-08_17-14-48/backup-my.cnf /full-backup/2010-12-08_17-14-11/backup-my.cnf

Example: Making an Incremental Backup of InnoDB and MyISAM tables

38

mysqlbackup: IMPORTANT: Please check that apply-log run completes successfully.
 At the end of a successful 'apply-log' run mysqlbackup
 prints "mysqlbackup completed OK!".

mysqlbackup: Using ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2

101208 17:15:10 mysqlbackup: Copying all non-InnoDB files in subdirectories of
mysqlbackup: '/incr-backup/2010-12-08_17-14-48'
mysqlbackup: to the corresponding subdirectories in
mysqlbackup: '/full-backup/2010-12-08_17-14-11'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_history.CSM'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_history.CSV'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_history.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_progress.CSM'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_progress.CSV'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/backup_progress.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/columns_priv.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/columns_priv.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/columns_priv.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/db.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/db.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/db.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/event.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/event.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/event.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/func.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/func.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/func.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/general_log.CSM'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/general_log.CSV'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/general_log.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_category.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_category.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_category.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_keyword.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_keyword.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_keyword.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_relation.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_relation.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_relation.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_topic.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_topic.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/help_topic.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/host.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/host.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/host.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/ibbackup_binlog_marker.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/ndb_binlog_index.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/ndb_binlog_index.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/ndb_binlog_index.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/plugin.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/plugin.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/plugin.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/proc.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/proc.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/proc.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/procs_priv.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/procs_priv.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/procs_priv.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/servers.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/servers.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/servers.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/slow_log.CSM'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/slow_log.CSV'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/slow_log.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/tables_priv.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/tables_priv.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/tables_priv.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_leap_second.MYD'

Example: Making an Incremental Backup of InnoDB and MyISAM tables

39

mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_leap_second.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_leap_second.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_name.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_name.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_name.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition_type.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition_type.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/time_zone_transition_type.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/user.MYD'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/user.MYI'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/mysql/user.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/alex1.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/alex2.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/alex3.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/blobt3.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibstest0.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibtest09.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibtest11a.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibtest11b.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibtest11c.frm'
mysqlbackup: Copying file '/incr-backup/2010-12-08_17-14-48/test/ibtest11d.frm'
mysqlbackup: Checking for deleted databases and non-InnoDB files in them

101208 17:15:10 mysqlbackup: Finished copying all non-InnoDB files from the
mysqlbackup: incremental backup to the full backup.

mysqlbackup: Starting ibbackup binary with args:

./ibbackup --apply-log --incremental /incr-backup/2010-12-08_17-14-48/backup-my.cnf /full-backup/2010-12-08_17-14-11/backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /incr-backup/2010-12-08_17-14-48/backup-my.cnf:
innodb_data_home_dir got value /incr-backup/2010-12-08_17-14-48
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /incr-backup/2010-12-08_17-14-48
innodb_log_group_home_dir got value /incr-backup/2010-12-08_17-14-48
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /full-backup/2010-12-08_17-14-11/backup-my.cnf:
innodb_data_home_dir got value /full-backup/2010-12-08_17-14-11
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /full-backup/2010-12-08_17-14-11
innodb_log_group_home_dir got value /full-backup/2010-12-08_17-14-11
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

101208 17:15:10 ibbackup: ibbackup_logfile's creation parameters:
ibbackup: start lsn 2666733056, end lsn 2666736714,
ibbackup: start checkpoint 2666733462.
InnoDB: Doing recovery: scanned up to log sequence number 2666736714
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Setting log file size to 0 10485760
Setting log file size to 0 10485760
Setting log file size to 0 10485760
ibbackup: We were able to parse ibbackup_logfile up to
ibbackup: lsn 2666736714.
ibbackup: Last MySQL binlog file position 0 538, file name ./MySQL-bin.000046
ibbackup: The first data file is '/full-backup/2010-12-08_17-14-11/ibdata1'
ibbackup: and the new created log files are at '/full-backup/2010-12-08_17-14-11/'
ibbackup: System tablespace file format is Barracuda.
101208 17:15:12 ibbackup: Incremental backup applied successfully!
mysqlbackup: Copying file 'ibbackup_export_variables.txt'
mysqlbackup: Copying file 'ibbackup_binlog_info'

Example: Making an Incremental Backup of InnoDB and MyISAM tables

40

101208 17:15:12 mysqlbackup: mysqlbackup completed OK!

Now, the data files in the full backup directory are fully up-to-date, as of the time of the last incremental
backup:

$ ls -l /full-backup/2010-12-08_17-14-11/{.,test}
/full-backup/2010-12-08_17-14-11/.:
total 137260
-rw-r--r-- 1 pekka pekka 359 2010-12-08 17:14 backup-my.cnf
-rw-r--r-- 1 pekka pekka 18 2010-12-08 17:15 ibbackup_binlog_info
-rw-r--r-- 1 pekka pekka 155 2010-12-08 17:15 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka 4608 2010-12-08 17:15 ibbackup_logfile
-rw-r----- 1 pekka pekka 10485760 2010-12-08 17:15 ibdata1
-rw-r----- 1 pekka pekka 20971520 2010-12-08 17:15 ibdata2
-rw-r----- 1 pekka pekka 77594624 2010-12-08 17:14 ibdata3
-rw-r----- 1 pekka pekka 10485760 2010-12-08 17:15 ib_logfile0
-rw-r----- 1 pekka pekka 10485760 2010-12-08 17:15 ib_logfile1
-rw-r----- 1 pekka pekka 10485760 2010-12-08 17:15 ib_logfile2
drwx------ 2 pekka pekka 4096 2010-12-08 17:14 mysql
drwxr-x--- 2 pekka pekka 4096 2010-12-08 17:14 test

/full-backup/2010-12-08_17-14-11/test:
total 74216
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:15 alex1.frm
-rw-r----- 1 pekka pekka 24117248 2010-12-08 17:14 alex1.ibd
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:15 alex2.frm
-rw-r----- 1 pekka pekka 245760 2010-12-08 17:14 alex2.ibd
-rw-r----- 1 pekka pekka 9076 2010-12-08 17:15 alex3.frm
-rw-r----- 1 pekka pekka 245760 2010-12-08 17:14 alex3.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 blobt3.frm
-rw-r----- 1 pekka pekka 24117248 2010-12-08 17:15 blobt3.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 ibstest0.frm
-rw-r----- 1 pekka pekka 26214400 2010-12-08 17:14 ibstest0.ibd
-rw-r----- 1 pekka pekka 8722 2010-12-08 17:15 ibtest09.frm
-rw-r----- 1 pekka pekka 933888 2010-12-08 17:14 ibtest09.ibd
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 ibtest11a.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 ibtest11b.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 ibtest11c.frm
-rw-r----- 1 pekka pekka 8626 2010-12-08 17:15 ibtest11d.frm

41

Chapter 8 Making a Partial Backup

Table of Contents
8.1 Example: Making an Uncompressed Partial Backup .. 41
8.2 Example: Making a Compressed Partial Backup ... 42
8.3 Restoring a Single .ibd File ... 43
8.4 Backing Up Selected Databases .. 44
8.5 Backing Up Files from Different Storage Engines .. 44
8.6 Backing Up In-Memory Database Data .. 45

When the multiple tablespaces feature is enabled, it is possible to make a partial backup of the InnoDB
tables. The multiple tablespaces feature allows storing each InnoDB table in a separate tablespace
holding the data and indexes of one table only. A single-table tablespace consists of one autoextending
datafile named table_name.ibd in the database directory of the table. Those InnoDB tables for
which the multiple tablespaces feature is not enabled, are stored as usual in the system tablespace
defined by the innodb_data_file_path and innodb_data_home_dir parameters in the my.cnf
file.

With its --include option, ibbackup (v2.0 or higher) can be instructed to make a partial backup
excluding some of the per-table datafiles. A partial backup contains the system tablespace and per-
table datafiles of those tables that match the include pattern.

For each table with a per-table data file a string of the form db_name.table_name is checked against
the regular expression specified with the --include option. If the regular expression matches the
complete string db_name.table_name, the table is included in the backup. The regular expression
uses the POSIX extended form. On Unix-like systems, quote the regular expression appropriately
to prevent interpretation of shell meta-characters. This feature has been implemented with Henry
Spencer's regular expression library.

IMPORTANT: Although the mysqlbackup command supports taking partial backups, be careful when
restoring a database from a partial backup. mysqlbackup copies also the .frm files of those tables
that are not included in the backup. If you use mysqlbackup with --include option, before restoring
the database, delete from the backup data the .frm files for any tables that are not included in the
backup.

IMPORTANT: If no tables match the regular expression pattern specified with the --include option,
the backup currently includes all the file-per-table tables. This behavior might change; do not rely on it
as part of your backup procedure.

8.1 Example: Making an Uncompressed Partial Backup

In this example, we have configured MySQL so that some InnoDB tables have their own tablespaces.
We make a partial backup including only those InnoDB tables in test database whose name starts
with ib. The contents of the database directory for test database are shown below. The directory
contains a MySQL description file (.frm file) for each of the tables (alex1, alex2, alex3, blobt3,
ibstest0, ibstest09, ibtest11a, ibtest11b, ibtest11c, and ibtest11d) in the database.
Of these 10 tables six (alex1, alex2, alex3, blobt3, ibstest0, ibstest09) are stored in per-
table datafiles (.ibd files).

$ ls /sqldata/mts/test
alex1.frm alex2.ibd blobt3.frm ibstest0.ibd ibtest11a.frm ibtest11d.frm
alex1.ibd alex3.frm blobt3.ibd ibtest09.frm ibtest11b.frm
alex2.frm alex3.ibd ibstest0.frm ibtest09.ibd ibtest11c.frm

We run ibbackup with the --include option.

http://dev.mysql.com/doc/mysql/en/Multiple_tablespaces.html
http://dev.mysql.com/doc/mysql/en/Multiple_tablespaces.html
http://dev.mysql.com/doc/mysql/en/Multiple_tablespaces.html
http://en.wikipedia.org/wiki/Regular_expression
http://www.unix.org/version3/ieee_std.html

Example: Making a Compressed Partial Backup

42

$ ibbackup --include 'test\.ib.*' /home/pekka/.my.cnf /home/pekka/.backup-my.cnf
ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/mts
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/mts
innodb_log_group_home_dir got value /sqldata/mts
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.backup-my.cnf:
innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Value of include option: 'test\.ib.*'

ibbackup: System tablespace file format is Barracuda.
ibbackup: Found checkpoint at lsn 2666737471.
ibbackup: Starting log scan from lsn 2666737152.
101208 17:17:34 ibbackup: Copying log...
101208 17:17:34 ibbackup: Log copied, lsn 2666737471.
ibbackup: We wait 1 second before starting copying the data files...
101208 17:17:35 ibbackup: Copying /sqldata/mts/ibdata1 (Barracuda file format).
101208 17:17:36 ibbackup: Copying /sqldata/mts/ibdata2 (Barracuda file format).
101208 17:17:37 ibbackup: Copying /sqldata/mts/ibdata3 (Barracuda file format).
101208 17:17:43 ibbackup: Copying /sqldata/mts/test/ibstest0.ibd (Antelope file format).
101208 17:17:45 ibbackup: Copying /sqldata/mts/test/ibtest09.ibd (Antelope file format).
ibbackup: A copied database page was modified at 2666737471.
ibbackup: Scanned log up to lsn 2666737471.
ibbackup: Was able to parse the log up to lsn 2666737471.
ibbackup: Maximum page number for a log record 0
101208 17:17:45 ibbackup: Full backup completed!

The backup directory contains only backups of ibstest and ibtest09 tables. Other InnoDB
tables did not match the include pattern test\.ib.*. Notice, however, that the tables ibtest11a,
ibtest11b, ibtest11c, ibtest11d are in the backup even though they are not visible in the
directory shown below, because they are stored in the system tablespace (ibdata1 file) which is
always included in the backup.

$ ls /sqldata-backup/test
ibstest0.ibd ibtest09.ibd

8.2 Example: Making a Compressed Partial Backup

We have configured MySQL so that every InnoDB table has its own tablespace. We make a partial
backup including only those InnoDB tables whose name starts with alex or blob. The contents of the
database directory for test database is shown below.

$ ls /sqldata/mts/test
alex1.frm alex2.ibd blobt3.frm ibstest0.ibd ibtest11a.frm ibtest11d.frm
alex1.ibd alex3.frm blobt3.ibd ibtest09.frm ibtest11b.frm
alex2.frm alex3.ibd ibstest0.frm ibtest09.ibd ibtest11c.frm

We run ibbackup with the --compress and --include options:

$ ibbackup --compress --include '.*\.(alex|blob).*' /home/pekka/.my.cnf /home/pekka/.backup-my.cnf

Restoring a Single .ibd File

43

ibbackup version 3.5.2 MySQL Enterprise Backup 3.5.2
Copyright (c) 2002, 2010, Oracle and/or its affiliates.
Run 'ibbackup --help' for help and 'ibbackup --version' for version info.

Note: Uses posix_fadvise() for performance optimization.

Contents of /home/pekka/.my.cnf:
innodb_data_home_dir got value /sqldata/mts
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata/mts
innodb_log_group_home_dir got value /sqldata/mts
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Contents of /home/pekka/.backup-my.cnf:
innodb_data_home_dir got value /sqldata-backup
innodb_data_file_path got value ibdata1:10M;ibdata2:20M;ibdata3:50M:autoextend
datadir got value /sqldata-backup
innodb_log_group_home_dir got value /sqldata-backup
innodb_log_files_in_group got value 3
innodb_log_file_size got value 10485760

Value of include option: '.*\.(alex|blob).*'

ibbackup: System tablespace file format is Barracuda.
ibbackup: Found checkpoint at lsn 2666737471.
ibbackup: Starting log scan from lsn 2666737152.
101208 17:17:57 ibbackup: Copying log...
101208 17:17:57 ibbackup: Log copied, lsn 2666737471.
ibbackup: We wait 1 second before starting copying the data files...
101208 17:17:58 ibbackup: Copying /sqldata/mts/ibdata1 (Barracuda file format).
101208 17:17:59 ibbackup: Copying /sqldata/mts/ibdata2 (Barracuda file format).
101208 17:17:59 ibbackup: Copying /sqldata/mts/ibdata3 (Barracuda file format).
101208 17:18:01 ibbackup: Copying /sqldata/mts/test/alex1.ibd (Antelope file format).
101208 17:18:03 ibbackup: Copying /sqldata/mts/test/alex2.ibd (Antelope file format).
101208 17:18:03 ibbackup: Copying /sqldata/mts/test/alex3.ibd (Antelope file format).
101208 17:18:03 ibbackup: Copying /sqldata/mts/test/blobt3.ibd (Antelope file format).
ibbackup: A copied database page was modified at 2666737471.
ibbackup: Scanned log up to lsn 2666737471.
ibbackup: Was able to parse the log up to lsn 2666737471.
ibbackup: Maximum page number for a log record 0

ibbackup: Compressed 147 MB of data files to 15 MB (compression 89%).

101208 17:18:04 ibbackup: Full backup completed!

The backup directory for the database test is shown below. The .ibz files are compressed per-table
datafiles.

$ ls /sqldata-backup/test
alex1.ibz alex2.ibz alex3.ibz blobt3.ibz

8.3 Restoring a Single .ibd File

A table with a table-specific tablespace (stored in an .ibd file) can be restored individually without
taking down the MySQL server. If you have a clean backup of an .ibd file, you can restore it to the
MySQL installation from which it originated as follows:

1. Prevent write operations for the table to be restored. This prevents users from modifying the table
while the restore is in progress.

LOCK TABLES tbl_name WRITE;

2. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

Backing Up Selected Databases

44

Caution: This deletes the current .ibd file.

3. Put the backup .ibd file back in the proper database directory.

4. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

5. Restore is now complete and the write lock can be released:

UNLOCK TABLES;

In this context, a clean.ibd file backup means:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make such a clean backup .ibd file with the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW INNODB STATUS shows that there are no active transactions in the database, and
the main thread status of InnoDB is Waiting for server activity. Then you can make a
copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use ibbackup:

1. Use ibbackup to back up the InnoDB installation.

2. Run ibbackup --apply-log to create a consistent version of the backup database.

3. Start a second (dummy) mysqld server on the backup and let it clean up the .ibd files in the
backup. Wait for the cleanup to end.

4. Shut down the dummy mysqld server.

5. Take a clean .ibd file from the backup.

8.4 Backing Up Selected Databases
The --databases option of the mysqlbackup command lets you back up non-InnoDB tables only
from selected databases, rather than across the entire MySQL instance. (To filter InnoDB tables, use
the --include option.) You can specify a space-separated list of database names, with the entire list
enclosed in double quotation marks, or the absolute path (starting with a /) of a file containing the list
of names, one per line.

Some or all of the database names can be qualified with table names, to only back up selected tables
from those databases.

If you specify this option, make sure to include the same set of databases for every backup (especially
incremental backups), so that you do not restore out-of-date versions of any databases.

8.5 Backing Up Files from Different Storage Engines
By default, all the files in the data directory are included in the backup, so any non-database files in that
directory are backed up.

Backing Up In-Memory Database Data

45

The --only-known-file-types option of the mysqlbackup command limits the backup to only
those files that represent known data files from MySQL or the storage engines, such as .frm, .myi,
.mrg, and so on. (See the full list of extensions [25].) By default, the mysqlbackup command backs
up all file extensions within the data directory, which could include files produced by many different
storage engines. Use this option if the additional data files from other storage engines should not be
included in the backup, for performance or space reasons.

8.6 Backing Up In-Memory Database Data

The --exec-when-locked option of the mysqlbackup command lets you specify a command and
arguments to run near the end of the backup, while the database is still locked. This command can
copy or create additional files in the backup directory. For example, you can use this option to back up
MEMORY tables with the mysqldump command, storing the output in the backup directory. To delay any
redirection or variable substitution until the command is executed, enclose the entire parameter value
within single quotes.

46

47

Chapter 9 Troubleshooting for MySQL Enterprise Backup

Table of Contents
9.1 Error codes of MySQL Enterprise Backup .. 47
9.2 Working Around Corruption Problems .. 49
9.3 Using the MySQL Enterprise Backup Backup Logs ... 49

To troubleshoot issues regarding backup and restore with the MySQL Enterprise Backup product,
consider the following aspects:

• If the mysqlbackup command encounters problems during operating system calls, it returns the
corresponding OS error codes. You might need to consult your operating system documentation for
the meaning and solution of these error codes. (The ibbackup command only returns an error code
of 1 regardless of the error, but it does display the OS error code in its error output.)

• Incremental backups require care to specify a sequence of time periods You must record the final
LSN value at the end of each backup, and specify that value in the next incremental backup. You
must also make sure that the full backup you restore is prepared correctly first, so that it contains all
the changes from the sequence of incremental backups.

• As the mysqlbackup command proceeds, it writes progress information into the
mysql.backup_progress table. When the command finishes the backup operation, it records
status information in the mysql.backup_history table. You can query these tables to monitor
ongoing jobs, see how much time was needed for various stages, and check if any errors occurred.

•

9.1 Error codes of MySQL Enterprise Backup

The return code of the MySQL Enterprise Backup (ibbackup) process is 0 if the backup or restore run
succeeds. If the run fails for any reason, the return code is 1.

If ibbackup fails, because an operating system call fails, ibbackup usually displays the operating
systems error code along with a detailed error message.

On Linux and other Unix-like systems, the operating system error codes are POSIX error codes. Those
POSIX error codes that are possible with ibbackup are shown in Table 9.1, “OS Errors for Linux and
other Unix-Like Systems”. A complete list of all POSIX errors is available in the file /usr/include/
errno.h on your system.

Table 9.1 OS Errors for Linux and other Unix-Like Systems

Error code Value Description

EPERM 1 Operation not permitted

ENOENT 2 No such file or directory

ESRCH 3 No such process

EINTR 4 Interrupted system call

EIO 5 I/O error

ENXIO 6 No such device or address

EBADF 9 Bad file number

EAGAIN 11 Try again

Error codes of MySQL Enterprise Backup

48

Error code Value Description

ENOMEM 12 Out of memory

EACCES 13 Permission denied

EBUSY 16 Device or resource busy

EEXIST 17 File exists

ENODEV 19 No such device

ENOTDIR 20 Not a directory

EMFILE 24 Too many open files

EFBIG 27 File too large

ENOSPC 28 No space left on device

EROFS 30 Read-only file system

ENAMETOOLONG 36 File name too long

ENODATA 61 No data available

ETIME 62 Timer expired

EBADFD 77 File descriptor in bad state

EDQUOT 122 Quota exceeded

On Microsoft Windows, ibbackup uses Win32 API calls. The Windows System Error codes
possible with ibbackup are listed in Table 9.2, “OS Errors for Windows Systems”. A complete
list of all Windows System errors is available at http://msdn2.microsoft.com/en-us/library/
ms681381(VS.85).aspx.

Table 9.2 OS Errors for Windows Systems

Error code Value Description

ERROR_SUCCESS 0 The operation completed
successfully.

ERROR_FILE_NOT_FOUND 2 The system cannot find the file
specified.

ERROR_PATH_NOT_FOUND 3 The system cannot find the path
specified.

ERROR_TOO_MANY_OPEN_FILES4 The system cannot open the file.

ERROR_ACCESS_DENIED 5 Access is denied.

ERROR_NOT_ENOUGH_MEMORY8 Not enough storage is available
to process this command.

ERROR_OUTOFMEMORY 14 Not enough storage is available
to complete this operation.

ERROR_INVALID_DRIVE 15 The system cannot find the drive
specified.

ERROR_WRITE_PROTECT 19 The media is write protected.

ERROR_BAD_UNIT 20 The system cannot find the
device specified.

ERROR_NOT_READY 21 The device is not ready.

ERROR_SEEK 25 The drive cannot locate a
specific area or track on the disk.

ERROR_WRITE_FAULT 29 The system cannot write to the
specified device.

http://msdn2.microsoft.com/en-us/library/ms681381(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms681381(VS.85).aspx

Working Around Corruption Problems

49

Error code Value Description

ERROR_READ_FAULT 30 The system cannot read from the
specified device.

ERROR_GEN_FAILURE 31 A device attached to the system
is not functioning.

ERROR_HANDLE_DISK_FULL 39 The disk is full.

ERROR_BAD_NETPATH 53 The network path was not found.

ERROR_DEV_NOT_EXIST 55 The specified network resource
or device is no longer available.

ERROR_FILE_EXISTS 80 The file exists.

9.2 Working Around Corruption Problems

Sometimes the operating system or the hardware can corrupt a data file page, in a location that does
not cause a database error, but prevents ibbackup from completing:

ibbackup: Re-reading page at offset 0 3185082368 in /sqldata/mts/ibdata15
ibbackup: Re-reading page at offset 0 3185082368 in /sqldata/mts/ibdata15
ibbackup: Error: page at offset 0 3185082368 in /sqldata/mts/ibdata15 seems corrupt!

Scrambled data in memory can produce this error, even though the data on disk is correct. Reboot the
database server and storage device to see if the problem persists.

If the data really is corrupt on disk, you can restore from an earlier backup and “roll forward” the recent
changes to bring the database back to its current state.

If you want to make an additional backup before investigating the cause of the corruption, you can
compile and run a troubleshooting utility, innodb_page_checksum_reset.c, to reset the LSN and
checksum fields in one data page, so that ibbackup can complete the backup.

Download innodb_page_checksum_reset.c.

The sample program resets page 22357 in a datafile ibdata1. Edit these values according to the
values in your error message.

To compile on Linux:

$ gcc -o ibreset innodb_page_checksum_reset.c

If your data file is larger than 2 GB, compile with large file support:

$ gcc -D_XOPEN_SOURCE=600 D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -o ibreset innodb_page_checksum_reset.c

The command produces an executable file called ibreset.

IMPORTANT: Do not treat corruption problems as a minor annoyance. Find out what is wrong with the
OS or the hardware that causes corrupt pages to appear. (Such troubleshooting is beyond the scope of
this manual.)

9.3 Using the MySQL Enterprise Backup Backup Logs

The mysql.backup_progress table lets you monitor backup jobs as they run. The
mysql.backup_history table lets you see the results of completed jobs. Because these tables are
created with the CSV storage engine, you can query them from SQL, or parse the text files from an
application or script.

http://www.innodb.com/innodb_page_checksum_reset.c

backup_progress Table

50

backup_progress Table

Each row in the backup_progress table records a state change or message from a running backup
job. The backup_progress table has the following columns:

• backup_id

• tool_name

• error_code

• error_message

• current_time

• current_state

Because the CSV storage engine cannot represent NULL values directly, the logs use a -1 value
instead, for example in the binlog_pos column if binary logging is not enabled.

Use the backup_id value to group the information for a single backup operation, and to correlate with
the corresponding row in the backup_history table after the job is finished.

Use the error_code and error_message values to track the progress of the job, and detect if a
serious error occurs that requires stopping the backup operation.

Use the current_time and current_state values to measure how long each part of the backup
operation takes, to help with planning the time intervals for future backups.

backup_history Table

Each row in the backup_history table records the details of one completed backup job, produced by
the mysqlbackup command. The backup_history table has the following columns:

• backup_id

• tool_name

• start_time

• end_time

• binlog_pos

• binlog_file

• compression_level

• engines

• innodb_data_file_path

• innodb_file_format

• start_lsn

• end_lsn

• incremental_base_lsn

• backup_type

• backup_format

backup_history Table

51

• mysql_data_dir

• innodb_data_home_dir

• innodb_log_group_home_dir

• innodb_log_files_in_group

• innodb_log_file_size

• backup_destination

• lock_time

• exit_state

• last_error

• last_error_code

Use the end_lsn value to automate operations related to incremental backups. When you take a
full or incremental backup, you specify the end LSN from that backup as the starting LSN for the next
incremental backup.

Use the values that correspond to backup-related configuration settings, such as mysql_data_dir,
innodb_data_home_dir, and backup_destination, to confirm that the backups are using the
right source and destination directories.

Use the values exit_state, last_error, and last_error_code to evaluate the success or
failure of each backup.

If last_error is 'NO_ERROR', the backup operation was successful. In case of any errors, you can
retrieve the full list of errors for that backup operation from the backup_progress table.

52

53

Appendix A Known Bugs and Limitations

Table of Contents
A.1 Limitations of mysqlbackup and ibbackup Commands ... 53
A.2 Linux-2.4.18 kernel/driver Bugs ... 53
A.3 Known ibbackup and mysqlbackup Bugs .. 53
A.4 MySQL Bugs Affecting mysqlbackup ... 54
A.5 Compatibility with Older MySQL/InnoDB Versions .. 54

Please refer to the MySQL Enterprise Backup version history in Appendix B, MySQL Enterprise
Backup Change History for a list of fixed ibbackup and mysqlbackup bugs.

A.1 Limitations of mysqlbackup and ibbackup Commands
• In some cases, backups of non-transactional tables such as MyISAM tables could contain additional

uncommitted data. If autocommit is turned off, and both InnoDB tables and non-transactional tables
are modified within the same transaction, data can be written to the non-transactional table before
the binlog position is updated. The binlog position is updated when the transaction is committed, but
the non-transactional data is written immediately. If the backup occurs while such a transaction is
open, the backup data contains the updates made to the non-transactional table.

• If the mysqlbackup process is interrupted, such as by a Unix kill -9 command, a FLUSH
TABLES WITH READ LOCK operation might remain running. In this case, use the KILL QUERY
command from the mysql command line to kill the FLUSH TABLES WITH READ LOCK statement.
This issue is more likely to occur if the FLUSH TABLES operation is stalled by a long-running query
or transaction. Refer to Chapter 7, mysqlbackup Command Reference for guidelines about backup
timing and performance.

• Do not run the DDL operations ALTER TABLE, TRUNCATE TABLE, OPTIMIZE TABLE, REPAIR
TABLE, or RESTORE TABLE while a backup operation is going on. The resulting backup might be
corrupted.

The only ALTER TABLE operations that can be safely run in parallel with a backup are those that
do not influence the physical representation of records on disk, such as changing column names or
default column values.

A.2 Linux-2.4.18 kernel/driver Bugs
A MySQL Enterprise Backup user reported that in a 2-way Dell computer with a Red Hat kernel 2.4.18,
concurrent running of mysqld and ibbackup could cause mysqld to crash. Crashes did not happen
in a non-Dell computer. An upgrade to a Linux stock kernel 2.4.20 fixed the problem.

A.3 Known ibbackup and mysqlbackup Bugs
If you take a backup when there are TEMPORARY tables in the database, and you use those temporary
tables to update or insert into normal tables, then applying the MySQL binlog to a backup can fail.
That is, you may not be able to roll forward the backup using the MySQL binlog. The reason is that
TEMPORARY tables are not copied to the backup. And, actually we cannot copy them to the backup,
because the names of temporary table files #sql*.frm do not correspond to the logical table names
that MySQL writes to the binlog. This problem might be removed in the future, if MySQL implements
“row-level binlogging”.

mysqlbackup cannot back up HEAP, or BDB type tables.

Currently, mysqlbackup requires that innodb_data_file_path contains only plain files, not
paths. That is, specifications like innodb_data_file_path=/dir1/ibdata1:100M will not work.

http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_autocommit
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html

MySQL Bugs Affecting mysqlbackup

54

Currently, if the regular expression for the --include option does not match any table names, all file-
per-table tables are included in the backup.

A.4 MySQL Bugs Affecting mysqlbackup

A.5 Compatibility with Older MySQL/InnoDB Versions

From time to time changes are made to the format of data and log files of MySQL/InnoDB. These
changes may make older MySQL Enterprise Backup versions incompatible with the new MySQL/
InnoDB version.

Currently, these are the major MySQL/InnoDB versions: 3.23 (first released in May 12, 2001), 4.0
(December 23, 2001), 4.1 (April 3, 2003), 5.0 (December 24, 2003), 5.1 (November 29, 2005), and 5.5
(December 15, 2010).

MySQL Enterprise Backup 3.5 is compatible with MySQL/InnoDB version 5.0 and up.

IMPORTANT: Backing up tables using the Barracuda file format, which is available with the
combination of MySQL and the InnoDB Plugin, requires MySQL Enterprise Backup 3.5 or newer.

For MySQL versions prior to 5.0, the corresponding backup product is the InnoDB Hot Backup product,
which is the ancestor of MySQL Enterprise Backup. InnoDB Hot Backup continues to be compatible
with MySQL 5.0, 5.1, and 5.5, with the exception of InnoDB tables in the Barracuda format. For
compatibility information, see the InnoDB Hot Backup documentation.

http://www.innodb.com/doc/hot_backup/manual.html#bugs.compatibility

55

Appendix B MySQL Enterprise Backup Change History

Table of Contents
B.1 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21) .. 55
B.2 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16) .. 55
B.3 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01) .. 55

This appendix lists the changes to the MySQL Enterprise Backup, beginning with the most recent
release. Each release section covers added or changed functionality, bug fixes, and known issues, if
applicable. All bug fixes are referenced by bug number and include a link to the bug database. Bugs
are listed in order of resolution. To find a bug quickly, search by bug number.

B.1 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup,
version 3.5.4.

Bugs Fixed

• Minor fixes for copyright notices.

B.2 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup,
version 3.5.2.

Functionality Added or Changed

• A call to posix_fadvise() can be used to reduce the flush cycle of the operating system cache
and improve backup performance. This option is set on by default.

• The combined InnoDB and MyISAM backup functionality of the innobackup command is now
available on Windows systems. The former Perl script is rewritten in C/C++ as the mysqlbackup
command. This release continues to include the innobackup command, which may be deprecated
by the next release. There are also some changes to the syntax as specified in the manual.

• Backup history and progress information is logged to the mysql.backup_history and
mysql.backup_progress tables, so that it can be used by the MySQL Enterprise Monitor product
and other tools to easily monitor backup operations. For the details of the backup history table, see
Chapter 9, Troubleshooting for MySQL Enterprise Backup.

B.3 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup,
version 3.5.1.

Functionality Added or Changed

• Incremental backup.

• Support for the Barracuda file format of InnoDB. MySQL Enterprise Backup can now backup tables
that use recent InnoDB features such as table compression and the dynamic row format.

56

57

Appendix C Licenses for Third-Party Components

Table of Contents
C.1 RegEX-Spencer Library License .. 57
C.2 zlib License .. 57
C.3 Percona Multiple I/O Threads Patch License .. 58
C.4 Google SMP Patch License .. 58
C.5 Google Controlling Master Thread I/O Rate Patch License .. 59
C.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License .. 59

Oracle acknowledges that certain Third Party and Open Source software has been used to develop or
is incorporated in the MySQL Enterprise Backup product. This appendix includes required third-party
license information.

C.1 RegEX-Spencer Library License

The following software may be included in this product:

Henry Spencer's Regular-Expression Library (RegEX-Spencer)

Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of
California.

Permission is granted to anyone to use this software for any purpose
on any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users ever
read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

C.2 zlib License

The following software may be included in this product:

zlib

Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib
general purpose compression library which is used in this product.

zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.5, April 19th, 2010

Percona Multiple I/O Threads Patch License

58

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software. Permission is granted to anyone to use this software
for any purpose,including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would
 be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
 be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

C.3 Percona Multiple I/O Threads Patch License

The following software may be included in this product:

Percona Multiple I/O threads patch

Copyright (c) 2008, 2009 Percona Inc
All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of Percona Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission of Percona Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

C.4 Google SMP Patch License

The following software may be included in this product:

Google SMP Patch

Google SMP patch

Copyright (c) 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

Google Controlling Master Thread I/O Rate Patch License

59

are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

C.5 Google Controlling Master Thread I/O Rate Patch License

The following software may be included in this product:

Google Controlling master thread I/O rate patch

Copyright (c) 2009, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

C.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

The following software may be included in this product:

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

60

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.

61

MySQL Enterprise Backup Glossary

These terms are commonly used in information about the MySQL Enterprise Backup product.

A

.ARM file
 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup.

Antelope
 The code name for the original InnoDB file format. It supports the redundant and compact row formats, but
not the newer dynamic and compressed row formats available in the Barracuda file format.

If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that
could benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the
file format to use by setting the innodb_file_format option before creating the table.
See Also Barracuda, compression, file format.

apply
 The operation that transforms a raw backup into a prepared backup by incorporating changes that occurred
while the backup was running, using data from the log.
See Also log, prepared backup, raw backup.

B

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

backup repository
 Contrast with server repository.
See Also repository, server repository.

backup-my.cnf
 A small configuration file generated by MySQL Enterprise Backup, containing a minimal set of
configuration parameters. This file records the settings that apply to this backup data. Subsequent operations,
such as the apply process, read options from this file to determine how the backup data is structured. This file
always has the extension .cnf, rather than .cnf on Unix-like systems and .ini on Windows systems.
See Also apply, configuration file.

62

Barracuda
 The code name for an InnoDB file format that supports compression for table data. This file format was
first introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table
compression, and the dynamic row format that improves the storage layout for BLOB and large text columns.
You can select it through the innodb_file_format option.

Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda
file format you must also enable the file-per-table setting, which puts newly created tables in their own
tablespaces separate from the system tablespace.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, file format, MySQL Enterprise Backup, row format, system tablespace.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be
replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after
restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysqlbinlog command. For full information about the binary log, see The Binary Log. For MySQL
configuration options related to the binary log, see Binary Log Options and Variables.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the master server when taking a backup in a replication
context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

C
cold backup

 A backup taken while the database is shut down. For busy applications and web sites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, connection, hot backup, warm backup.

compression
 A technique that produces smaller backup files, with size reduction influenced by the compression level
setting. Suitable for keeping multiple sets of non-critical backup files. (For recent backups of critical data, you
might leave the data uncompressed, to allow fast restore speed in case of emergency.)

MySQL Enterprise Backup can apply compression to the contents of InnoDB tables during the backup
process, turning the .ibd files into .ibz files.

Compression adds CPU overhead to the backup process, and requires additional time and disk space during
the restore process.
See Also backup, compression level, .ibd file, .ibz file, InnoDB, MySQL Enterprise Backup, restore.

compression level
 A setting that determines how much compression to apply to a compressed backup. This setting ranges
from 0 (none), 1 (default level when compression is enabled) to 9 (maximum). The amount of compression for

http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html

63

a given compression level depends on the nature of your data values. Higher compression levels do impose
additional CPU overhead, so ideally you use the lowest value that produces a good balance of compression
with low CPU overhead.
See Also compression.

configuration file
 The file that holds the startup options of the MySQL server and related products and components. Often
referred to by its default file name, my.cnf on Linux, Unix, and OS X systems, and my.ini on Windows
systems. The MySQL Enterprise Backup stores its default configuration settings in this file, under a
[mysqlbackup] section. For convenience, MySQL Enterprise Backup can also read settings from the
[client] section, for configuration options that are common between MySQL Enterprise Backup and other
programs that connect to the MySQL server.
See Also my.cnf, my.ini, MySQL Enterprise Backup.

connection
 The mechanism used by certain backup operations to communicate with a running MySQL server. For
example, the mysqlbackup command can log into the server being backed up to insert and update data
in the progress table and the history table. A hot backup typically uses a database connection for
convenience, but can proceed anyway if the connection is not available. A warm backup always uses a
database connection, because it must put the server into a read-only state. A cold backup is taken while the
MySQL server is shut down, and so cannot use any features that require a connection.
See Also cold backup, history table, hot backup, progress table, server, warm backup.

crash recovery
 The cleanup activities for InnoDB tables that occur when MySQL is started again after a crash. Changes
that were committed before the crash, but not yet written to the tablespace files, are reconstructed from
the doublewrite buffer. When the database is shut down normally, this type of activity is performed during
shutdown by the purge operation.

D
data dictionary

 A set of tables, controlled by the InnoDB storage engine, that keeps track of InnoDB-related objects such as
tables, indexes, and table columns. These tables are part of the InnoDB system tablespace.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups
include the contents of the data dictionary.
See Also hot backup, MySQL Enterprise Backup, system tablespace.

database
 A set of tables and related objects owned by a MySQL user. Equivalent to “schema” in Oracle Database
terminology. MySQL Enterprise Backup can perform a partial backup that includes some databases and
not others. The full set of databases controlled by a MySQL server is known as an instance.
See Also instance, MySQL Enterprise Backup, partial backup.

downtime
 A period when the database is unresponsive. The database might be entirely shut down, or in a read-only
state when applications are attempting to insert, update, or delete data. The goal for your backup strategy is
to minimize downtime, using techniques such as hot backup for InnoDB tables, cold backup using slave
servers in a replication configuration, and minimizing the duration of the suspend stage where you run
customized backup logic while the MySQL server is locked.
See Also cold backup, hot backup, InnoDB, locking, replication, slave, suspend.

E
exclude

 In a partial backup, to select a set of tables, databases, or a combination of both to be omitted from the
backup. Contrast with include.

64

See Also partial backup.

extract
 The operation that retrieves some content from an image file produced by a single-file backup. It can apply
to a single file (unpacked to an arbitrary location) or to the entire backup (reproducing the original directory
structure of the backup data). These two kinds of extraction are performed by the mysqlbackup options
extract and image-to-backup-dir, respectively.
See Also image, single-file backup.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by
an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the
.frm files. Restoring a backup can result in .frm files being created, changed, or removed to match the state
of the database at the time of the backup.
See Also MySQL Enterprise Backup.

file format
 The format used by InnoDB for its data files named ibdata1, ibdata2, and so on. Each file format supports
one or more row formats.
See Also Antelope, Barracuda, ibdata file, row format.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup and incremental backup. Full backups take the longest, but also require the
least amount of followup work and administration complexity. Thus, even when you primarily do partial or
incremental backups, you might periodically do a full backup.
See Also backup, incremental backup, partial backup, table.

H
history table

 The table mysql.backup_history that holds details of completed backup operations. While a backup job
is running, the details (especially the changing status value) are recorded in the progress table.
See Also backup, progress table.

hot backup
 A backup taken while the MySQL instance and is running and applications are reading and writing to it.
Contrast with warm backup and cold backup.

A hot backup involves more than simply copying data files: it must include any data that was inserted or
updated while the backup was in process; it must exclude any data that was deleted while the backup was in
process; and it must ignore any changes started by transactions but not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the InnoDB data files produces a raw
backup. The apply step incorporates any changes to the database that happened while the backup was

65

running. Applying the changes produces a prepared backup; these files are ready to be restored whenever
necessary.

A full backup consists of a hot backup phase that copies the InnoDB data, followed by a warm backup
phase that copies any non-InnoDB data such as MyISAM tables and .frm files.
See Also apply, cold backup, .frm file, full backup, InnoDB, instance, MySQL Enterprise Backup, prepared
backup, raw backup, warm backup.

I
.ibd file

 Each InnoDB tablespace created using the file-per-table setting has a filename with a .ibd extension. This
extension does not apply to the system tablespace, which is made up of files named ibdata1, ibdata2,
and so on.
See Also .ibz file, system tablespace, tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. An InnoDB tablespace that is already in compressed row format is not
compressed a second time, because that would save little or no space.
See Also .ibd file, .ibz file, MySQL Enterprise Backup, tablespace.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. These files contain metadata about InnoDB tables, and can contain some or all of the table and
index data also (depending on whether the file-per-table option is in effect when each table is created). For
backward compatibility these files always use the Antelope file format.
See Also Antelope, system tablespace.

image
 The file produced as part of a single-file backup operation. It can be a real file that you store locally, or
standard output (specified as -) when the backup data is streamed directly to another command or remote
server. This term is referenced in several mysqlbackup options such as backup-dir-to-image and
image-to-backup-dir.
See Also single-file backup, streaming.

include
 In a partial backup, to select a set of tables, databases, or a combination of both to be backed up. Contrast
with exclude.
See Also partial backup.

incremental backup
 A backup that captures only data changed since the previous backup. It has the potential to be smaller and
faster than a full backup. The incremental backup data must be merged with the contents of the previous
backup before it can be restored. See Section 7.7, “Example: Making an Incremental Backup of InnoDB and
MyISAM tables” for usage details. Related mysqlbackup options are --incremental, --incremental-
with-redo-log-only, --incremental-backup-dir, --incremental-base, and --start-lsn.
See Also full backup.

InnoDB
 The type of MySQL table that works best with MySQL Enterprise Backup. These tables can be backed
up using the hot backup technique that avoids interruptions in database processing. For this reason, and
because of the higher reliability and concurrency possible with InnoDB tables, most deployments should use
InnoDB for the bulk of their data and their most important data. In MySQL 5.5 and higher, the CREATE TABLE
statement creates InnoDB tables by default.

http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-subcommands-single-file.html#option_meb_backup-dir-to-image
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-subcommands-single-file.html#option_meb_image-to-backup-dir
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_incremental
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_incremental-with-redo-log-only
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_incremental-with-redo-log-only
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_incremental-backup-dir
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_incremental-base
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-incremental-options.html#option_meb_start-lsn
http://dev.mysql.com/doc/refman/5.5/en/create-table.html

66

See Also hot backup, MySQL Enterprise Backup, table.

instance
 The full contents of a MySQL server, possibly including multiple databases. A backup operation can back up
an entire instance, or a partial backup can include selected databases and tables.
See Also database, partial backup.

L
locking

See Also suspend, warm backup.

log
 Several types of log files are used within the MySQL Enterprise Backup product. The most common is the
InnoDB redo log that is consulted during incremental backups.
See Also incremental backup, redo log.

log sequence number
See LSN.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup.
See Also backup, physical backup.

LSN
 Acronym for log sequence number. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command.
Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, hot backup, incremental backup, redo log.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup.

manifest
 The record of the environment (for example, command-line arguments) and data files involved in a backup,
stored in the files meta/backup_create.xml and meta/backup_content.xml, respectively. This data
can be used by management tools during diagnosis and troubleshooting procedures.

67

master
 In a replication configuration, a database server that sends updates to a set of slave servers. It typically
dedicates most of its resources to write operations, leaving user queries to the slaves. With MySQL
Enterprise Backup, typically you perform backups on the slave servers rather than the master, to minimize
any slowdown of the overall system.
See Also MySQL Enterprise Backup, replication, slave.

media management software
 A class of software programs for managing backup media, such as libraries of tape backups. One example is
Oracle Secure Backup. Abbreviated MMS.
See Also Oracle Secure Backup.

my.cnf
 The typical name for the MySQL configuration file on Linux, Unix, and OS X systems.
See Also configuration file, my.ini.

my.ini
 The typical name for the MySQL configuration file on Windows systems.
See Also configuration file, my.cnf.

MyISAM
 A MySQL storage engine, formerly the default for new tables. In MySQL 5.5 and higher, InnoDB becomes
the default storage engine. MySQL Enterprise Backup can back up both types of tables, and tables from other
storage engines also. The backup process for InnoDB tables (hot backup) is less disruptive to database
operations than for MyISAM tables (warm backup).
See Also hot backup, InnoDB, MySQL Enterprise Backup, warm backup.

MySQL Enterprise Backup
 A licensed products that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables; it can also back up MyISAM and other kinds of tables. It is included
as part of the MySQL Enterprise Edition subscription.
See Also Barracuda, hot backup, InnoDB.

mysqlbackup
 The primary command of the MySQL Enterprise Backup product. Different options perform backup and
restore operations.
See Also backup, MySQL Enterprise Backup, restore.

mysqldump
 A MySQL command that performs logical backups, producing a set of SQL commands to recreate tables
and data. Suitable for smaller backups or less critical data, because the restore operation takes longer than
with a physical backup produced by MySQL Enterprise Backup.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

O
.opt file

 A file containing database configuration information. Files with this extension are always included in backups
produced by the backup operations of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup.

offline
 A type of operation performed while the database server is stopped. With the MySQL Enterprise Backup
product, the main offline operation is the restore step. You can optionally perform a cold backup, which is
another offline operation. Contrast with online.
See Also cold backup, MySQL Enterprise Backup, online, restore.

online
 A type of operation performed while the database server is running. A hot backup is the ideal example,
because the database continues to run and no read or write operations are blocked. For that reason,

68

sometimes “hot backup” and “online backup” are used as synonyms. A cold backup is the opposite of
an online operation; by definition, the database server is shut down while the backup happens. A warm
backup is also a kind of online operation, because the database server continues to run, although some write
operations could be blocked while a warm backup is in progress. Contrast with offline.
See Also cold backup, hot backup, offline, warm backup.

Oracle Secure Backup
 An Oracle product for managing backup media, and so classified as media management software (MMS).
Abbreviated OSB. For MySQL Enterprise Backup, OSB is typically used to manage tape backups.
See Also backup, media management software, MySQL Enterprise Backup, OSB.

OSB
 Abbreviation for Oracle Secure Backup, a media management software product (MMS).
See Also Oracle Secure Backup.

P

.par file
 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup.

parallel backup
 The default processing mode in MySQL Enterprise Backup 3.8 and higher, employing multiple threads for
different classes of internal operations (read, process, and write). See Section 1.3, “Performance and Space
Considerations” for an overview, Performance / Scalability / Capacity Options for the relevant mysqlbackup
options, and Performance Considerations for MySQL Enterprise Backup for performance guidelines and tips.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, partial restore, table.

partial restore
 A restore operation that applies to one or more tables or databases, but not the entire contents of a MySQL
server. The data being restored could come from either a partial backup or a full backup.
See Also database, full backup, partial backup, restore, table.

physical backup
 A backup that copies the actual data files. For example, the MySQL Enterprise Backup command produces
a physical backup, because its output contains data files that can be used directly by the mysqld server.
Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup.

point in time
 The time corresponding to the end of a backup operation. A prepared backup includes all the changes that
occurred while the backup operation was running. Restoring the backup brings the data back to the state at
the moment when the backup operation completed.
See Also backup, prepared backup, restore.

prepared backup
 The set of backup data that is entirely consistent and ready to be restored. It is produced by performing the
apply operation on the raw backup.
See Also apply, raw backup.

progress table
 The table mysql.backup_progress that holds details of running backup operations. When a backup job
finishes, the details are recorded in the history table.

http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/backup-capacity-options.html
http://dev.mysql.com/doc/mysql-enterprise-backup/3.8/en/performance.html

69

See Also backup, history table.

R
raw backup

 The initial set of backup data, not yet ready to be restored because it does not incorporate changes that
occurred while the backup was running. The apply operation transforms the backup files into a prepared
backup that is ready to be restored.
See Also apply, prepared backup.

redo log
 A set of files, typically named ib_logfile0 and ib_logfile1, that record statements that attempt
to change data in InnoDB tables. These statements are replayed automatically to correct data written
by incomplete transactions, on startup following a crash. The passage of data through the redo logs is
represented by the ever-increasing LSN value. The 4GB limit on maximum size for the redo log is raised in
MySQL 5.6.
See Also LSN.

regular expression
 Some MySQL Enterprise Backup features use POSIX-style regular expressions, for example to specify
tables, databases, or both to include or exclude from a partial backup. Regular expressions require
escaping for dots in filenames, because the dot is the single-character wildcard; no escaping is needed for
forward slashes in path names. When specifying regular expressions on the command line, surround them
with quotation marks as appropriate for the shell environment, to prevent expansion of characters such as
asterisks by the shell wildcard mechanism.
See Also exclude, include, partial backup.

replication
 A common configuration for MySQL deployments, with data and DML operations from a master server
synchronized with a set of slave servers. With MySQL Enterprise Backup, you might take a backup on one
server, and restore on a different system to create a new slave server with the data already in place. You
might also back up data from a slave server rather than the master, to minimize any slowdown of the overall
system.
See Also master, MySQL Enterprise Backup, slave.

repository
 We distinguish between the server repository and the backup repository.
See Also backup repository, server repository.

restore
 The converse of the backup operation. The data files from a prepared backup are put back into place to
repair a data issue or bring the system back to an earlier state.
See Also backup, prepared backup.

row format
 The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency and
performance.

Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for
each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system
tablespace share the same row format, to take advantage of other row formats typically requires setting the
innodb_file_per_table option, so that each table is stored in a separate tablespace.

S
SBT

 Acronym for system backup to tape.

70

See Also system backup to tape.

server
 A MySQL instance controlled by a mysqld daemon. A physical machine can host multiple MySQL servers,
each requiring its own backup operations and schedule. Some backup operations communicate with the
server through a connection.
See Also connection, instance.

server repository
 Contrast with backup repository.
See Also backup repository, repository.

single-file backup
 A backup technique that packs all the backup data into one file (the backup image), for ease of storage and
transfer. The streaming backup technique requires using a single-file backup.
See Also image, streaming.

slave
 In a replication configuration, a database server that receives updates from a master server. Typically used
to service user queries, to minimize the query load on the master. With MySQL Enterprise Backup, you
might take a backup on one server, and restore on a different system to create a new slave server with the
data already in place. You might also back up data from a slave server rather than the master, to minimize
any slowdown of the overall system.
See Also master, replication.

streaming
 A backup technique that transfers the data immediately to another server, rather than saving a local copy.
Uses mechanisms such as Unix pipes. Requires a single-file backup, with the destination file specified as -
(standard output).
See Also single-file backup.

suspend
 An optional stage within the backup where the MySQL Enterprise Backup processing stops, to allow for user-
specific operations to be run. The mysqlbackup command has options that let you specify commands to
be run while the backup is suspended. Most often used in conjunction with backups of InnoDB tables only,
where you might do your own scripting for handling .frm files.
See Also .frm file, InnoDB.

system backup to tape
 An API for media management software. Abbreviated SBT. Several mysqlbackup options (with sbt in
their names) pass information to media management software products such as Oracle Secure Backup.
See Also Oracle Secure Backup, SBT.

system tablespace
 By default, this single data file stores all the table data for a database, as well as all the metadata for InnoDB-
related objects (the data dictionary).

Turning on the innodb_file_per_table option causes each newly created table to be stored in its own
tablespace, reducing the size of, and dependencies on, the system tablespace.

Keeping all table data in the system tablespace has implications for the MySQL Enterprise Backup product
(backing up one large file rather than several smaller files), and prevents you from using certain InnoDB
features that require the newer Barracuda file format. on the
See Also Barracuda, data dictionary, file format, ibdata file, tablespace.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by
the mysqlbackup command of the MySQL Enterprise Backup product.

71

See Also MySQL Enterprise Backup.

table
 Although a table is a distinct, addressable object in the context of SQL, for backup purposes we are often
concerned with whether the table is part of the system tablespace, or was created under the file-per-table
setting and so resides in its own tablespace.
See Also backup, system tablespace, tablespace.

tablespace
 For InnoDB tables, the file that holds the data and indexes for a table. Can be either the system tablespace
containing multiple tables, or a table created with the file-per-table setting that resides in its own tablespace
file.
See Also InnoDB, system tablespace.

W
warm backup

 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and web sites, you might prefer
a hot backup.
See Also backup, cold backup, hot backup.

72

73

Index

Symbols
.ARM file, 61
.ARZ file, 61
.frm file, 64
.FRM files, 2
.ibd file, 65
.ibd files, 2, 43
.ibz file, 65
.ibz files, 2
.MRG file, 66
.MYD file, 66
.MYD files, 2
.MYI file, 66
.MYI files, 2
.opt file, 67
.par file, 68
.TRG file, 70

A
Antelope, 61
apply, 61

B
backup, 61
backup repository, 61
backup-my.cnf, 61
backups

compressed, 1, 12, 18, 42
hot, 1
incremental, 1, 13, 35
InnoDB tables only, 7
logical, 1
physical, 1
prepared, 2, 17
preparing to restore, 17
raw, 2, 17
uncompressed, 1, 11, 41
warm, 1

BACKUP_HISTORY table, 49
BACKUP_PROGRESS table, 49
Barracuda, 62
binary log, 23, 62
binlog, 62

C
change history, 55
cold backup, 62
compressed backups, 1, 12, 18, 42
compression, 62
compression level, 62
configuration file, 63
connection, 63
corruption problems, 49
crash recovery, 63

D
data dictionary, 63
database, 63
disk storage for backup data, 1
downtime, 63

E
exclude, 63
extract, 64

F
file format, 64
files backed up, 2
full backup, 64

H
history table, 64
hot backup, 1, 64

I
ibbackup command, 7
ibbackup_logfile file, 2
ibdata file, 65
ibdata files, 2
ibreset command, 49
ib_logfile files, 2
image, 65
include, 65
incremental backup, 1, 65
innobackup command, 2
InnoDB, 65
InnoDB Hot Backup product, 2
InnoDB tables, 7, 25
installing MySQL Enterprise Backup, 5
instance, 66

L
locking, 66
log, 66
logical backup, 1, 66
LSN, 66

M
manifest, 66
master, 67
media management software, 67
my.cnf, 67
my.ini, 67
MyISAM, 67
MyISAM tables, 25
MySQL Enterprise Backup, 67
mysqlbackup, 67
mysqlbackup command, 25
mysqlbinlog command, 23
mysqldump, 67

74

O
offline, 67
online, 67
Oracle Secure Backup, 68
OSB, 68

P
parallel backup, 68
partial backup, 68
partial restore, 68
performance of backup operations, 1
physical backup, 1, 68
point in time, 68
point-in-time recovery, 23
posix_fadvise() system call, 1
prepared backup, 2, 17, 68
progress table, 68

R
raw backup, 2, 17, 69
redo log, 69
regular expression, 69
replication, 69
repository, 69
restore, 69
restoring a backup

instructions, 23
point-in-time recovery, 23
preparation, 17
single .ibd file, 43
using as a new database, 20

row format, 69

S
SBT, 69
server, 70
server repository, 70
single-file backup, 70
slave, 70
space for backup data, 1
streaming, 70
suspend, 70
system backup to tape, 70
system tablespace, 70

T
table, 71
tablespace, 71
troubleshooting for backups, 47

U
uncompressed backups, 1, 11, 41
upgrading from InnoDB Hot Backup to MySQL
Enterprise Backup, 2

W
warm backup, 1, 71

	MySQL Enterprise Backup User's Guide (Version 3.5.4)
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Enterprise Backup
	1.1 Hot Backups
	1.2 Backup Commands
	1.3 Performance and Space Considerations
	1.4 Files that Are Backed Up
	1.5 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup

	Chapter 2 Installing MySQL Enterprise Backup
	Chapter 3 ibbackup Command Reference
	3.1 Options Files
	3.2 ibbackup Command-Line Options

	Chapter 4 Making a Backup
	4.1 Example: Making an Uncompressed Backup of InnoDB Tables
	4.2 Example: Making a Compressed Backup of InnoDB Tables
	4.3 Example: Making an Incremental Backup of InnoDB Tables
	4.4 Making a Point-in-Time Backup of InnoDB, MyISAM, and Other Tables

	Chapter 5 Preparing the Backup to be Restored
	5.1 Example: Applying the Log to a Backup
	5.2 Example: Applying the Log to a Compressed Backup
	5.3 Example: Applying an Incremental Backup to a Full Backup
	5.4 Starting mysqld on a Restored Backup

	Chapter 6 Recovering or Restoring a Database
	6.1 Point-in-Time Recovery from a Hot Backup
	6.2 Setting Up a New Slave from a Hot Backup in Replication
	6.3 Restoring a Master Database in Replication

	Chapter 7 mysqlbackup Command Reference
	7.1 mysqlbackup Command-Line Options
	7.2 Example: Backing Up InnoDB and MyISAM Tables
	7.3 Example: Verifying a Backup
	7.4 Example: Restoring a Database at its Original Location
	7.5 Specifying MySQL Connection Settings for mysqlbackup
	7.6 Example: Setting MySQL Privileges for mysqlbackup
	7.7 Example: Making an Incremental Backup of InnoDB and MyISAM tables

	Chapter 8 Making a Partial Backup
	8.1 Example: Making an Uncompressed Partial Backup
	8.2 Example: Making a Compressed Partial Backup
	8.3 Restoring a Single .ibd File
	8.4 Backing Up Selected Databases
	8.5 Backing Up Files from Different Storage Engines
	8.6 Backing Up In-Memory Database Data

	Chapter 9 Troubleshooting for MySQL Enterprise Backup
	9.1 Error codes of MySQL Enterprise Backup
	9.2 Working Around Corruption Problems
	9.3 Using the MySQL Enterprise Backup Backup Logs

	Appendix A Known Bugs and Limitations
	A.1 Limitations of mysqlbackup and ibbackup Commands
	A.2 Linux-2.4.18 kernel/driver Bugs
	A.3 Known ibbackup and mysqlbackup Bugs
	A.4 MySQL Bugs Affecting mysqlbackup
	A.5 Compatibility with Older MySQL/InnoDB Versions

	Appendix B MySQL Enterprise Backup Change History
	B.1 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21)
	B.2 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16)
	B.3 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01)

	Appendix C Licenses for Third-Party Components
	C.1 RegEX-Spencer Library License
	C.2 zlib License
	C.3 Percona Multiple I/O Threads Patch License
	C.4 Google SMP Patch License
	C.5 Google Controlling Master Thread I/O Rate Patch License
	C.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

	MySQL Enterprise Backup Glossary
	Index

