
InnoDB Plugin 1.0 for MySQL 5.1 User's Guide

InnoDB Plugin 1.0 for MySQL 5.1 User's Guide

Abstract

This is the User's Guide for InnoDB Plugin 1.0.8 for MySQL 5.1.

Starting with version 5.1, MySQL AB has promoted the idea of a “pluggable” storage engine architecture , which
permits multiple storage engines to be added to MySQL. Beginning with MySQL version 5.1, it is possible for users to
swap out one version of InnoDB and use another. The pluggable storage engine architecture also permits Innobase
Oy to release new versions of InnoDB containing bug fixes and new features independently of the release cycle for
MySQL.

This User's Guide documents the installation and removal procedures and the additional features of the InnoDB
Plugin 1.0.8 for MySQL 5.1.

WARNING: Because the InnoDB Plugin introduces a new file format, restrictions apply to the use of a
database created with the InnoDB Plugin with earlier versions of InnoDB, when using mysqldump or MySQL
replication and if you use the InnoDB Hot Backup utility. See Section 1.5, “Operational Restrictions”.

For legal information, see the Legal Notices.

Document generated on: 2014-01-30 (revision: 37573)

http://solutions.mysql.com/engines.html

iii

Table of Contents
Preface and Legal Notices .. vii
1 Introduction to the InnoDB Plugin ... 1

1.1 Overview .. 1
1.2 Features of the InnoDB Plugin .. 1
1.3 Obtaining and Installing the InnoDB Plugin .. 3
1.4 Viewing the InnoDB Plugin Version Number .. 3
1.5 Operational Restrictions .. 4

2 Fast Index Creation in the InnoDB Storage Engine ... 5
2.1 Overview of Fast Index Creation ... 5
2.2 Examples ... 5
2.3 Implementation ... 6
2.4 Concurrency Considerations .. 7
2.5 Crash Recovery .. 7
2.6 Limitations .. 8

3 InnoDB Data Compression .. 9
3.1 Overview of Table Compression .. 9
3.2 Enabling Compression for a Table .. 9

3.2.1 Configuration Parameters for Compression ... 10
3.2.2 SQL Compression Syntax Warnings and Errors ... 11

3.3 Tuning InnoDB Compression ... 12
3.3.1 When to Use Compression ... 13
3.3.2 Monitoring Compression at Runtime ... 15

3.4 How Compression Works in InnoDB .. 16
3.4.1 Compression Algorithms ... 16
3.4.2 InnoDB Data Storage and Compression .. 16
3.4.3 Compression and the InnoDB Buffer Pool ... 18
3.4.4 Compression and the InnoDB Log Files .. 18

4 InnoDB File-Format Management ... 19
4.1 Overview of InnoDB File Formats .. 19
4.2 Named File Formats ... 19
4.3 Enabling File Formats ... 20
4.4 File Format Compatibility ... 20

4.4.1 Startup File Format Compatibility Checking ... 21
4.4.2 Table-Access File Format Compatibility Checking .. 22

4.5 Identifying the File Format in Use .. 23
4.6 Downgrading the File Format .. 24
4.7 Future InnoDB File Formats .. 24

5 InnoDB Row Storage and Row Formats .. 25
5.1 Storage of Variable-Length Columns ... 25
5.2 COMPACT and REDUNDANT Row Formats ... 25
5.3 DYNAMIC Row Format .. 25
5.4 Specifying a Table's Row Format .. 26

6 InnoDB INFORMATION_SCHEMA Tables ... 27
6.1 Overview of InnoDB Support in INFORMATION_SCHEMA ... 27
6.2 Information Schema Tables about Compression ... 27

6.2.1 INNODB_CMP and INNODB_CMP_RESET .. 27
6.2.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET .. 28
6.2.3 Using the Compression Information Schema Tables .. 29

6.3 Information Schema Tables about Transactions ... 29
6.3.1 INNODB_TRX ... 29
6.3.2 INNODB_LOCKS ... 30

InnoDB Plugin 1.0 for MySQL 5.1 User's Guide

iv

6.3.3 INNODB_LOCK_WAITS ... 31
6.3.4 Using the Transaction Information Schema Tables .. 31

6.4 Notes on Locking in InnoDB .. 36
6.4.1 Understanding InnoDB Locking ... 36
6.4.2 Rapidly Changing Internal Data .. 36
6.4.3 Possible Inconsistency with PROCESSLIST ... 37

7 Performance and Scalability Enhancements ... 39
7.1 Overview .. 39
7.2 Faster Locking for Improved Scalability .. 40
7.3 Using Operating System Memory Allocators ... 40
7.4 Controlling InnoDB Insert Buffering .. 41
7.5 Controlling Adaptive Hash Indexing ... 42
7.6 Changes Regarding Thread Concurrency .. 42
7.7 Changes in the Read Ahead Algorithm .. 43
7.8 Multiple Background I/O Threads ... 44
7.9 Group Commit .. 44
7.10 Controlling the Master Thread I/O Rate .. 45
7.11 Controlling the Flushing Rate of Dirty Pages .. 45
7.12 Using the PAUSE instruction in InnoDB spin loops ... 46
7.13 Control of Spin Lock Polling .. 46
7.14 Making Buffer Cache Scan Resistant ... 46

7.14.1 Guidelines for innodb_old_blocks_pct and innodb_old_blocks_time 48
7.15 Improvements to Crash Recovery Performance .. 48

8 Changes for Flexibility, Ease of Use and Reliability ... 49
8.1 Overview .. 49
8.2 Enabling New File Formats ... 49
8.3 Dynamic Control of System Configuration Parameters .. 50

8.3.1 Dynamically Changing innodb_file_per_table ... 50
8.3.2 Dynamically Changing innodb_stats_on_metadata ... 50
8.3.3 Dynamically Changing innodb_lock_wait_timeout ... 51
8.3.4 Dynamically Changing innodb_adaptive_hash_index ... 51

8.4 TRUNCATE TABLE Reclaims Space .. 51
8.5 InnoDB Strict Mode .. 52
8.6 Controlling Optimizer Statistics Estimation .. 52
8.7 Better Error Handling when Dropping Indexes .. 53
8.8 More Compact Output of SHOW ENGINE INNODB MUTEX ... 54
8.9 More Read Ahead Statistics .. 54

9 Installing the InnoDB Plugin ... 57
9.1 Overview of Installing the InnoDB Plugin ... 57
9.2 Checking for Compatible Version Levels .. 58
9.3 Installing the Precompiled InnoDB Plugin as a Shared Library ... 58

9.3.1 Installing the InnoDB Plugin as a Shared Library on Unix or Linux 59
9.3.2 Installing the Binary InnoDB Plugin as a Shared Library on Microsoft Windows 62
9.3.3 Errors When Installing the InnoDB Plugin on Microsoft Windows 64

9.4 Building the InnoDB Plugin from Source Code ... 65
9.4.1 Building the InnoDB Plugin on Linux or Unix ... 66
9.4.2 Building the InnoDB Plugin on Microsoft Windows ... 67

9.5 Configuring the InnoDB Plugin .. 68
9.6 Frequently Asked Questions about Plugin Installation ... 69

9.6.1 Should I use the InnoDB-supplied plugin or the one that is included with MySQL
5.1.38 or higher? .. 69
9.6.2 Why doesn't the MySQL service on Windows start after the replacement? 69
9.6.3 The Plugin is installed... now what? .. 69
9.6.4 Once the Plugin is installed, is it permanent? .. 69

InnoDB Plugin 1.0 for MySQL 5.1 User's Guide

v

10 Upgrading the InnoDB Plugin ... 71
10.1 Upgrading the Dynamic InnoDB Plugin .. 71
10.2 Upgrading a Statically Built InnoDB Plugin ... 71
10.3 Converting Compressed Tables Created Before Version 1.0.2 ... 72

11 Downgrading from the InnoDB Plugin ... 73
11.1 Overview .. 73
11.2 The Built-in InnoDB, the Plugin and File Formats ... 73
11.3 How to Downgrade ... 74

11.3.1 Converting Tables .. 74
11.3.2 Adjusting the Configuration ... 74
11.3.3 Uninstalling a Dynamic Library .. 74
11.3.4 Uninstalling a Statically Built InnoDB Plugin ... 75

11.4 Possible Problems .. 75
11.4.1 Accessing COMPRESSED or DYNAMIC Tables ... 75
11.4.2 Issues with UNDO and REDO .. 76
11.4.3 Issues with the Doublewrite Buffer .. 76
11.4.4 Issues with the Insert Buffer ... 77

12 InnoDB Plugin Change History ... 79
12.1 Changes in InnoDB Plugin 1.0.9 and Higher .. 79
12.2 Changes in InnoDB Plugin 1.0.8 (May, 2010) ... 79
12.3 Changes in InnoDB Plugin 1.0.7 (April, 2010) .. 79
12.4 Changes in InnoDB Plugin 1.0.6 (November 27, 2009) ... 80
12.5 Changes in InnoDB Plugin 1.0.5 (November 18, 2009) ... 80
12.6 Changes in InnoDB Plugin 1.0.4 (August 11, 2009) .. 81
12.7 Changes in InnoDB Plugin 1.0.3 (March 11, 2009) ... 82
12.8 Changes in InnoDB Plugin 1.0.2 (December 1, 2008) ... 83
12.9 Changes in InnoDB Plugin 1.0.1 (May 8, 2008) .. 83
12.10 Changes in InnoDB Plugin 1.0.0 (April 15, 2008) .. 84

A Third-Party Software .. 85
A.1 Performance Patches from Google .. 85
A.2 Multiple Background I/O Threads Patch from Percona .. 86
A.3 Performance Patches from Sun Microsystems ... 86

B Using the InnoDB Plugin with MySQL 5.1.30 or Earlier ... 89
C List of Parameters Changed in the InnoDB Plugin 1.0 .. 91

C.1 New Parameters .. 91
C.2 Deprecated Parameters .. 93
C.3 Parameters with New Defaults .. 93

InnoDB Glossary .. 95
Index .. 151

vi

vii

Preface and Legal Notices
This is the User's Guide for the InnoDB Plugin 1.0.8 for MySQL 5.1.

Legal Notices

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced,
or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

Legal Notices

viii

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1 Introduction to the InnoDB Plugin

Table of Contents
1.1 Overview .. 1
1.2 Features of the InnoDB Plugin .. 1
1.3 Obtaining and Installing the InnoDB Plugin .. 3
1.4 Viewing the InnoDB Plugin Version Number .. 3
1.5 Operational Restrictions .. 4

1.1 Overview
The unique architecture of MySQL permits multiple storage engines with different capabilities to be
accessed through the same SQL language and APIs. Starting with version 5.1, MySQL AB has promoted
the idea of a “pluggable” storage engine architecture, which permits multiple storage engines to be added
to MySQL. Currently, however, most users have accessed only those storage engines that are distributed
by MySQL AB, and are linked into the binary (executable) releases.

Since 2001, MySQL AB has distributed the InnoDB transactional storage engine with its releases (both
source and binary). Beginning with MySQL version 5.1, it is possible for users to swap out one version of
InnoDB and use another. The pluggable storage engine architecture also permits Innobase Oy to release
new versions of InnoDB containing bug fixes and new features independently of the release cycle for
MySQL. Users can thus take advantage of these new versions of InnoDB in the context of their deployed
MySQL installations.

1.2 Features of the InnoDB Plugin
The InnoDB Plugin for MySQL contains several important new features:

• Viewing the InnoDB Plugin version number

• Fast index creation: add or drop indexes without copying the data

• Data compression: shrink tables, to significantly reduce storage and I/O

• New row format: fully off-page storage of long BLOB, TEXT, and VARCHAR columns

• File format management: protects upward and downward compatibility

• INFORMATION_SCHEMA tables: information about compression and locking

• Performance and scalability enhancements:

• Section 7.2, “Faster Locking for Improved Scalability”

• Section 7.3, “Using Operating System Memory Allocators”

• Section 7.4, “Controlling InnoDB Insert Buffering”

• Section 7.5, “Controlling Adaptive Hash Indexing”

• Section 7.6, “Changes Regarding Thread Concurrency”

• Section 7.7, “Changes in the Read Ahead Algorithm”

http://solutions.mysql.com/engines.html

Features of the InnoDB Plugin

2

• Section 7.8, “Multiple Background I/O Threads”

• Section 7.9, “Group Commit”

• Section 7.10, “Controlling the Master Thread I/O Rate”

• Section 7.11, “Controlling the Flushing Rate of Dirty Pages”

• Section 7.12, “Using the PAUSE instruction in InnoDB spin loops”

• Section 7.13, “Control of Spin Lock Polling”

• Section C.3, “Parameters with New Defaults”

• Section 7.14, “Making Buffer Cache Scan Resistant”

• Section 7.15, “Improvements to Crash Recovery Performance”

• Other changes for flexibility, ease of use and reliability:

• Section 8.2, “Enabling New File Formats”

• Section 8.3, “Dynamic Control of System Configuration Parameters”

• Section 8.4, “TRUNCATE TABLE Reclaims Space”

• Section 8.5, “InnoDB Strict Mode”

• Section 8.6, “Controlling Optimizer Statistics Estimation”

• Section 8.7, “Better Error Handling when Dropping Indexes”

• Section 8.8, “More Compact Output of SHOW ENGINE INNODB MUTEX”

• Section 8.9, “More Read Ahead Statistics”

Note that the ability to use data compression and the new row format require the use of a new InnoDB file
format called “Barracuda”. The previous file format, used by the built-in InnoDB in MySQL versions 5.0
and 5.1 is now called “Antelope” and does not support these features, but does support the other features
introduced with the InnoDB Plugin.

The InnoDB Plugin is upward compatible from standard InnoDB as built in to, and distributed with,
MySQL. Existing databases can be used with the InnoDB Plugin for MySQL. As described in Section 9.5,
“Configuring the InnoDB Plugin”, the new parameter innodb_file_format can help protect upward and
downward compatibility between InnoDB versions and database files, allowing users to enable or disable
use of new features that can only be used with certain versions of InnoDB.

The built-in InnoDB in MySQL since version 5.0.21 has a safety feature that prevents it from opening tables
that are in an unknown format. However, as noted in Section 11.2, “The Built-in InnoDB, the Plugin and
File Formats”, the system tablespace may contain references to new-format tables that will confuse the
built-in InnoDB in MySQL. These references will be cleared in a “slow” shutdown of the InnoDB Plugin.

With previous versions of InnoDB, no error would be returned until you try to access a table that is in
a format “too new” for the software. Beginning with version 1.0.1 of the InnoDB Plugin, however, to
provide early feedback, InnoDB will check the system tablespace to ensure that the file format used in
the database is enabled for use before it will start. See Section 4.4.1, “Startup File Format Compatibility
Checking” for the details.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Obtaining and Installing the InnoDB Plugin

3

1.3 Obtaining and Installing the InnoDB Plugin

From the MySQL download site, you can download the MySQL Server 5.1.38 and up, containing an
additional, upgraded version of InnoDB with additional features beyond the built-in InnoDB provided by
MySQL. You can configure your server to use the InnnoDB Plugin rather than the built-in InnoDB, to take
advantage of the extra features and performance enhancements in the Plugin. The InnoDB Plugin for
MySQL is licensed under the same license that MySQL uses (GPLv2). It is available at no charge for use
and can be freely redistributed, subject to the same requirements of the GPL as is MySQL itself (see the
GNU General Public License, version 2). Support is available for the InnoDB Plugin for MySQL through the
normal MySQL support channel, the MySQL bug database.

In many environments, the InnoDB plugin can dynamically be added to a MySQL instance without relinking
the MySQL server. The plugin version of InnoDB then “takes over” from the statically linked InnoDB that
is part of the mysqld binary. In other environments, it is currently necessary to build the entire MySQL
server, including the InnoDB plugin, from source code.

On Linux, Unix and Windows, it is a simple matter of installing the InnoDB Plugin for MySQL using the
INSTALL PLUGIN statement. When the InnoDB Plugin for MySQL is installed, it replaces the statically-
linked version of InnoDB that is incorporated in the MySQL binary as distributed by MySQL AB.

On platforms where the dynamic plugin is not available, users must download the source code for
the InnoDB Plugin for MySQL and build MySQL from source. Building from source also facilitates
the distribution of a MySQL server where the InnoDB Plugin is already “installed”, so all users of an
organization can use the new capabilities without the INSTALL step. The procedure for building from
source code is documented in Section 9.4, “Building the InnoDB Plugin from Source Code”.

Full instructions are provided in Chapter 9, Installing the InnoDB Plugin.

1.4 Viewing the InnoDB Plugin Version Number

InnoDB Plugin releases are numbered with version numbers independent of MySQL release numbers. The
initial release of the InnoDB Plugin is version 1.0, and it is designed to work with MySQL 5.1.

• The first component of the InnoDB Plugin version number designates a major release level.

• The second component corresponds to the MySQL release. The digit 0 corresponds to MySQL 5.1.

• The third component indicates the specific release of the InnoDB Plugin (at a given major release level
and for a specific MySQL release); only bug fixes and minor functional changes are introduced at this
level.

Once you have installed the InnoDB Plugin, you can check its version number in three ways:

• In the error log, it is printed during startup.

• SELECT * FROM information_schema.plugins;

• SELECT @@innodb_version;

The InnoDB Plugin writes its version number to the error log, which can be helpful in diagnosis of errors:

091105 12:28:06 InnoDB Plugin 1.0.5 started; log sequence number 46509

Note that the PLUGIN_VERSION column in the table INFORMATION_SCHEMA.PLUGINS does not display
the third component of the version number, only the first and second components, as in 1.0.

http://dev.mysql.com/downloads/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://bugs.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html

Operational Restrictions

4

1.5 Operational Restrictions

Because the InnoDB Plugin introduces a new file format, with new on-disk data structures within
both the database and log files, there are important restrictions on the use of the plugin in typical
user environments. Specifically, you should pay special attention to the information presented here
about file format compatibility with respect to the following scenarios:

• Downgrading from the InnoDB Plugin to the built-in InnoDB, or otherwise using different versions of
InnoDB with database files created by the InnoDB Plugin

• Using mysqldump.

• Using MySQL replication.

• Using InnoDB Hot Backup.

WARNING: Once you use the InnoDB Plugin on a set of database files, take care to avoid crashes and
corruptions when using those files with an earlier version of InnoDB, as might happen by opening the
database with MySQL when the plugin is not installed. It is strongly recommended that you use a “slow
shutdown” (SET GLOBAL innodb_fast_shutdown=0) when stopping the MySQL server when the
InnoDB Plugin is enabled. This will ensure log files and other system information written by the plugin will
not cause problems when using a prior version of InnoDB. See Section 11.3, “How to Downgrade”.

Because of these considerations, and although it may be useful in certain circumstances to use the plugin
in a temporary way as just described, many users will find it preferable to test their application with the
plugin and use it on an on-going basis, without reverting back to the standard, built-in InnoDB.

WARNING: If you dump a database containing compressed tables with mysqldump, the dump file
may contain CREATE TABLE commands that attempt to create compressed tables, or those using
ROW_FORMAT=DYNAMIC in the new database. Therefore, you should be sure the new database is running
the InnoDB Plugin, with the proper settings for innodb_file_format and innodb_file_per_table, if
you want to have the tables re-created as they exist in the original database. Typically, however, when the
mysqldump file is loaded, MySQL and InnoDB will ignore CREATE TABLE options they do not recognize,
and the table(s) will be created in a format used by the running server.

WARNING: If you use MySQL replication, you should be careful to ensure all slaves are configured with
the InnoDB Plugin, with the same settings for innodb_file_format and innodb_file_per_table. If
you do not do so, and you create tables that require the new “Barracuda” file format, replication errors may
occur. If a slave MySQL server is running the built-in InnoDB, it will ignore the CREATE TABLE options to
create a compressed table or one with ROW_FORMAT=DYNAMIC, and create the table uncompressed, with
ROW_FORMAT=COMPACT.

WARNING: The current version of InnoDB Hot Backup does not support the new “Barracuda” file format.
Using InnoDB Hot Backup Version 3 to backup databases in this format will cause unpredictable behavior.
A future version of InnoDB Hot Backup will support databases used with the InnoDB Plugin. As an
alternative, you may back up such databases with mysqldump.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/create-table.html

5

Chapter 2 Fast Index Creation in the InnoDB Storage Engine

Table of Contents
2.1 Overview of Fast Index Creation ... 5
2.2 Examples ... 5
2.3 Implementation ... 6
2.4 Concurrency Considerations .. 7
2.5 Crash Recovery .. 7
2.6 Limitations .. 8

2.1 Overview of Fast Index Creation

In MySQL versions up to 5.0, adding or dropping an index on a table with existing data can be very slow
if the table has many rows. The CREATE INDEX and DROP INDEX commands work by creating a new,
empty table defined with the requested set of indexes. It then copies the existing rows to the new table
one-by-one, updating the indexes as it goes. Inserting entries into the indexes in this fashion, where the
key values are not sorted, requires random access to the index nodes, and is far from optimal. After all
rows from the original table are copied, the old table is dropped and the copy is renamed with the name of
the original table.

Beginning with version 5.1, MySQL allows a storage engine to create or drop indexes without copying
the contents of the entire table. The standard built-in InnoDB in MySQL version 5.1, however, does not
take advantage of this capability. With the InnoDB Plugin, however, users can in most cases add and drop
indexes much more efficiently than with prior releases.

In InnoDB, the rows of a table are stored in a clustered (or primary key) index, forming what some
database systems call an “index-organized table”. Changing the clustered index requires copying the data,
even with the InnoDB Plugin. However, adding or dropping a secondary index with the InnoDB Plugin is
much faster, since it does not involve copying the data.

This new mechanism also means that you can generally speed the overall process of creating and loading
an indexed table by creating the table with only the clustered index, and adding the secondary indexes
after the data is loaded.

Although no syntax changes are required in the CREATE INDEX or DROP INDEX commands, some factors
affect the performance, space usage, and semantics of this operation (see Section 2.6, “Limitations”).

Because the ability to create and drop indexes does not require use of a new on-disk file format, it is
possible to temporarily use the InnoDB Plugin to create or drop an index, and then fall back to using the
standard built-in InnoDB in MySQL for normal operations if you wish. See Chapter 11, Downgrading from
the InnoDB Plugin for more information.

2.2 Examples

It is possible to create multiple indexes on a table with one ALTER TABLE command. This is relatively
efficient, because the clustered index of the table needs to be scanned only once (although the data is
sorted separately for each new index). For example:

CREATE TABLE T1(A INT PRIMARY KEY,
 B INT, C CHAR(1)) ENGINE=InnoDB;
INSERT INTO T1 VALUES

http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

Implementation

6

 (1,2,'a'), (2,3,'b'), (3,2,'c'), (4,3,'d'), (5,2,'e');
COMMIT;
ALTER TABLE T1 ADD INDEX (B), ADD UNIQUE INDEX (C);

The above commands will create table T1 with the clustered index (primary key) on column A, insert
several rows, and then build two new indexes on columns B and C. If there were many rows inserted into
T1 before the ALTER TABLE command, this approach would be much more efficient than creating the
table with all its indexes before loading the data.

You may also create the indexes one at a time, but then the clustered index of the table is scanned (as well
as sorted) once for each CREATE INDEX command. Thus, the following commands are not as efficient as
the ALTER TABLE command above, even though neither requires recreating the clustered index for table
T1.

CREATE INDEX B ON T1 (B);
CREATE UNIQUE INDEX C ON T1 (C);

Dropping indexes in the InnoDB Plugin does not require any copying of table data. Thus, you can equally
quickly drop multiple indexes with a single ALTER TABLE command or multiple DROP INDEX commands:

ALTER TABLE T1 DROP INDEX B, DROP INDEX C;

or

DROP INDEX B ON T1;
DROP INDEX C ON T1;

Restructuring the clustered index in InnoDB always requires copying the data in the table. For example,
if you create a table without a primary key, InnoDB chooses one for you, which may be the first UNIQUE
key defined on NOT NULL columns, or a system-generated key. Defining a PRIMARY KEY later causes the
data to be copied, as in the following example:

CREATE TABLE T2 (A INT, B INT) ENGINE=InnoDB;
INSERT INTO T2 VALUES (NULL, 1);
ALTER TABLE T2 ADD PRIMARY KEY (B);

Note that when you create a UNIQUE or PRIMARY KEY index, InnoDB must do some extra work. For
UNIQUE indexes, InnoDB checks that the table contains no duplicate values for the key. For a PRIMARY
KEY index, InnoDB also checks that none of the PRIMARY KEY columns contains a NULL. It is best to
define the primary key when you create a table, so you need not rebuild the table later.

2.3 Implementation
InnoDB has two types of indexes: the clustered index and secondary indexes. Since the clustered index
contains the data values in its B-tree nodes, adding or dropping a clustered index does involve copying
the data, and creating a new copy of the table. A secondary index, however, contains only the index key
and the value of the primary key. This type of index may be created or dropped without copying the data
in the clustered index. Furthermore, because the secondary index contains the values of the primary key
(used to access the clustered index when needed), when you change the definition of the primary key, thus
recreating the clustered index, all secondary indexes are recreated as well.

Dropping a secondary index is simple. Only the internal InnoDB system tables and the MySQL data
dictionary tables need to be updated to reflect the fact that the index no longer exists. InnoDB returns the
storage used for the index to the tablespace that contained it, so that new indexes or additional table rows
may use the space.

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html

Concurrency Considerations

7

To add a secondary index to an existing table, InnoDB scans the table, and sorts the rows using memory
buffers and temporary files in order by the value(s) of the secondary index key column(s). The B-tree is
then built in key-value order, which is more efficient than inserting rows into an index in random order with
respect to the key values. Because the B-tree nodes are split when they fill, building the index in this way
results in a higher fill-factor for the index, making it more efficient for subsequent access.

2.4 Concurrency Considerations
While a secondary index is being created or dropped, the table is locked in shared mode. That is, any
writes to the table are blocked, but the data in the table may be read. When you alter the clustered index of
a table, however, the table is locked in exclusive mode, because the data must be copied. Thus, during the
creation of a new clustered index, all operations on the table are blocked.

Before it can start executing, a CREATE INDEX or ALTER TABLE command must always wait for currently
executing transactions that are accessing the table to commit or rollback before it can proceed. In addition,
ALTER TABLE commands that create a new clustered index must wait for all SELECT statements that
access the table to complete (or their containing transactions to commit). Even though the original index
exists throughout the creation of the new clustered index, no transactions whose execution spans the
creation of the index can be accessing the table, because the original table must be dropped when
clustered index is restructured.

Once a CREATE INDEX or ALTER TABLE command that creates a secondary index begins executing,
queries may access the table for read access, but may not update the table. If an ALTER TABLE command
is changing the clustered index, all queries must wait until the operation completes.

A newly-created secondary index contains only data that is current in the table as of the time the CREATE
INDEX or ALTER TABLE command begins to execute. Specifically, a newly-created index contains only
the versions of data as of the most-recently committed transactions prior to the creation of the index. The
index thus does not contain any rows that were deleted (and therefore marked for deletion) by transactions
that completed before the CREATE INDEX or ALTER TABLE began. Similarly, the index contains only
current versions of every row, and none of the old versions of rows that were updated by transactions that
ran before the index was created.

Because a newly-created index contains only information about data current at the time the index was
created, queries that need to see data that was deleted or changed before the index was created cannot
use the index. The only queries that could be affected by this limitation are those executing in transactions
that began before the creation of the index was begun. For such queries, unpredictable results could occur.
Newer queries can use the index.

2.5 Crash Recovery
No data is lost if the server crashes while an ALTER TABLE command is executing. Recovery, however, is
different for clustered indexes and secondary indexes.

If the server crashes while creating a secondary index, upon recovery, InnoDB drops any partially
created indexes. All you need to do to create the index is to re-run the ALTER TABLE or CREATE INDEX
command.

However, when a crash occurs during the creation of a clustered index, recovery is somewhat more
complicated, because the data in the table must be copied to an entirely new clustered index. Remember
that all InnoDB tables are stored as clustered indexes. In the following discussion, we use the word table
and clustered index interchangeably.

The InnoDB Plugin creates the new clustered index by copying the existing data from the original table to a
temporary table that has the desired index structure. Once the data is completely copied to this temporary

http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html

Limitations

8

table, the original table is renamed with a different temporary table name. The temporary table comprising
the new clustered index is then renamed with the name of the original table, and the original table is then
dropped from the database.

If a system crash occurs while creating a new clustered index, no data is lost, but users must complete the
recovery process using the temporary tables that exist during the process.

Users rarely re-create a clustered index or re-define primary keys on large tables. Because system crashes
are uncommon and the situation described here is rare, this manual does not provide information on
recovering from this scenario. Instead, contact MySQL support.

2.6 Limitations

Take the following considerations into account when creating or dropping indexes using the InnoDB Plugin:

• During index creation, files are written to the temporary directory ($TMPDIR on Unix, %TEMP% on
Windows, or the value of --tmpdir configuration variable). Each temporary file is large enough to hold
one column that makes up the new index, and each one is removed as soon as it is merged into the final
index.

• Due to a limitation of MySQL, the table is copied, rather than using “Fast Index Creation” when you
create an index on a TEMPORARY TABLE. This has been reported as MySQL Bug #39833.

• To avoid consistency issues between the InnoDB data dictionary and the MySQL data dictionary, the
table is copied, rather than using Fast Index Creation when you use the ALTER TABLE ... RENAME
COLUMN syntax.

• The command ALTER IGNORE TABLE t ADD UNIQUE INDEX does not delete duplicate rows. This
has been reported as MySQL Bug #40344. The IGNORE keyword is ignored. If any duplicate rows exist,
the operation fails with the following error message:

ERROR 23000: Duplicate entry '347' for key 'pl'

• As noted above, a newly-created index contains only information about data current at the time the
index was created. Therefore, you should not run queries in a transaction that might use a secondary
index that did not exist at the beginning of the transaction. There is no way for InnoDB to access “old”
data that is consistent with the rest of the data read by the transaction. See the discussion of locking in
Section 2.4, “Concurrency Considerations”.

Prior to InnoDB Plugin 1.0.4, unexpected results could occur if a query attempts to use an index created
after the start of the transaction containing the query. If an old transaction attempts to access a “too new”
index, InnoDB Plugin 1.0.4 and later reports an error:

ERROR HY000: Table definition has changed, please retry transaction

As the error message suggests, committing (or rolling back) the transaction, and restarting it, cures the
problem.

• InnoDB Plugin 1.0.2 introduces some improvements in error handling when users attempt to drop
indexes. See section Section 8.7, “Better Error Handling when Dropping Indexes” for details.

• MySQL 5.1 does not support efficient creation or dropping of FOREIGN KEY constraints. Therefore, if
you use ALTER TABLE to add or remove a REFERENCES constraint, the child table will be copied, rather
than using “Fast Index Creation”.

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_tmpdir
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

9

Chapter 3 InnoDB Data Compression

Table of Contents
3.1 Overview of Table Compression .. 9
3.2 Enabling Compression for a Table .. 9

3.2.1 Configuration Parameters for Compression ... 10
3.2.2 SQL Compression Syntax Warnings and Errors ... 11

3.3 Tuning InnoDB Compression ... 12
3.3.1 When to Use Compression ... 13
3.3.2 Monitoring Compression at Runtime ... 15

3.4 How Compression Works in InnoDB .. 16
3.4.1 Compression Algorithms ... 16
3.4.2 InnoDB Data Storage and Compression .. 16
3.4.3 Compression and the InnoDB Buffer Pool ... 18
3.4.4 Compression and the InnoDB Log Files .. 18

3.1 Overview of Table Compression
Over the years, processors and cache memories have become much faster, but mass storage based
on rotating magnetic disks has not kept pace. While the storage capacity of disks has grown by about a
factor of 1,000 in the past decade, random seek times and data transfer rates are still severely limited by
mechanical constraints. Therefore, many workloads are I/O-bound. The idea of data compression is to pay
a small cost in increased CPU utilization for the benefit of smaller databases and reduced I/O to improve
throughput, potentially significantly.

The ability to compress user data is an important new capability of the InnoDB Plugin. Compressed tables
reduce the size of the database on disk, resulting in fewer reads and writes needed to access the user
data. For many InnoDB workloads and many typical user tables (especially with read-intensive applications
where sufficient memory is available to keep frequently-used data in memory), compression not only
significantly reduces the storage required for the database, but also improves throughput by reducing the
I/O workload, at a modest cost in processing overhead. The storage cost savings can be important, but
the reduction in I/O costs can be even more valuable. Compression can be especially important for SSD
storage devices, because they tend to have lower capacity than HDD devices.

3.2 Enabling Compression for a Table
The usual (uncompressed) size of InnoDB data pages is 16KB. Beginning with the InnoDB Plugin, you can
use the attributes ROW_FORMAT=COMPRESSED, KEY_BLOCK_SIZE, or both in the CREATE TABLE and
ALTER TABLE statements to enable table compression. Depending on the combination of option values,
InnoDB attempts to compress each page to 1KB, 2KB, 4KB, 8KB, or 16KB.

Note

The term KEY_BLOCK_SIZE does not refer to a “key”, but simply specifies the
size of compressed pages to use for the table. Likewise, in the InnoDB Plugin,
compression is applicable to tables, not to individual rows, despite the option name
ROW_FORMAT. Because the InnoDB storage engine cannot add syntax to SQL
statements, the InnoDB Plugin re-uses the clauses originally defined for MyISAM.

To create a compressed table, you might use a statement like this:

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

Configuration Parameters for Compression

10

CREATE TABLE name
 (column1 INT PRIMARY KEY)
 ENGINE=InnoDB
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=4;

If you specify ROW_FORMAT=COMPRESSED but not KEY_BLOCK_SIZE, the default compressed page size of
8KB is used. If KEY_BLOCK_SIZE is specified, you can omit the attribute ROW_FORMAT=COMPRESSED.

Setting KEY_BLOCK_SIZE=16 most often does not result in much compression, since the normal InnoDB
page size is 16KB. However, this setting may be useful for tables with many long BLOB, VARCHAR or TEXT
columns, because such values often do compress well, and might therefore require fewer “overflow” pages
as described later in this section.

Note that compression is specified on a table-by-table basis. All indexes of a table (including the clustered
index) are compressed using the same page size, as specified on the CREATE TABLE or ALTER TABLE
statement. Table attributes such as ROW_FORMAT and KEY_BLOCK_SIZE are not part of the CREATE
INDEX syntax, and are ignored if they are specified (although you see them in the output of the SHOW
CREATE TABLE statement).

3.2.1 Configuration Parameters for Compression

Compressed tables are stored in a format that previous versions of InnoDB cannot process. To preserve
downward compatibility of database files, compression can be specified only when the “Barracuda” data
file format is enabled using the configuration parameter innodb_file_format.

Table compression is also not available for the InnoDB system tablespace. The system tablespace (space
0, the ibdata* files) may contain user data, but it also contains internal InnoDB system information, and
therefore is never compressed. Thus, compression applies only to tables (and indexes) stored in their own
tablespaces.

To use compression, enable the “file per table” mode using the configuration parameter
innodb_file_per_table and enable the “Barracuda” disk file format using the parameter
innodb_file_format. You can set these parameters in the MySQL option file my.cnf or my.ini,
but both are dynamic parameters that you can change with the SET statement without shutting down the
MySQL server, as noted in Section 9.5, “Configuring the InnoDB Plugin”.

Specifying ROW_FORMAT=COMPRESSED or a KEY_BLOCK_SIZE in the CREATE TABLE or ALTER TABLE
statements if the “Barracuda” file format has not been enabled produces these warnings that you can view
with the SHOW WARNINGS statement:

Level Code Message

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_format=1.

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=4.

Warning 1478 InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.

Warning 1478 InnoDB: assuming ROW_FORMAT=COMPACT.

Note

These messages are only warnings, not errors, and the table is created as if
the options were not specified. Enabling InnoDB “strict mode” (see Section 8.5,
“InnoDB Strict Mode”) causes InnoDB to generate an error, not a warning, for these
cases. In strict mode, the table is not created if the current configuration does not
permit using compressed tables.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

SQL Compression Syntax Warnings and Errors

11

The “non-strict” behavior is intended to permit you to import a mysqldump file into a database that does
not support compressed tables, even if the source database contained compressed tables. In that case,
the InnoDB Plugin creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.

When you import the dump file into a new database, if you want to have the tables re-created as they exist
in the original database, ensure the server is running the InnoDB Plugin with the proper settings for the
configuration parameters innodb_file_format and innodb_file_per_table,

3.2.2 SQL Compression Syntax Warnings and Errors

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED or is
omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning that you can
view with SHOW WARNINGS. However, the table is non-compressed; the specified KEY_BLOCK_SIZE is
ignored).

Level Code Message

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=n unless ROW_FORMAT=COMPRESSED.

If you are running in InnoDB strict mode, the combination of a KEY_BLOCK_SIZE with any ROW_FORMAT
other than COMPRESSED generates an error, not a warning, and the table is not created.

Table 3.1, “Meaning of CREATE TABLE and ALTER TABLE Options” summarizes how the various options
on CREATE TABLE and ALTER TABLE are handled.

Table 3.1 Meaning of CREATE TABLE and ALTER TABLE Options

Option Usage Description

ROW_FORMAT=
REDUNDANT

Storage format used prior to
MySQL 5.0.3

Less efficient than ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=
COMPACT

Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes of long column values in the
clustered index page, with the remaining bytes stored in
an overflow page

ROW_FORMAT=
DYNAMIC

Available only with
innodb_file
_format=Barracuda

Store values within the clustered index page if they fit;
if not, stores only a 20-byte pointer to an overflow page
(no prefix)

ROW_FORMAT=
COMPRESSED

Available only with
innodb_file
_format=Barracuda

Compresses the table and indexes using zlib to
default compressed page size of 8K bytes; implies
ROW_FORMAT=DYNAMIC

KEY_BLOCK_
SIZE=n

Available only with
innodb_file
_format=Barracuda

Specifies compressed page size of 1, 2, 4, 8 or
16K bytes; implies ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPRESSED

Table 3.2, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF” summarizes
error conditions that occur with certain combinations of configuration parameters and options on the
CREATE TABLE or ALTER TABLE statements, and how the options appear in the output of SHOW TABLE
STATUS.

When InnoDB strict mode is OFF, InnoDB creates or alters the table, but may ignore certain settings, as
shown below. You can see the warning messages in the MySQL error log. When InnoDB strict mode is ON,
these specified combinations of options generate errors, and the table is not created or altered. You can
see the full description of the error condition with SHOW ERRORS. For example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

Tuning InnoDB Compression

12

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

2 rows in set (0.00 sec)

Table 3.2 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT,
as shown in SHOW TABLE
STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or ROW_FORMAT=DYNAMIC
or KEY_BLOCK_SIZE is
specified

Ignored unless you override the default
settings for innodb_file_format and
innodb_file_per_table

COMPACT

Invalid KEY_BLOCK_SIZE
is specified (not 1, 2, 4, 8 or
16)

KEY_BLOCK_SIZE is ignored the requested one, or
COMPACT by default

ROW_FORMAT=COMPRESSED
and valid
KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE specified is used,
not the 8K default

COMPRESSED

KEY_BLOCK_SIZE is
specified with REDUNDANT,
COMPACT or DYNAMIC row
format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one
of REDUNDANT, COMPACT,
DYNAMIC or COMPRESSED

Ignored if recognized by the MySQL parser.
Otherwise, an error is issued.

COMPACT or N/A

When InnoDB strict mode is ON (innodb_strict_mode=1), the InnoDB Plugin rejects invalid
ROW_FORMAT or KEY_BLOCK_SIZE parameters. For compatibility with the built-in InnoDB in MySQL,
InnoDB strict mode is not enabled by default, and in this default non-strict mode, the InnoDB Plugin issues
warnings (not errors) for ignored invalid parameters.

Note that it is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The
statement SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored by InnoDB). The
real compressed page size inside InnoDB cannot be displayed by MySQL.

3.3 Tuning InnoDB Compression
Most often, the internal optimizations in InnoDB described in a later portion of this section, ensure that
the system runs well with compressed data. However, because the efficiency of compression depends on
the nature of your data, there are some factors you should consider to get best performance. You need to

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table

When to Use Compression

13

choose which tables to compress, and what compressed page size to use. You may also want to adjust
the size of the buffer pool based on run-time performance characteristics such as the amount of time the
system spends compressing and uncompressing data.

3.3.1 When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

3.3.1.1 Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR, TEXT
or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating point
numbers) or data that is previously compressed (for example JPEG or PNG images) may not generally
compress well, significantly or at all.

Compression is chosen on a table by table basis with the InnoDB Plugin, and a table and all of its indexes
use the same (compressed) page size. It might be that the primary key (clustered) index, which contains
the data for all columns of a table, compresses more effectively than the secondary indexes. For those
cases where there are long rows, the use of compression may result in long column values being stored
“off-page”, as discussed in Section 5.3, “DYNAMIC Row Format”. Those overflow pages may compress
well. Given these considerations, for many applications, some tables compress more effectively than
others, and you may find that your workload performs best only with a subset of tables compressed.

Experimenting is the only way to determine whether or not to compress a particular table. InnoDB
compresses data in 16K chunks corresponding to the uncompressed page size, and in addition to
user data, the page format includes some internal system data that is not compressed. Compression
utilities compress an entire stream of data, and so may find more repeated strings across the entire input
stream than InnoDB would find in a table compressed in 16K chunks. But you can get a sense of how
compression efficiency by using a utility that implements LZ77 compression (such as gzip or WinZip) on
your data file.

Another way to test compression on a specific table is to copy some data from your uncompressed table
to a similar, compressed table (having all the same indexes) and look at the size of the resulting file.
When you do so (if nothing else using compression is running), you can examine the ratio of successful
compression operations to overall compression operations. (In the INNODB_CMP table, compare
COMPRESS_OPS to COMPRESS_OPS_OK. See INNODB_CMP for more information.) If a high percentage of
compression operations complete successfully, the table might be a good candidate for compression.

3.3.1.2 Compression and Application and Schema Design

Decide whether to compress data in your application or in the InnoDB table. It is usually not sensible to
store data that is compressed by an application in an InnoDB compressed table. Further compression is
extremely unlikely, and the attempt to compress just wastes CPU cycles.

Compressing in the Database

The InnoDB table compression is automatic and applies to all columns and index values. The columns can
still be tested with operators such as LIKE, and sort operations can still use indexes even when the index
values are compressed. Because indexes are often a significant fraction of the total size of a database,

When to Use Compression

14

compression could result in significant savings in storage, I/O or processor time. The compression and
decompression operations happen on the database server, which likely is a powerful system that is sized
to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others. This
approach uses CPU cycles for compression and uncompression on the client machine rather than the
database server, which might be appropriate for a distributed application with many clients, or where the
client machine has spare CPU cycles.

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to use
some compressed tables and some uncompressed tables. It may be best to externally compress some
data (and store it in uncompressed InnoDB tables) and allow InnoDB to compress (some of) the other
tables in the application. As always, up-front design and real-life testing are valuable in reaching the right
decision.

3.3.1.3 Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer pages
need to be reorganized and recompressed after the index page runs out of room for the per-page
“modification log” that InnoDB maintains for compressed data. If the updates predominantly change
non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-page”,
the overhead of compression may be acceptable. If the only changes to a table are INSERTs that use
a monotonically increasing primary key, and there are few secondary indexes, there is little need to
reorganize and recompress index pages. Since InnoDB can “delete-mark” and delete rows on compressed
pages “in place” by modifying uncompressed data, DELETE operations on a table are relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval. Especially
in data warehouse environments, many tables may be read-only or read-mostly. In those cases, it might
or might not be acceptable to pay the price of compression in terms of increased load time, unless the
resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you may find that
compression can improve overall performance. Therefore when you test your application performance
with different compression configurations, it is important to test on a platform similar to the planned
configuration of the production system.

3.3.1.4 Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Therefore, compression attempts to reduce I/O by using CPU time to compress and uncompress data, and
thus is most effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, InnoDB often uses an additional 16K in the buffer pool
for an uncompressed copy of the page. The adaptive LRU algorithm in the InnoDB Plugin attempts to
balance the use of memory between compressed and uncompressed pages to take into account whether
the workload is running in an I/O-bound or CPU-bound manner. Nevertheless, a configuration with more
memory dedicated to the InnoDB buffer pool tends to run better when using compressed tables than a
configuration where memory is highly constrained.

Monitoring Compression at Runtime

15

3.3.1.5 Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the table
and its indexes contain. The compressed page size should always be bigger than the maximum record
size, or operations may fail as noted in the discussion of compression internals later in this section.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require time-
consuming recompression, and the B-tree nodes may have to be split more frequently, leading to bigger
data files and less efficient indexing.

Typically, one would set the compressed page size to 8K or 4K bytes. Given that the maximum InnoDB
record size is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

3.3.2 Monitoring Compression at Runtime

The current version of the InnoDB Plugin provides only a limited means to monitor the performance of
compression at runtime. Overall application performance, CPU and I/O utilization and the size of disk files
are the best indicators of how effective compression is for your application.

The InnoDB Plugin does include some Information Schema tables (see Example 6.1, “Using the
Compression Information Schema Tables”) that reflect the internal use of memory and the rates of
compression used overall. The INNODB_CMP tables report information about compression activity for each
compressed page size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide, and
includes summary data across all compressed tables in your database. You can use this data to help
decide whether or not to compress a table by examining these tables when no other compressed tables
are being accessed.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since InnoDB must split B-tree nodes when they are too full to contain
the compressed data following a modification, you should also compare the number of “successful”
compression operations with the number of such operations overall. Based on the information in the
INNODB_CMP tables and overall application performance and hardware resource utilization, you may
decide to make changes in your hardware configuration, adjust the size of the InnoDB buffer pool, choose
a different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster CPUs,
or those with more cores, can help improve performance with the same data, application workload and set
of compressed tables. You may also benefit by increasing the size of the InnoDB buffer pool, so that more
uncompressed pages can stay in memory, reducing the need to uncompress pages which exist in memory
only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. You may want to choose a
larger page size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of the
total number of compression operations (COMPRESS_OPS), then the system is likely performing well.
However, if the ratio is low, then InnoDB is being caused to reorganize, recompress and split B-tree nodes
more often than is desirable. In this case, you may want to avoid compressing some tables or choose a
larger KEY_BLOCK_SIZE for some of the tables for which you are using compression. You may not want to
compress tables which cause the number of “compression failures” in your application to be more than 1%
or 2% of the total (although this may be acceptable during a data load, for example, if your application does
not encounter such a ratio during normal operations).

How Compression Works in InnoDB

16

3.4 How Compression Works in InnoDB

This section describes some internal implementation details about compression in InnoDB. The information
presented here may be helpful in tuning for performance, but is not necessary to know for basic use of
compression.

3.4.1 Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

The InnoDB Plugin implements a novel type of compression with the help of the well-known zlib library,
which implements the LZ77 compression algorithm. This compression algorithm is mature, robust, and
efficient in both CPU utilization and in reduction of data size. The algorithm is “lossless”, so that the original
uncompressed data can always be reconstructed from the compressed form. LZ77 compression works by
finding sequences of data that are repeated within the data to be compressed. The patterns of values in
your data determine how well it compresses, but typical user data often compresses by 50% or more.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many cases,
indexes can constitute 40-50% or more of the total database size, so this difference is significant. When
compression is working well for a data set, the size of the InnoDB data files (the .ibd files) is 25% to 50%
of the uncompressed size or possibly smaller. Depending on the workload, this smaller database can in
turn lead to a reduction in I/O, and an increase in throughput, at a modest cost in terms of increased CPU
utilization.

3.4.2 InnoDB Data Storage and Compression

All user data in InnoDB is stored in pages comprising a B-tree index (the so-called clustered index). In
some other database systems, this type of index is called an “index-organized table”. Each row in the index
node contains the values of the (user-specified or system-generated) primary key and all the other columns
of the table.

Secondary indexes in InnoDB are also B-trees, containing pairs of values: the index key and a pointer to
a row in the clustered index. The pointer is in fact the value of the primary key of the table, which is used
to access the clustered index if columns other than the index key and primary key are required. Secondary
index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in the
following sections.

3.4.2.1 Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to minimize
the number of times B-tree nodes are split, as well as to minimize the need to uncompress and recompress
their content.

One technique InnoDB uses is to maintain some system information in the B-tree node in uncompressed
form, thus facilitating certain in-place updates. For example, this allows rows to be delete-marked and
deleted without any compression operation.

http://www.zlib.net/

InnoDB Data Storage and Compression

17

In addition, InnoDB attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification log” to
record changes made to the page. Updates and inserts of small records may be written to this modification
log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the changes
and recompresses the page. If recompression fails, the B-tree nodes are split and the process is repeated
until the update or insert succeeds.

Generally, InnoDB requires that each B-tree page can accommodate at least two records. For compressed
tables, this requirement has been relaxed. Leaf pages of B-tree nodes (whether of the primary key or
secondary indexes) only need to accommodate one record, but that record must fit in uncompressed form,
in the per-page modification log. Starting with InnoDB Plugin version 1.0.2, and if InnoDB strict mode is ON,
the InnoDB Plugin checks the maximum row size during CREATE TABLE or CREATE INDEX. If the row
does not fit, the following error message is issued: ERROR HY000: Too big row.

If you create a table when InnoDB strict mode is OFF, and a subsequent INSERT or UPDATE statement
attempts to create an index entry that does not fit in the size of the compressed page, the operation fails
with ERROR 42000: Row size too large. (This error message does not name the index for which the
record is too large, or mention the length of the index record or the maximum record size on that particular
index page.) To solve this problem, rebuild the table with ALTER TABLE and select a larger compressed
page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or disable compression entirely with
ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

3.4.2.2 Compressing BLOB, VARCHAR and TEXT Columns

In a clustered index, BLOB, VARCHAR and TEXT columns that are not part of the primary key may be stored
on separately allocated (“overflow”) pages. We call these “off-page columns” whose values are stored on
singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB, TEXT
or VARCHAR columns may be stored fully off-page, depending on their length and the length of the entire
row. For columns that are stored off-page, the clustered index record only contains 20-byte pointers to
the overflow pages, one per column. Whether any columns are stored off-page depends on the page size
and the total size of the row. When the row is too long to fit entirely within the page of the clustered index,
InnoDB chooses the longest columns for off-page storage until the row fits on the clustered index page. As
noted above, if a row does not fit by itself on a compressed page, an error occurs.

Tables created in previous versions of InnoDB use the “Antelope” file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, InnoDB stores the first 768
bytes of BLOB, VARCHAR and TEXT columns in the clustered index record along with the primary key. The
768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the column
value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
InnoDB applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link to the
next overflow page, among other things. Therefore, very significant storage savings can be obtained for
longer BLOB, TEXT or VARCHAR columns if the data is highly compressible, as is often the case with text
data (but not previously compressed images).

The overflow pages are of the same size as other pages. A row containing ten columns stored off-page
occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an uncompressed
table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table with an 8K page size,
they occupy only 80K bytes. Thus, it is often more efficient to use compressed table format for tables with
long column values.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

Compression and the InnoDB Buffer Pool

18

Using a 16K compressed page size can reduce storage and I/O costs for BLOB, VARCHAR or TEXT
columns, because such data often compress well, and might therefore require fewer “overflow” pages,
even though the B-tree nodes themselves take as many pages as in the uncompressed form.

3.4.3 Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to an
uncompressed page of 16K bytes. To access the data in a page, InnoDB must read the compressed page
from disk (unless it is already in memory), and then uncompress the page to its original 16K byte form. This
section describes how InnoDB manages the buffer pool with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains both
the compressed and uncompressed form of a database page. However, to make room for other required
database pages, InnoDB may “evict” from the buffer pool an uncompressed page, while leaving the
compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of the
page may be written to disk, to free space for other data. Thus, at any given time, the buffer pool may (a)
not contain any copy of a given database page, (b) contain only the compressed form of the page, or (c)
contain both the compressed and uncompressed forms of the page.

InnoDB keeps track of which pages to retain in memory and which to evict using a least-recently-used
(LRU) list, so that “hot” or frequently accessed data tends to stay in memory. When compressed tables are
accessed, InnoDB uses an adaptive LRU algorithm to achieve an appropriate balance of compressed and
uncompressed pages in memory. This adaptive algorithm is sensitive to whether the system is running in
an I/O-bound or CPU-bound manner.

The essential idea is to avoid spending too much processing time uncompressing pages when the CPU is
busy, and to avoid doing excess I/O when the CPU has spare cycles that can be used for uncompressing
compressed pages (that may already be in memory). When the system is I/O-bound, the algorithm prefers
to evict the uncompressed copy of a page rather than both copies, to make more room for other disk
pages to become memory resident. When the system is CPU-bound, InnoDB prefers to evict both the
compressed and uncompressed page, so that more memory can be used for “hot” pages and reducing the
need to uncompress data in memory only in compressed form.

3.4.4 Compression and the InnoDB Log Files

Before (but not necessarily at the same time as) a compressed page is written to a database file, InnoDB
writes a copy of the page to the redo log (if it has been recompressed since the last time it was written
to the database). This is done to ensure that redo logs will always be usable, even if a future version
of InnoDB uses a slightly different compression algorithm. Therefore, some increase in the size of log
files, or a need for more frequent checkpoints, can be expected when using compression. The amount of
increase in the log file size or checkpoint frequency depends on the number of times compressed pages
are modified in a way that requires reorganization and recompression.

Note that the redo log file format (and the database file format) are different from previous releases when
using compression. The current release of InnoDB Hot Backup (version 3) therefore does not support
databases that use compression. Only databases using the file format “Antelope” can be backed up online
by InnoDB Hot Backup.

19

Chapter 4 InnoDB File-Format Management

Table of Contents
4.1 Overview of InnoDB File Formats .. 19
4.2 Named File Formats ... 19
4.3 Enabling File Formats ... 20
4.4 File Format Compatibility ... 20

4.4.1 Startup File Format Compatibility Checking ... 21
4.4.2 Table-Access File Format Compatibility Checking .. 22

4.5 Identifying the File Format in Use .. 23
4.6 Downgrading the File Format .. 24
4.7 Future InnoDB File Formats .. 24

4.1 Overview of InnoDB File Formats

As InnoDB evolves, new on-disk data structures are sometimes required to support new features. This
release of InnoDB introduces two such new data structures: compressed tables (see Chapter 3, InnoDB
Data Compression), and long variable-length columns stored off-page (see Chapter 5, InnoDB Row
Storage and Row Formats). These features both require use of the new Barracuda file format.

Note

These new data structures are not compatible with prior versions of InnoDB. The
other new features of the InnoDB Plugin are compatible with the original Antelope
file format and do not require the Barracuda file format.

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written with
a prior version of InnoDB without risk of crashes, hangs, wrong results or corruptions. The InnoDB Plugin
introduces a new mechanism to guard against these conditions, and to help preserve compatibility among
database files and versions of InnoDB. This mechanism lets you take advantage of some new features of
an InnoDB release (e.g., performance improvements and bug fixes), and still preserve the option of using
your database with a prior version of InnoDB, by precluding the use of new features that create downward
incompatible on-disk data structures.

4.2 Named File Formats

The InnoDB Plugin introduces the idea of a named file format and a configuration parameter to enable
the use of features that require use of that format. The new file format is the Barracuda format, and the
file format supported by prior releases of InnoDB is known as Antelope. Compressed tables and the new
row format that stores long columns “off-page” require the use of the Barracuda file format or newer.
Future versions of InnoDB may introduce a series of file formats, identified with the names of animals, in
ascending alphabetic order.

Beginning with this release, every InnoDB per-table tablespace file is labeled with a file format identifier.
This does not apply to the system tablespace (the ibdata files) but only the files of separate tablespaces
(the *.ibd files where tables and indexes are stored in their own tablespace). As noted below, however,
the system tablespace is tagged with the “highest” file format in use in a group of InnoDB database files,
and this tag is checked when the files are opened.

In this release, when you create a compressed table, or a table with ROW_FORMAT=DYNAMIC, the file
header for the corresponding .ibd file and the table type in the InnoDB data dictionary are updated

Enabling File Formats

20

with the identifier for the “Barracuda” file format. From that point forward, the table cannot be used with
a version of InnoDB that does not support this new file format. To protect against anomalous behavior,
InnoDB version 5.0.21 and later performs a compatibility check when the table is opened, as described
below. (Note that the ALTER TABLE command in many cases, causes a table to be recreated and thereby
change its properties. The special case of adding or dropping indexes without rebuilding the table is
described in Chapter 2, Fast Index Creation in the InnoDB Storage Engine.)

If a version of InnoDB supports a particular file format (whether or not it is enabled), you can access and
even update any table that requires that format or an earlier format. Only the creation of new tables using
new features is limited based on the particular file format enabled. Conversely, if a tablespace contains a
table or index that uses a file format that is not supported by the currently running software, it cannot be
accessed at all, even for read access.

The only way to “downgrade” an InnoDB tablespace to an earlier file format is to copy the data to a new
table, in a tablespace that uses the earlier format. This can be done with the ALTER TABLE command, as
described in Section 4.6, “Downgrading the File Format”.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table uses the “Barracuda” format. Otherwise, it uses the prior
InnoDB file format, “Antelope”.

4.3 Enabling File Formats

The new configuration parameter innodb_file_format controls whether such commands as CREATE
TABLE and ALTER TABLE can be used to create tables that depend on support for the “Barracuda” file
format.

The file format is a dynamic, global parameter that can be specified in the MySQL option file (my.cnf
or my.ini) or changed with the SET GLOBAL command, as described in Section 9.5, “Configuring the
InnoDB Plugin”.

4.4 File Format Compatibility

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set of
operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

• The system tablespace (one or more ibdata files) that contain internal system information (including
internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• (Usually two) InnoDB log files (ib_logfile0 and ib_logfile1), used for crash recovery and in
backups.

This collection of files is transactionally consistent, and recoverable as a unit. An “ib-file set” specifically
does not include the related MySQL .frm files that contain metadata about InnoDB tables. The .frm
files are created and managed exclusively by MySQL, and can sometimes get out of sync with the internal
metadata in InnoDB.

Instead of “ib-file set”, we might call such a collection a “database”. However, MySQL uses the word
“database” to mean a logical collection of tables, what other systems term a “schema” or “catalog”. Given
MySQL terminology, multiple tables (even from more than one database) can be stored in a single “ib-file
set”.

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

Startup File Format Compatibility Checking

21

The InnoDB Plugin incorporates several checks to guard against the possible crashes and data corruptions
that might occur if you use an ib-file set in a file format that is not supported by the software release in
use. These checks take place when the server is started, and when you first access a table. This section
describes these checks, how you can control them, and error and warning conditions that may arise.

4.4.1 Startup File Format Compatibility Checking

To prevent possible crashes or data corruptions when InnoDB Plugin opens an ib-file set, it checks that
it can fully support the file formats in use within the ib-file set. If the system is restarted following a crash,
or a “fast shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data
structures (such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the
current software. During the recovery process, serious damage can be done to your data files if these data
structures are accessed. The startup check of the file format occurs before any recovery process begins,
thereby preventing the problems described in Section 11.4, “Possible Problems”.

Beginning with version 1.0.1 of the InnoDB Plugin, the system tablespace records an identifier
or tag for the “highest” file format used by any table in any of the tablespaces that is part of the
ib-file set. Checks against this file format tag are controlled by the new configuration parameter
innodb_file_format_check, which is ON by default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by the
particular currently executing software and if innodb_file_format_check is ON, the following error is
issued when the server is started:

InnoDB: Error: the system tablespace is in a file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents the InnoDB Plugin
from starting if the current software does not support the file format specified. It also sets the “high water
mark” to the value you specify. The ability to set innodb_file_format_check will be useful (with
future releases of InnoDB) if you manually “downgrade” all of the tables in an ib-file set (as described in
Chapter 11, Downgrading from the InnoDB Plugin). You can then rely on the file format check at startup if
you subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a
“too new” format (one that is not supported by the software you are using). If you set the configuration
parameter innodb_file_format_check to OFF, the InnoDB Plugin opens the database, but issues this
warning message in the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a very dangerous setting, as it permits the recovery process to run, possibly
corrupting your database if the previous shutdown was a crash or “fast shutdown”.
You should only set innodb_file_format_check to OFF if you are sure that the
previous shutdown was done with innodb_fast_shutdown=0, so that essentially
no recovery process occurs. In a future release, this parameter setting may be
renamed from OFF to UNSAFE. (However, until there are newer releases of InnoDB
that support additional file formats, even disabling the startup checking is in fact
“safe”.)

Note that the parameter innodb_file_format_check affects only what happens when a database is
opened, not subsequently. Conversely, the parameter innodb_file_format (which enables a specific

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Table-Access File Format Compatibility Checking

22

format) only determines whether or not a new table can be created in the enabled format and has no effect
on whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a table
in a “higher” format is created or an existing table is accessed for read or write (assuming its format
is supported). If you access an existing table in a format higher than the format the running software
supports, the system tablespace tag is not updated, but table-level compatibility checking applies (and
an error is issued), as described in Section 4.4.2, “Table-Access File Format Compatibility Checking”.
Any time the high water mark is updated, the value of innodb_file_format_check is updated as
well, so the command SELECT @@innodb_file_format_check; displays the name of the newest file
format known to be used by tables in the currently open ib-file set and supported by the currently executing
software.

To best illustrate this behavior, consider the scenario described in Table 4.1, “InnoDB Data File
Compatibility and Related InnoDB Parameters”. Imagine that some future version of InnoDB supports the
“Cheetah” format and that an ib-file set has been used with that version.

Table 4.1 InnoDB Data File Compatibility and Related InnoDB Parameters

innodb
file
format
check

innodb file
format

Highest
file format
used in ib-
file set

Highest
file format
supported
by InnoDB

Result

OFF Antelope or
Barracuda

Barracuda Barracuda Database can be opened; tables can be created which
require “Antelope” or “Barracuda” file format

OFF Antelope or
Barracuda

Cheetah Barracuda Database can be opened with a warning, since
the database contains files in a “too new” format;
tables can be created which require “Antelope” or
“Barracuda” file format; tables in “Cheetah” format
cannot be accessed

OFF Cheetah Barracuda Barracuda Database cannot be opened; innodb_file_format
cannot be set to “Cheetah”

ON Antelope or
Barracuda

Barracuda Barracuda Database can be opened; tables can be created which
require “Antelope” or “Barracuda” file format

ON Antelope or
Barracuda

Cheetah Barracuda Database cannot be opened, since the database
contains files in a “too new” format (“Cheetah”)

ON Cheetah Barracuda Barracuda Database cannot be opened; innodb_file_format
cannot be set to “Cheetah”

4.4.2 Table-Access File Format Compatibility Checking

When a table is first accessed, InnoDB (including some releases prior to InnoDB Plugin 1.0) check that the
file format of the tablespace in which the table is stored is fully supported. This check prevents crashes or
corruptions that would otherwise occur when tables using a “too new” data structure are encountered.

Note that all tables using any file format supported by a release can be read or written (assuming the user
has sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses specific file formats, even if they are supported by a given release.
Such a setting might be used to preserve backward compatibility, but it does not prevent accessing any
table that uses any supported format.

As noted in Section 4.2, “Named File Formats”, versions of InnoDB older than 5.0.21 cannot reliably use
database files created by newer versions if a new file format was used when a table was created. To

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Identifying the File Format in Use

23

prevent various error conditions or corruptions, InnoDB checks file format compatibility when it opens a
file (e.g., upon first access to a table). If the currently running version of InnoDB does not support the file
format identified by the table type in the InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1'doesn't exist

Furthermore, InnoDB writes a message to the error log:

InnoDB: table test/t1: unknown table type 33

The table type should be equal to the tablespace flags, which contains the file format version as discussed
in Section 4.5, “Identifying the File Format in Use”.

Versions of InnoDB prior to 4.1 did not include table format identifiers in the database files, and versions
prior to 5.0.21 did not include a table format compatibility check. Therefore, there is no way to ensure
proper operations if a table in a “too new” format is used with versions of InnoDB prior to 5.0.21.

The new file format management capability introduced with the InnoDB Plugin (comprising tablespace
tagging and run-time checks) allows InnoDB to verify as soon as possible that the running version of
software can properly process the tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section still
applies.

Users are strongly urged not to use database files that contain “Barracuda” file format tables with releases
of InnoDB older than the InnoDB Plugin. It is possible to “downgrade” such tables to the “Antelope” format
(that the built-in InnoDB in MySQL up to version 5.1 supports) with the procedure described in Section 4.6,
“Downgrading the File Format”.

4.5 Identifying the File Format in Use

Although you may have enabled a given innodb_file_format at a particular time, unless you create a
new table, the database file format is unchanged. If you do create a new table, the tablespace containing
the table is tagged with the “earliest” or “simplest” file format that is required for the table's features. For
example, if you enable file format “Barracuda”, and create a new table that is not compressed and does
not use ROW_FORMAT=DYNAMIC, the new tablespace that contains the table is tagged as using file format
“Antelope”.

It is easy to identify the file format used by a given tablespace or table. The table uses the “Barracuda”
format if the Row_format reported by SHOW CREATE TABLE or INFORMATION_SCHEMA.TABLES is one
of 'Compressed' or 'Dynamic'. (Please note that the Row_format is a separate column, and ignore
the contents of the Create_options column, which may contain the string ROW_FORMAT.) If the table in
a tablespace uses neither of those features, the file uses the format supported by prior releases of InnoDB,
now called file format “Antelope”. Then, the Row_format is one of 'Redundant' or 'Compact'.

The file format identifier is written as part of the tablespace flags (a 32-bit number) in the *.ibd file in the
4 bytes starting at position 54 of the file, most significant byte first. (The first byte of the file is byte zero.)
On some systems, you can display these bytes in hexadecimal with the command od -t x1 -j 54 -
N 4 tablename.ibd. If all bytes are zero, the tablespace uses the “Antelope” file format (which is the
format used by the standard built-in InnoDB in MySQL up to version 5.1). Otherwise, the least significant
bit should be set in the tablespace flags, and the file format identifier is written in the bits 5 through 11.
(Divide the tablespace flags by 32 and take the remainder after dividing the integer part of the result by
128.)

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Downgrading the File Format

24

4.6 Downgrading the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to create
its table and indexes. The way to downgrade the tablespace is to re-create the table and its indexes. The
easiest way to recreate a table and its indexes is to use the command:

ALTER TABLE t ROW_FORMAT=COMPACT;

on each table that you want to downgrade. The COMPACT row format uses the file format “Antelope”. It was
introduced in MySQL 5.0.3.

4.7 Future InnoDB File Formats

The file format used by the standard built-in InnoDB in MySQL 5.1 is the “Antelope” format, and the new
file format introduced with the InnoDB Plugin 1.0 is the “Barracuda” format. No definitive plans have been
made to introduce new features that would require additional new file formats. However, the file format
mechanism introduced with the InnoDB Plugin allows for further enhancements.

For the sake of completeness, these are the file format names that might be used for future file formats:
Antelope, Barracuda, Cheetah, Dragon, Elk, Fox, Gazelle, Hornet, Impala, Jaguar, Kangaroo, Leopard,
Moose, Nautilus, Ocelot, Porpoise, Quail, Rabbit, Shark, Tiger, Urchin, Viper, Whale, Xenops, Yak and
Zebra. These file formats correspond to the internal identifiers 0..25.

25

Chapter 5 InnoDB Row Storage and Row Formats

Table of Contents
5.1 Storage of Variable-Length Columns ... 25
5.2 COMPACT and REDUNDANT Row Formats ... 25
5.3 DYNAMIC Row Format .. 25
5.4 Specifying a Table's Row Format .. 26

5.1 Storage of Variable-Length Columns

All data in InnoDB is stored in database pages comprising a B-tree index (the so-called clustered index or
primary key index). The essential idea is that the nodes of the B-tree contain, for each primary key value
(whether user-specified or generated or chosen by the system), the values of the remaining columns of the
row as well as the key. In some other database systems, a clustered index is called an “index-organized
table”. Secondary indexes in InnoDB are also B-trees, containing pairs of values of the index key and the
value of the primary key, which acts as a pointer to the row in the clustered index.

There is an exception to this rule. Variable-length columns (such as BLOB and VARCHAR) that are too long
to fit on a B-tree page are stored on separately allocated disk (“overflow”) pages. We call these “off-page
columns”. The values of such columns are stored on singly-linked lists of overflow pages, and each such
column has its own list of one or more overflow pages. In some cases, all or a prefix of the long column
values is stored in the B-tree, to avoid wasting storage and eliminating the need to read a separate page.

The new “Barracuda” file format provides a new option (KEY_BLOCK_SIZE) to control how much column
data is stored in the clustered index, and how much is placed on overflow pages.

5.2 COMPACT and REDUNDANT Row Formats

Previous versions of InnoDB used an unnamed file format (now called “Antelope”) for database files. With
that format, tables were defined with ROW_FORMAT=COMPACT (or ROW_FORMAT=REDUNDANT) and InnoDB
stored up to the first 768 bytes of variable-length columns (such as BLOB and VARCHAR) in the index record
within the B-tree node, with the remainder stored on the overflow page(s).

To preserve compatibility with those prior versions, tables created with the InnoDB Plugin use the prefix
format, unless one of ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED is specified (or implied) on
the CREATE TABLE command.

With the “Antelope” file format, if the value of a column is not longer than 768 bytes, no overflow page
is needed, and some savings in I/O may result, since the value is in the B-tree node. This works well
for relatively short BLOBs, but may cause B-tree nodes to fill with data rather than key values, thereby
reducing their efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full of
data, and contain too few rows, making the entire index less efficient than if the rows were shorter or if the
column values were stored off-page.

5.3 DYNAMIC Row Format

When innodb_file_format is set to “Barracuda” and a table is created with ROW_FORMAT=DYNAMIC or
ROW_FORMAT=COMPRESSED, long column values are stored fully off-page, and the clustered index record
contains only a 20-byte pointer to the overflow page.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Specifying a Table's Row Format

26

Whether any columns are stored off-page depends on the page size and the total size of the row. When
the row is too long, InnoDB chooses the longest columns for off-page storage until the clustered index
record fits on the B-tree page.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as
do the COMPACT and REDUNDANT formats), but this new format avoids the problem of filling B-tree nodes
with a large number of data bytes of long columns. The DYNAMIC format is predicated on the idea that if a
portion of a long data value is stored off-page, it is usually most efficient to store all of the value off-page.
With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the number of
overflow pages needed for any given row.

5.4 Specifying a Table's Row Format

The row format used for a table is specified with the ROW_FORMAT clause of the CREATE TABLE and
ALTER TABLE commands. Note that COMPRESSED format implies DYNAMIC format. See Section 3.2,
“Enabling Compression for a Table” for more details on the relationship between this clause and other
clauses of these commands.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

27

Chapter 6 InnoDB INFORMATION_SCHEMA Tables

Table of Contents
6.1 Overview of InnoDB Support in INFORMATION_SCHEMA ... 27
6.2 Information Schema Tables about Compression ... 27

6.2.1 INNODB_CMP and INNODB_CMP_RESET ... 27
6.2.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET .. 28
6.2.3 Using the Compression Information Schema Tables .. 29

6.3 Information Schema Tables about Transactions ... 29
6.3.1 INNODB_TRX ... 29
6.3.2 INNODB_LOCKS ... 30
6.3.3 INNODB_LOCK_WAITS ... 31
6.3.4 Using the Transaction Information Schema Tables .. 31

6.4 Notes on Locking in InnoDB ... 36
6.4.1 Understanding InnoDB Locking ... 36
6.4.2 Rapidly Changing Internal Data .. 36
6.4.3 Possible Inconsistency with PROCESSLIST ... 37

6.1 Overview of InnoDB Support in INFORMATION_SCHEMA

The INFORMATION_SCHEMA tables INNODB_BUFFER_PAGE, INNODB_BUFFER_PAGE_LRU,
INNODB_BUFFER_POOL_STATS, INNODB_CMP, INNODB_CMP_RESET, INNODB_CMPMEM,
INNODB_CMPMEM_RESET, INNODB_TRX, INNODB_LOCKS and INNODB_LOCK_WAITS contain live
information about the InnoDB buffer pool, compressed InnoDB tables, the compressed InnoDB buffer
pool, all transactions currently executing inside InnoDB, the locks that transactions hold and those that are
blocking transactions waiting for access to a resource (a table or row).

Note that the Information Schema tables are themselves plugins to the MySQL server. As such they need
to be INSTALLed as described in Chapter 9, Installing the InnoDB Plugin. If they are installed, but the
InnoDB storage engine plugin is not installed, these tables appear to be empty.

Following is a description of the new Information Schema tables introduced in the InnoDB Plugin, and
some examples of their use.

6.2 Information Schema Tables about Compression

Two new pairs of Information Schema tables provided by the InnoDB Plugin can give you some insight
into how well compression is working overall. One pair of tables contains information about the number
of compression operations and the amount of time spent performing compression. Another pair of tables
contains information on the way memory is allocated for compression.

6.2.1 INNODB_CMP and INNODB_CMP_RESET

The tables INNODB_CMP and INNODB_CMP_RESET contain status information on the operations related
to compressed tables, which are covered in Chapter 3, InnoDB Data Compression. The compressed page
size is in the column PAGE_SIZE.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archived the output
of INNODB_CMP_RESET every 60 minutes, it would show the hourly statistics. If you never read

http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-page-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-page-lru-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool-stats-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmpmem-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-lock-waits-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html

INNODB_CMPMEM and INNODB_CMPMEM_RESET

28

INNODB_CMP_RESET and monitored the output of INNODB_CMP instead, it would show the cumulated
statistics since InnoDB was started.

Table 6.1 Columns of INNODB_CMP and INNODB_CMP_RESET

Column name Description

PAGE_SIZE Compressed page size in bytes.

COMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
compressed. Pages are compressed whenever an empty page is created or
the space for the uncompressed modification log runs out.

COMPRESS_OPS_OK Number of times a B-tree page of the size PAGE_SIZE has been successfully
compressed. This count should never exceed COMPRESS_OPS.

COMPRESS_TIME Total time in seconds spent in attempts to compress B-tree pages of the size
PAGE_SIZE.

UNCOMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
uncompressed. B-tree pages are uncompressed whenever compression fails
or at first access when the uncompressed page does not exist in the buffer
pool.

UNCOMPRESS_TIME Total time in seconds spent in uncompressing B-tree pages of the size
PAGE_SIZE.

6.2.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

You may consider the tables INNODB_CMPMEM and INNODB_CMPMEM_RESET as the status information on
the compressed pages that reside in the buffer pool. Please consult Chapter 3, InnoDB Data Compression
for further information on compressed tables and the use of the buffer pool. The tables INNODB_CMP and
INNODB_CMP_RESET should provide more useful statistics on compression.

The InnoDB Plugin uses a so-called “buddy allocator” system to manage memory allocated to pages of
various sizes, from 1KB to 16KB. Each row of the two tables described here corresponds to a single page
size.

These two tables have identical contents, but reading from INNODB_CMPMEM_RESET resets the
statistics on relocation operations. For example, if every 60 minutes you archived the output of
INNODB_CMPMEM_RESET, it would show the hourly statistics. If you never read INNODB_CMPMEM_RESET
and monitored the output of INNODB_CMPMEM instead, it would show the cumulated statistics since InnoDB
was started.

Table 6.2 Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET

Column name Description

PAGE_SIZE Block size in bytes. Each record of this table describes blocks of this size.

PAGES_USED Number of blocks of the size PAGE_SIZE that are currently in use.

PAGES_FREE Number of blocks of the size PAGE_SIZE that are currently available for
allocation. This column shows the external fragmentation in the memory pool.
Ideally, these numbers should be at most 1.

RELOCATION_OPS Number of times a block of the size PAGE_SIZE has been relocated.
The buddy system can relocate the allocated “buddy neighbor” of a freed
block when it tries to form a bigger freed block. Reading from the table
INNODB_CMPMEM_RESET resets this count.

RELOCATION_TIME Total time in microseconds spent in relocating blocks of the size PAGE_SIZE.
Reading from the table INNODB_CMPMEM_RESET resets this count.

http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmpmem-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmpmem-table.html

Using the Compression Information Schema Tables

29

6.2.3 Using the Compression Information Schema Tables

Example 6.1 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Chapter 3, InnoDB
Data Compression, INNODB_CMP, and INNODB_CMPMEM).

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light workload.
The only compressed page size that the buffer pool contains is 8K. Compressing or uncompressing
pages has consumed less than a second since the time the statistics were reset, because the columns
COMPRESS_TIME and UNCOMPRESS_TIME are zero.

page size compress ops compress ops ok compress time uncompress ops uncompress time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool.

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under light
load. We can see that some memory is unusable due to fragmentation of the InnoDB memory
allocator for compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small
memory allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that
are allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this
low because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

6.3 Information Schema Tables about Transactions

Three new Information Schema tables introduced in the InnoDB Plugin make it much easier to monitor
transactions and diagnose possible locking problems. The three tables are INNODB_TRX, INNODB_LOCKS
and INNODB_LOCK_WAITS.

6.3.1 INNODB_TRX

Contains information about every transaction currently executing inside InnoDB, including whether the
transaction is waiting for a lock, when the transaction started, and the particular SQL statement the
transaction is executing.

http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmpmem-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-cmpmem-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-lock-waits-table.html

INNODB_LOCKS

30

Table 6.3 INNODB_TRX Columns

Column name Description

TRX_ID Unique transaction ID number, internal to InnoDB.

TRX_WEIGHT The weight of a transaction, reflecting (but not necessarily the
exact count of) the number of rows altered and the number of
rows locked by the transaction. To resolve a deadlock, InnoDB
selects the transaction with the smallest weight as the “victim” to
rollback. Transactions that have changed non-transactional tables are
considered heavier than others, regardless of the number of altered
and locked rows.

TRX_STATE Transaction execution state. One of 'RUNNING', 'LOCK WAIT',
'ROLLING BACK' or 'COMMITTING'.

TRX_STARTED Transaction start time; the transaction is created by executing a
transactional query.

TRX_REQUESTED_LOCK_ID ID of the lock the transaction is currently waiting for (if TRX_STATE is
'LOCK WAIT', otherwise NULL). Details about the lock can be found
by joining with INNODB_LOCKS on LOCK_ID.

TRX_WAIT_STARTED Time when the transaction started waiting on the lock (if TRX_STATE
is 'LOCK WAIT', otherwise NULL).

TRX_MYSQL_THREAD_ID MySQL thread ID. Can be used for joining with PROCESSLIST on ID.
See Section 6.4.3, “Possible Inconsistency with PROCESSLIST”.

TRX_QUERY The SQL query that is being executed by the transaction.

6.3.2 INNODB_LOCKS

Each transaction in InnoDB that is waiting for another transaction to release a lock
(INNODB_TRX.TRX_STATE='LOCK WAIT') is blocked by exactly one “blocking lock request”. That
blocking lock request is for a row or table lock held by another transaction in an incompatible mode.
The waiting or blocked transaction cannot proceed until the other transaction commits or rolls back,
thereby releasing the requested lock. For every blocked transaction, INNODB_LOCKS contains one row
that describes each lock the transaction has requested, and for which it is waiting. INNODB_LOCKS also
contains one row for each lock that is blocking another transaction, whatever the state of the transaction
that holds the lock ('RUNNING', 'LOCK WAIT', 'ROLLING BACK' or 'COMMITTING'). The lock that is
blocking a transaction is always held in a mode (read vs. write, shared vs. exclusive) incompatible with the
mode of requested lock.

Table 6.4 INNODB_LOCKS Columns

Column name Description

LOCK_ID Unique lock ID number, internal to InnoDB. Should be treated as an opaque string.
Although LOCK_ID currently contains TRX_ID, the format of the data in LOCK_ID
is not guaranteed to remain the same in future releases. You should not write
programs that parse the LOCK_ID value.

LOCK_TRX_ID ID of the transaction holding this lock. Details about the transaction can be found by
joining with INNODB_TRX on TRX_ID.

LOCK_MODE Mode of the lock. One of 'S', 'X', 'IS', 'IX', 'S,GAP', 'X,GAP', 'IS,GAP',
'IX,GAP', or 'AUTO_INC' for shared, exclusive, intention shared, intention
exclusive row locks, shared and exclusive gap locks, intention shared and intention
exclusive gap locks, and auto-increment table level lock, respectively. Refer to the

http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html

INNODB_LOCK_WAITS

31

Column name Description
sections InnoDB Lock Modes and The InnoDB Transaction Model and Locking of
the MySQL Manual for information on InnoDB locking.

LOCK_TYPE Type of the lock. One of 'RECORD' or 'TABLE' for record (row) level or table level
locks, respectively.

LOCK_TABLE Name of the table that has been locked or contains locked records.

LOCK_INDEX Name of the index if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_SPACE Tablespace ID of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_PAGE Page number of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_REC Heap number of the locked record within the page if LOCK_TYPE='RECORD',
otherwise NULL.

LOCK_DATA Primary key of the locked record if LOCK_TYPE='RECORD', otherwise NULL.
This column contains the value(s) of the primary key column(s) in the locked row,
formatted as a valid SQL string (ready to be copied to SQL commands). If there is
no primary key then the InnoDB internal unique row ID number is used. When the
page containing the locked record is not in the buffer pool (in the case that it was
paged out to disk while the lock was held), InnoDB does not fetch the page from
disk, to avoid unnecessary disk operations. Instead, LOCK_DATA is set to NULL.

6.3.3 INNODB_LOCK_WAITS

Using this table, you can tell which transactions are waiting for a given lock, or for which lock a given
transaction is waiting. This table contains one or more rows for each blocked transaction, indicating the
lock it has requested and any locks that are blocking that request. The REQUESTED_LOCK_ID refers to
the lock that a transaction is requesting, and the BLOCKING_LOCK_ID refers to the lock (held by another
transaction) that is preventing the first transaction from proceeding. For any given blocked transaction, all
rows in INNODB_LOCK_WAITS have the same value for REQUESTED_LOCK_ID and different values for
BLOCKING_LOCK_ID.

Table 6.5 INNODB_LOCK_WAITS Columns

Column name Description

REQUESTING_TRX_ID ID of the requesting transaction.

REQUESTED_LOCK_ID ID of the lock for which a transaction is waiting. Details about the lock can be
found by joining with INNODB_LOCKS on LOCK_ID.

BLOCKING_TRX_ID ID of the blocking transaction.

BLOCKING_LOCK_ID ID of a lock held by a transaction blocking another transaction from
proceeding. Details about the lock can be found by joining with
INNODB_LOCKS on LOCK_ID.

6.3.4 Using the Transaction Information Schema Tables

Example 6.2 Identifying Blocking Transactions

It is sometimes helpful to be able to identify which transaction is blocking another. You can use the
Information Schema tables to find out which transaction is waiting for another, and which resource is being
requested.

Suppose you have the following scenario, with three users running concurrently. Each user (or session)
corresponds to a MySQL thread, and executes one transaction after another. Consider the state of

http://dev.mysql.com/doc/refman/5.1/en/innodb-lock-modes.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-lock-waits-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html

Using the Transaction Information Schema Tables

32

the system when these users have issued the following commands, but none has yet committed its
transaction:

• User A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• User B:

SELECT b FROM t FOR UPDATE;

• User C:

SELECT c FROM t FOR UPDATE;

In this scenario, you can use this query to see who is waiting for whom:

SELECT r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
 FROM information_schema.innodb_lock_waits w
 INNER JOIN information_schema.innodb_trx b ON
 b.trx_id = w.blocking_trx_id
 INNER JOIN information_schema.innodb_trx r ON
 r.trx_id = w.requesting_trx_id;

waiting
trx id

waiting
thread

waiting query blocking
trx id

blocking
thread

blocking query

A4 6 SELECT b FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A4 6 SELECT b FROM t FOR
UPDATE

In the above result, you can identify users by the “waiting query” or “blocking query”. As you can see:

• User B (trx id 'A4', thread 6) and User C (trx id 'A5', thread 7) are both waiting for User A (trx id 'A3',
thread 5).

• User C is waiting for User B as well as User A.

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and INNODB_LOCK_WAITS.

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_TRX.

trx
id

trx
state

trx started trx
requested
lock id

trx wait started trx
weight

trx mysql
thread id

trx query

A3 RUN-
NING

2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

Using the Transaction Information Schema Tables

33

trx
id

trx
state

trx started trx
requested
lock id

trx wait started trx
weight

trx mysql
thread id

trx query

A4 LOCK
WAIT

2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT b FROM t
FOR UPDATE

A5 LOCK
WAIT

2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT c FROM t
FOR UPDATE

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCKS.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

A3:1:3:2 A3 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A4:1:3:2 A4 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A5:1:3:2 A5 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

Example 6.3 More Complex Example of Transaction Data in Information Schema Tables

Sometimes you would like to correlate the internal InnoDB locking information with session-level
information maintained by MySQL. For example, you might like to know, for a given InnoDB transaction ID,
the corresponding MySQL session ID and name of the user that may be holding a lock, and thus blocking
another transaction.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system.

As can be seen in the following tables, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables shows that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note that there may be an inconsistency between queries shown in the two tables
INNODB_TRX.TRX_QUERY and PROCESSLIST.INFO. The current transaction ID for a thread, and the

Using the Transaction Information Schema Tables

34

query being executed in that transaction, may be different in these two tables for any given thread. See
Section 6.4.3, “Possible Inconsistency with PROCESSLIST” for an explanation.

The following table shows the contents of INFORMATION_SCHEMA.PROCESSLIST in a system running a
heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update insert into t2
values …

257 root localhost test Query 3 update insert into t2
values …

130 root localhost test Query 0 update insert into t2
values …

61 root localhost test Query 1 update insert into t2
values …

8 root localhost test Query 1 update insert into t2
values …

4 root localhost test Query 0 preparing SELECT * FROM
processlist

2 root localhost test Sleep 566 NULL

The following table shows the contents of INFORMATION_SCHEMA.INNODB_TRX in a system running a
heavy workload.

trx id trx
state

trx started trx
requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

77F LOCK
WAIT

2008-01-15
13:10:16

77F:806 2008-01-15
13:10:16

1 876 insert into t09
(D, B, C) values
…

77E LOCK
WAIT

2008-01-15
13:10:16

77E:806 2008-01-15
13:10:16

1 875 insert into t09
(D, B, C) values
…

77D LOCK
WAIT

2008-01-15
13:10:16

77D:806 2008-01-15
13:10:16

1 874 insert into t09
(D, B, C) values
…

77B LOCK
WAIT

2008-01-15
13:10:16

77B:733:12:1 2008-01-15
13:10:16

4 873 insert into t09
(D, B, C) values
…

77A RUN-
NING

2008-01-15
13:10:16

NULL NULL 4 872 select b, c from
t09 where …

E56 LOCK
WAIT

2008-01-15
13:10:06

E56:743:6:2 2008-01-15
13:10:06

5 384 insert into t2
values …

E55 LOCK
WAIT

2008-01-15
13:10:06

E55:743:38:2 2008-01-15
13:10:13

965 257 insert into t2
values …

19C RUN-
NING

2008-01-15
13:09:10

NULL NULL 2900 130 insert into t2
values …

Using the Transaction Information Schema Tables

35

trx id trx
state

trx started trx
requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

E15 RUN-
NING

2008-01-15
13:08:59

NULL NULL 5395 61 insert into t2
values …

51D RUN-
NING

2008-01-15
13:08:47

NULL NULL 9807 8 insert into t2
values …

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS in a loaded
system

requesting trx id requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCKS in a system running a
heavy workload.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

77F:806 77F AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77E:806 77E AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77D:806 77D AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:806 77B AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:733
:12:1

77B X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

77A:733
:12:1

77A X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

E56:743:6:2 E56 S RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

E55:743:6:2 E55 X RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

Notes on Locking in InnoDB

36

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

E55:743
:38:2

E55 S RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

19C:743
:38:2

19C X RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

6.4 Notes on Locking in InnoDB

6.4.1 Understanding InnoDB Locking

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB establishes a
list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for table-level locks
transactions hold. If a second transaction wants to update a row or lock a table already locked by a prior
transaction in an incompatible mode, InnoDB adds a lock request for the row to the corresponding queue.
For a lock to be acquired by a transaction, all incompatible lock requests previously entered into the lock
queue for that row or table must be removed (the transactions holding or requesting those locks either
commit or rollback).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may be requesting a lock that is held by another transaction, in which case it is blocked by that
other transaction. The requesting transaction must wait for the transaction that holds the blocking lock to
commit or rollback. If a transaction is not waiting for a a lock, it is in the 'RUNNING' state. If a transaction
is waiting for a lock, it is in the 'LOCK WAIT' state.

The table INNODB_LOCKS holds one or more row for each 'LOCK WAIT' transaction, indicating any lock
requests that are preventing its progress. This table also contains one row describing each lock in a queue
of locks pending for a given row or table. The table INNODB_LOCK_WAITS shows which locks already held
by a transaction are blocking locks requested by other transactions.

6.4.2 Rapidly Changing Internal Data

The data exposed by the transaction and locking tables represent a glimpse into fast-changing data. This
is not like other (user) tables, where the data only changes when application-initiated updates occur. The
underlying data is internal system-managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading JOINs between the
INFORMATION_SCHEMA tables, InnoDB collects the required transaction and locking information into an
intermediate buffer whenever a SELECT on any of the tables is issued. This buffer is refreshed only if more
than 0.1 seconds has elapsed since the last time the buffer was read. The data needed to fill the three
tables is fetched atomically and consistently and is saved in this global internal buffer, forming a point-
in-time “snapshot”. If multiple table accesses occur within 0.1 seconds (as they almost certainly do when
MySQL processes a join among these tables), then the same snapshot is used to satisfy the query.

A correct result is returned when you JOIN any of these tables together in a single query, because the data
for the three tables comes from the same snapshot. Because the buffer is not refreshed with every query
of any of these tables, if you issue separate queries against these tables within a tenth of a second, the
results are the same from query to query. On the other hand, two separate queries of the same or different
tables issued more than a tenth of a second apart may see different results, since the data come from
different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-lock-waits-table.html

Possible Inconsistency with PROCESSLIST

37

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are allowed to
SELECT from them.

6.4.3 Possible Inconsistency with PROCESSLIST

As just described, while the transaction and locking data is correct and consistent when these
INFORMATION_SCHEMA tables are populated, the underlying data changes so fast that similar glimpses
at other, similarly fast-changing data, may not be in sync. Thus, you should be careful in comparing
the data in the InnoDB transaction and locking tables with that in the The INFORMATION_SCHEMA
PROCESSLIST Table. The data from the PROCESSLIST table does not come from the same snapshot
as the data about locking and transactions. Even if you issue a single SELECT (JOINing INNODB_TRX
and PROCESSLIST, for example), the content of those tables is generally not consistent. INNODB_TRX
may reference rows that are not present in PROCESSLIST or the currently executing SQL query of a
transaction, shown in INNODB_TRX.TRX_QUERY may be different from the one in PROCESSLIST.INFO.
The query in INNODB_TRX is always consistent with the rest of INNODB_TRX, INNODB_LOCKS and
INNODB_LOCK_WAITS when the data comes from the same snapshot.

http://dev.mysql.com/doc/refman/5.1/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.1/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-lock-waits-table.html

38

39

Chapter 7 Performance and Scalability Enhancements

Table of Contents
7.1 Overview .. 39
7.2 Faster Locking for Improved Scalability .. 40
7.3 Using Operating System Memory Allocators ... 40
7.4 Controlling InnoDB Insert Buffering .. 41
7.5 Controlling Adaptive Hash Indexing ... 42
7.6 Changes Regarding Thread Concurrency .. 42
7.7 Changes in the Read Ahead Algorithm .. 43
7.8 Multiple Background I/O Threads .. 44
7.9 Group Commit .. 44
7.10 Controlling the Master Thread I/O Rate .. 45
7.11 Controlling the Flushing Rate of Dirty Pages .. 45
7.12 Using the PAUSE instruction in InnoDB spin loops ... 46
7.13 Control of Spin Lock Polling .. 46
7.14 Making Buffer Cache Scan Resistant ... 46

7.14.1 Guidelines for innodb_old_blocks_pct and innodb_old_blocks_time 48
7.15 Improvements to Crash Recovery Performance .. 48

7.1 Overview
InnoDB has always been highly efficient, and includes several unique architectural elements to assure high
performance and scalability. InnoDB Plugin 1.0.8 includes several new features that take better advantage
of recent advances in operating systems and hardware platforms, such as multi-core processors and
improved memory allocation systems. In addition, this release permits you to better control the use of some
InnoDB internal subsystems to achieve the best performance with your workload.

InnoDB Plugin 1.0.8 includes new capabilities in these areas:

• Section 7.2, “Faster Locking for Improved Scalability”

• Section 7.3, “Using Operating System Memory Allocators”

• Section 7.4, “Controlling InnoDB Insert Buffering”

• Section 7.5, “Controlling Adaptive Hash Indexing”

• Section 7.6, “Changes Regarding Thread Concurrency”

• Section 7.7, “Changes in the Read Ahead Algorithm”

• Section 7.8, “Multiple Background I/O Threads”

• Section 7.9, “Group Commit”

• Section 7.10, “Controlling the Master Thread I/O Rate”

• Section 7.11, “Controlling the Flushing Rate of Dirty Pages”

• Section 7.12, “Using the PAUSE instruction in InnoDB spin loops”

• Section 7.13, “Control of Spin Lock Polling”

Faster Locking for Improved Scalability

40

• Section 7.14, “Making Buffer Cache Scan Resistant”

• Section 7.15, “Improvements to Crash Recovery Performance”

7.2 Faster Locking for Improved Scalability

In MySQL and InnoDB, multiple threads of execution access shared data structures. InnoDB synchronizes
these accesses with its own implementation of mutexes and read/write locks. InnoDB has historically
protected the internal state of a read/write lock with an InnoDB mutex. On Unix and Linux platforms, the
internal state of an InnoDB mutex is protected by a Pthreads mutex, as in IEEE Std 1003.1c (POSIX.1c).

On many platforms, there is a more efficient way to implement mutexes and read/write locks. Atomic
operations can often be used synchronize the actions of multiple threads more efficiently than Pthreads.
Each operation to acquire or release a lock can be done in fewer CPU instructions, and thus result in less
wasted time when threads are contending for access to shared data structures. This in turn means greater
scalability on multi-core platforms.

Beginning with InnoDB Plugin 1.0.3, InnoDB implements mutexes and read/write locks with the built-in
functions provided by the GNU Compiler Collection (GCC) for atomic memory access instead of using the
Pthreads approach previously used. More specifically, an InnoDB Plugin that is compiled with GCC version
4.1.2 or later will use the atomic builtins instead of a pthread_mutex_t to implement InnoDB mutexes
and read/write locks.

On 32-bit Microsoft Windows, InnoDB has implemented mutexes (but not read/write locks) with hand-
written assembler instructions. Beginning with Microsoft Windows 2000, it is possible to use functions
for Interlocked Variable Access that are similar to the built-in functions provided by GCC. Beginning with
InnoDB Plugin 1.0.4, InnoDB makes use of the Interlocked functions on Windows. Unlike the old hand-
written assembler code, the new implementation supports read/write locks and 64-bit platforms.

Solaris 10 introduced library functions for atomic operations. Beginning with InnoDB Plugin 1.0.4, when
InnoDB is compiled on Solaris 10 with a compiler that does not support the built-in functions provided by
the GNU Compiler Collection (GCC) for atomic memory access, the library functions will be used.

This change improves the scalability of InnoDB on multi-core systems. Note that the user does not have
to set any particular parameter or option to take advantage of this new feature. This feature is enabled
out-of-the-box on the platforms where it is supported. On platforms where the GCC, Windows, or Solaris
functions for atomic memory access are not available, InnoDB will use the traditional Pthreads method of
implementing mutexes and read/write locks.

When MySQL starts, InnoDB will write a message to the log file indicating whether atomic memory access
will be used for mutexes, for mutexes and read/write locks, or neither. If suitable tools are used to build the
InnoDB Plugin and the target CPU supports the atomic operations required, InnoDB will use the built-in
functions for mutexing. If, in addition, the compare-and-swap operation can be used on thread identifiers
(pthread_t), then InnoDB will use the instructions for read-write locks as well.

Note: If you are building from source, see Section 9.4.1, “Building the InnoDB Plugin on Linux or
Unix” [66] to ensure that your build process properly takes advantage of your platform capabilities.

7.3 Using Operating System Memory Allocators

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the mem
subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB also

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://msdn.microsoft.com/en-us/library/ms684122(VS.85).aspx
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

Controlling InnoDB Insert Buffering

41

implements a wrapper interface around the system allocator (malloc and free) that is likewise guarded
by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating
systems. New memory allocators perform better and are more scalable than they were in the past.
The leading high-performance memory allocators include Hoard, libumem, mtmalloc, ptmalloc,
tbbmalloc, and TCMalloc. Most workloads, especially those where memory is frequently allocated
and released (such as multi-table joins) will benefit from using a more highly tuned memory allocator as
opposed to the internal, InnoDB-specific memory allocator.

Beginning with InnoDB Plugin 1.0.3, you control whether InnoDB uses its own memory allocator or
an allocator of the operating system, by setting the value of the new system configuration parameter
innodb_use_sys_malloc in the MySQL option file (my.cnf or my.ini). If set to ON or 1 (the default),
InnoDB will use the malloc and free functions of the underlying system rather than manage memory
pools itself. This parameter is not dynamic, and takes effect only when the system is started. To continue
to use the InnoDB memory allocator in InnoDB Plugin, you will have to set innodb_use_sys_malloc to
0.

Note that when the InnoDB memory allocator is disabled, InnoDB will ignore the value of the parameter
innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory pool
for satisfying allocation requests without having to fall back to the system memory allocator. When the
InnoDB memory allocator is disabled, all such allocation requests will be fulfilled by the system memory
allocator.

Furthermore, since InnoDB cannot track all memory use when the system memory allocator is used
(innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of the
SHOW ENGINE INNODB STATUS command will only include the buffer pool statistics in the “Total memory
allocated”. Any memory allocated using the mem subsystem or using ut_malloc will be excluded.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as making
the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library that implements
the allocator. On other systems, some relinking may be necessary. Please refer to the documentation of
the memory allocator library of your choice.

7.4 Controlling InnoDB Insert Buffering

When INSERTs are done to a table, often the values of indexed columns (particularly the values of
secondary keys) are not in sorted order. This means that the inserts of such values into secondary B-tree
indexes is “random”, and this can cause excessive i/o if the entire index does not fit in memory. InnoDB
has an insert buffer that caches changes to secondary index entries when the relevant page is not in the
buffer pool, thus avoiding I/O operations by not reading in the page from the disk. The buffered changes
are written into a special insert buffer tree and are subsequently merged when the page is loaded to the
buffer pool. The InnoDB main thread merges buffered changes when the server is nearly idle.

Usually, this process will result in fewer disk reads and writes, especially during bulk inserts. However, the
insert buffer tree will occupy a part of the buffer pool. If the working set almost fits in the buffer pool, it may
be useful to disable insert buffering. If the working set entirely fits in the buffer pool, insert buffering will not
be used anyway, because the index would exist in memory.

Beginning with InnoDB Plugin 1.0.3, you can control whether InnoDB performs insert buffering
with the system configuration parameter innodb_change_buffering. The allowed values of
innodb_change_buffering are none (do not buffer any operations) and inserts (buffer insert
operations, the default). You can set the value of this parameter in the MySQL option file (my.cnf or
my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_additional_mem_pool_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering

Controlling Adaptive Hash Indexing

42

Changing the setting affects the buffering of new operations; the merging of already buffered entries is not
affected.

7.5 Controlling Adaptive Hash Indexing

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash
indexes rather than B-tree lookups. InnoDB monitors searches on each index defined for a table. If it
notices that certain index values are being accessed frequently, it automatically builds an in-memory hash
table for that index. Based on the pattern of searches that InnoDB observes, it will build a hash index using
a prefix of the index key. The prefix of the key can be any length, and it may be that only a subset of the
values in the B-tree will appear in the hash index. InnoDB builds hash indexes on demand for those pages
of the index that are often accessed.

The adaptive hash index mechanism allows InnoDB to take advantage of large amounts of memory,
something typically done only by database systems specifically designed for databases that reside entirely
in memory. Normally, the automatic building and use of adaptive hash indexes will improve performance.
However, sometimes, the read/write lock that guards access to the adaptive hash index may become a
source of contention under heavy workloads, such as multiple concurrent joins.

You can monitor the use of the adaptive hash index and the contention for its use in the “SEMAPHORES”
section of the output of the SHOW ENGINE INNODB STATUS command. If you see many threads waiting
on an RW-latch created in btr0sea.c, then it might be useful to disable adaptive hash indexing.

The configuration parameter innodb_adaptive_hash_index can be set to disable or enable the
adaptive hash index. See Section 8.3.4, “Dynamically Changing innodb_adaptive_hash_index” for
details.

7.6 Changes Regarding Thread Concurrency

InnoDB uses operating system threads to process requests from user transactions. (Transactions may
issue many requests to InnoDB before they commit or roll back.) On today's modern operating systems
and servers with multi-core processors, where context switching is efficient, most workloads will run well
without any limit on the number of concurrent threads. Thanks to several scalability improvements in
InnoDB Plugin 1.0.3, and further changes in release 1.0.4, there should be less need to artificially limit the
number of concurrently executing threads inside InnoDB.

However, for some situations, it may be helpful to minimize context switching between threads. InnoDB
can use a number of techniques to limit the number of concurrently executing operating system threads
(and thus the number of requests that are processed at any one time). When InnoDB receives a new
request from a user session, if the number of threads concurrently executing is at a pre-defined limit, the
new request will sleep for a short time before it tries again. A request that cannot be rescheduled after the
sleep is put in a first-in/first-out queue and eventually will be processed. Threads waiting for locks are not
counted in the number of concurrently executing threads.

The limit on the number of concurrent threads is given by the settable global variable
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads will sleep for a number of microseconds, set by the system configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and the InnoDB Plugin. Starting
with InnoDB Plugin 1.0.3, the default value of innodb_thread_concurrency is 0, so that by default
there is no limit on the number of concurrently executing threads, as shown in Table 7.1, “Changes to
innodb_thread_concurrency”.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_sleep_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency

Changes in the Read Ahead Algorithm

43

Table 7.1 Changes to innodb_thread_concurrency

InnoDB Version MySQL Version Default
value

Default limit
of concurrent
threads

Value to allow
unlimited threads

Built-in Earlier than 5.1.11 20 No limit 20 or higher

Built-in 5.1.11 and newer 8 8 0

InnoDB Plugin before 1.0.3 (corresponding to
Plugin)

8 8 0

InnoDB Plugin 1.0.3 and
newer

(corresponding to
Plugin)

0 No limit 0

Note that InnoDB will cause threads to sleep only when the number of concurrent threads is limited.
When there is no limit on the number of threads, all will contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads, InnoDB reduces context switching overhead by permitting
multiple requests made during the execution of a single SQL statement to enter InnoDB without observing
the limit set by innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise
multiple row operations within InnoDB, InnoDB assigns “tickets” that allow a thread to be scheduled
repeatedly with minimal overhead.

When starting to execute a new SQL statement, a thread will have no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it will be assigned
a number of tickets that it can use for subsequently entering InnoDB. If the tickets run out,
innodb_thread_concurrency will be observed again and further tickets will be assigned. The number
of tickets to assign is specified by the global option innodb_concurrency_tickets, which is 500 by
default. A thread that is waiting for a lock will be given one ticket once the lock becomes available.

The correct values of these variables are dependent on your environment and workload. You will need
to try a range of different values to determine what value works for your applications. Before limiting the
number of concurrently executing threads, you should review configuration options that may improve the
performance of InnoDB on multi-core and multi-processor computers, such as innodb_use_sys_malloc
and innodb_adaptive_hash_index.

7.7 Changes in the Read Ahead Algorithm

A read ahead request is an I/O request to prefetch multiple pages in the buffer cache asynchronously
in anticipation that these pages will be needed in the near future. InnoDB has historically used two read
ahead algorithms to improve I/O performance.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request to
prefetch the remaining pages of the extent. This feature was initially removed from InnoDB starting
with InnoDB Plugin 1.0.4 and turned off with MySQL 5.5. It is available once again starting in MySQL
5.1.59 and 5.5.16 and higher, turned off by default. To enable this feature, set the configuration variable
innodb_random_read_ahead.

Linear read ahead is based on the access pattern of the pages in the buffer cache, not just their number.
In releases before 1.0.4, if most pages belonging to some extent are accessed sequentially, InnoDB
will issue an asynchronous prefetch request for the entire next extent when it reads in the last page of
the current extent. Beginning with InnoDB Plugin 1.0.4, users can control when InnoDB performs a read

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_sleep_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_concurrency_tickets
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_random_read_ahead

Multiple Background I/O Threads

44

ahead, by adjusting the number of sequential page accesses required to trigger an asynchronous read
request using the new configuration parameter innodb_read_ahead_threshold.

If the number of pages read from an extent of 64 pages is greater or equal to
innodb_read_ahead_threshold, InnoDB will initiate an asynchronous read ahead of the entire
following extent. Thus, this parameter controls how sensitive InnoDB is to the pattern of page accesses
within an extent in deciding whether to read the following extent asynchronously. The higher the value, the
more strict will be the access pattern check. For example, if you set the value to 48, InnoDB will trigger a
linear read ahead request only when 48 pages in the current extent have been accessed sequentially. If
the value is 8, InnoDB would trigger an asynchronous read ahead even if as few as 8 pages in the extent
were accessed sequentially.

The new configuration parameter innodb_read_ahead_threshold may be set to any value from 0-64.
The default value is 56, meaning that an asynchronous read ahead is performed only when 56 of the 64
pages in the extent are accessed sequentially. You can set the value of this parameter in the MySQL
option file (my.cnf or my.ini), or change it dynamically with the SET GLOBAL command, which requires the
SUPER privilege.

Starting with InnoDB Plugin 1.0.5 more statistics are provided through SHOW ENGINE INNODB STATUS
command to measure the effectiveness of the read ahead algorithm. See Section 8.9, “More Read Ahead
Statistics” for more information.

7.8 Multiple Background I/O Threads

InnoDB uses background threads to service various types of I/O requests. Starting from InnoDB
Plugin 1.0.4, the number of background threads tasked with servicing read and write I/O on data
pages is configurable. In previous versions of InnoDB, there was only one thread each for read and
write on non-Windows platforms. On Windows, the number of background threads was controlled by
innodb_file_io_threads. The configuration parameter innodb_file_io_threads has been
removed in InnoDB Plugin 1.0.4. If you try to set a value for this parameter, a warning will be written to the
log file and the value will be ignored.

In place of innodb_file_io_threads, two new configuration parameters are introduced in
the InnoDB Plugin 1.0.4, which are effective on all supported platforms. The two parameters
innodb_read_io_threads and innodb_write_io_threads signify the number of background
threads used for read and write requests respectively. You can set the value of these parameters in the
MySQL option file (my.cnf or my.ini). These parameters cannot be changed dynamically. The default
value for these parameters is 4 and the permissible values range from 1-64.

The purpose of this change is to make InnoDB more scalable on high end systems. Each background
thread can handle up to 256 pending I/O requests. A major source of background I/O is the read ahead
requests. InnoDB tries to balance the load of incoming requests in such way that most of the background
threads share work equally. InnoDB also attempts to allocate read requests from the same extent to the
same thread to increase the chances of coalescing the requests together. If you have a high end I/O
subsystem and you see more than 64 times innodb_read_io_threads pending read requests in SHOW
ENGINE INNODB STATUS, then you may gain by increasing the value of innodb_read_io_threads.

7.9 Group Commit

InnoDB, like any other ACID compliant database engine, is required to flush the redo log of a transaction
before it is committed. Historically InnoDB used group commit functionality to group multiple such flush
requests together to avoid one flush for each commit. With group commit, InnoDB can issue a single write
to the log file to effectuate the commit action for multiple user transactions that commit at about the same
time, significantly improving throughput.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_write_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads

Controlling the Master Thread I/O Rate

45

Group commit in InnoDB worked until MySQL 4.x. With the introduction of support for the distributed
transactions and Two Phase Commit (2PC) in MySQL 5.0, group commit functionality inside InnoDB was
broken.

Beginning with InnoDB Plugin 1.0.4, the group commit functionality inside InnoDB works with the Two
Phase Commit protocol in MySQL. Re-enabling of the group commit functionality fully ensures that the
ordering of commit in the MySQL binlog and the InnoDB logfile is the same as it was before. It means it is
totally safe to use InnoDB Hot Backup with InnoDB Plugin 1.0.4.

Group commit is transparent to the user and nothing needs to be done by the user to take advantage of
this significant performance improvement.

7.10 Controlling the Master Thread I/O Rate
The master thread in InnoDB performs various tasks in the background. Most of these tasks are I/O related
like flushing of the dirty pages from the buffer cache or writing the buffered inserts to the appropriate
secondary indexes. The master thread attempts to perform these tasks in a way that does not adversely
affect the normal working of the server. It tries to estimate the free I/O bandwidth available and tune its
activities to take advantage of this free capacity. Historically, InnoDB has used a hard coded value of
100 IOPs (input/output operations per second) as the total I/O capacity of the server.

Beginning with InnoDB Plugin 1.0.4, a new configuration parameter is introduced to indicate the overall I/O
capacity available to InnoDB. The new parameter innodb_io_capacity should be set to approximately
the number of I/O operations that the system can perform per second. The value will of course depend
on your system configuration. When innodb_io_capacity is set, the master threads estimates the I/O
bandwidth available for background tasks based on the set value. Setting the value to 100 reverts to the
old behavior.

You can set the value of innodb_io_capacity to any number 100 or greater, and the default value
is 200. Typically, values around the previous default of 100 are appropriate for consumer-level storage
devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and SSDs benefit
from higher values. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini)
or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

7.11 Controlling the Flushing Rate of Dirty Pages
InnoDB performs certain tasks in the background, including flushing of dirty pages (those pages that have
been changed but are not yet written to the database files) from the buffer cache, a task performed by the
“master thread”. Currently, the master thread aggressively flushes buffer pool pages if the percentage of
dirty pages in the buffer pool exceeds innodb_max_dirty_pages_pct.

This behavior can cause temporary reductions in throughput when excessive buffer pool flushing takes
place, limiting the I/O capacity available for ordinary read and write activity. Beginning with release 1.0.4,
InnoDB Plugin uses a new algorithm to estimate the required rate of flushing based on the speed of redo
log generation and the current rate of flushing. The intent of this change is to smooth overall performance,
eliminating steep dips in throughput, by ensuring that buffer flush activity keeps up with the need to keep
the buffer pool “clean”.

Remember that InnoDB uses its log files in a circular fashion. To make a log file (or a portion of it)
reusable, InnoDB must flush to disk all dirty buffer pool pages whose redo entries are contained in that
portion of the log file. When required, InnoDB performs a so-called “sharp checkpoint” by flushing the
appropriate dirty pages to make space available in the log file. If a workload is write intensive, it will
generate a lot of redo information (writes to the log file). In this case, it is possible that available space
in the log files will be used up, even though innodb_max_dirty_pages_pct is not reached. This will
cause a sharp checkpoint, causing a temporary reduction in throughput.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_io_capacity
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_io_capacity
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_io_capacity
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_max_dirty_pages_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_max_dirty_pages_pct

Using the PAUSE instruction in InnoDB spin loops

46

Beginning with release 1.0.4, InnoDB Plugin uses a new heuristic-based algorithm to avoid such a
scenario. The heuristic is a function of the number of dirty pages in the buffer cache and the rate at which
redo is being generated. Based on this heuristic, the master thread will decide how many dirty pages to
flush from the buffer cache each second. This self adapting heuristic is able to deal with sudden changes in
the workload.

The primary aim of this feature is to smooth out I/O activity, avoiding sudden dips in throughput when
flushing activity becomes high. Internal benchmarking has also shown that this algorithm not only
maintains throughput over time, but can also improve overall throughput significantly.

Because adaptive flushing is a new feature that can significantly affect the I/O pattern of a workload, the
InnoDB Plugin introduces a new configuration parameter that can be used to disable this feature. The
default value of the new boolean parameter innodb_adaptive_flushing is TRUE, enabling the new
algorithm. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change
it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

7.12 Using the PAUSE instruction in InnoDB spin loops

Synchronization inside InnoDB frequently involves the use of spin loops (where, while waiting, InnoDB
executes a tight loop of instructions repeatedly to avoid having the InnoDB process and threads be
rescheduled by the operating system). If the spin loops are executed too quickly, system resources
are wasted, imposing a relatively severe penalty on transaction throughput. Most modern processors
implement the PAUSE instruction for use in spin loops, so the processor can be more efficient.

Beginning with 1.0.4, the InnoDB Plugin uses a PAUSE instruction in its spin loops on all platforms where
such an instruction is available. This technique increases overall performance with CPU-bound workloads,
and has the added benefit of minimizing power consumption during the execution of the spin loops.

Using the PAUSE instruction in InnoDB spin loops is transparent to the user. User does not have to do
anything to take advantage of this performance improvement.

7.13 Control of Spin Lock Polling

Many InnoDB mutexes and rw-locks are reserved for a short amount of time. On a multi-core system, it is
often more efficient for a thread to actively poll a mutex or rw-lock for a while before sleeping. If the mutex
or rw-lock becomes available during this polling period, the thread may continue immediately, in the same
time slice. Alas, if a shared object is being polled too frequently by multiple threads, it may result in “cache
ping-pong”, the shipping of cache lines between processors. InnoDB tries to avoid this by making threads
busy, waiting a random time between subsequent polls. The delay is implemented as a busy loop.

Starting with InnoDB Plugin 1.0.4, it is possible to control the maximum delay between sampling a mutex
or rw-lock using the new parameter innodb_spin_wait_delay. In the 100 MHz Pentium era, the unit
of delay used to be one microsecond. The duration of the delay loop depends on the C compiler and the
target processor. On a system where all processor cores share a fast cache memory, it might be useful to
reduce the maximum delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0.
On a system that consists of multiple processor chips, the shipping of cache lines can be slower and it may
be useful to increase the maximum delay.

The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic, global parameter
that can be specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the
command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired maximum
delay. Changing the setting requires the SUPER privilege.

7.14 Making Buffer Cache Scan Resistant

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_flushing
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_spin_wait_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_spin_wait_delay

Making Buffer Cache Scan Resistant

47

Historically, InnoDB has inserted newly read blocks into the middle of the list representing the buffer cache,
to avoid pollution of the cache due to excessive read-ahead. The idea is that the read-ahead algorithm
should not pollute the buffer cache by forcing the frequently accessed (“hot”) pages out of the LRU list. To
achieve this, InnoDB internally maintains a pointer at 3/8 from the tail of the LRU list, and all newly read
pages are inserted at this location in the LRU list. The pages are moved to the front of the list (the most-
recently used end) when they are accessed from the buffer cache for the first time. Thus pages that are
never accessed never make it to the front 5/8 of the LRU list.

The above arrangement logically divides the LRU list into two segments where the 3/8 pages downstream
of the insertion point are considered “old” and are desirable victims for LRU eviction. Starting with InnoDB
Plugin 1.0.5, this mechanism has been extended in two ways.

You can control the insertion point in the LRU list. A new configuration parameter
innodb_old_blocks_pct now controls the percentage of “old” blocks in the LRU list. The default value
of innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The permissible value
range is 5 to 95.

The optimization that keeps the buffer cache from being churned too much by read-ahead, is extended
to avoid similar problems resulting from table or index scans. During an index scan, a data page is
typically accessed a few times in quick succession and is then never touched again. InnoDB Plugin 1.0.5
introduces a new configuration parameter innodb_old_blocks_time which specifies the time window
(in milliseconds) after the first access to a page during which it can be accessed without being moved to
the front (most-recently used end) of the LRU list. The default value of innodb_old_blocks_time is 0,
corresponding to the original behavior of moving a page to the MRU end of the LRU list on first access in
the buffer pool.

Both the new parameters innodb_old_blocks_pct and innodb_old_blocks_time are dynamic,
global and can be specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the
SET GLOBAL command. Changing the setting requires the SUPER privilege.

To help you gauge the effect of setting these parameters, some additional statistics are reported by SHOW
ENGINE INNODB STATUS command. The BUFFER POOL AND MEMORY section now looks like:

Total memory allocated 1107296256; in additional pool allocated 0
Dictionary memory allocated 80360
Buffer pool size 65535
Free buffers 0
Database pages 63920
Old database pages 23600
Modified db pages 34969
Pending reads 32
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 414946, not young 2930673
1274.75 youngs/s, 16521.90 non-youngs/s
Pages read 486005, created 3178, written 160585
2132.37 reads/s, 3.40 creates/s, 323.74 writes/s
Buffer pool hit rate 950 / 1000, young-making rate 30 / 1000 not 392 / 1000
Pages read ahead 1510.10/s, evicted without access 0.00/s
LRU len: 63920, unzip_LRU len: 0
I/O sum[43690]:cur[221], unzip sum[0]:cur[0]

• Old database pages is the number of pages in the “old” segment of the LRU list.

• Pages made young and not young is the total number of “old” pages that have been made young or
not respectively.

• youngs/s and non-young/s is the rate at which page accesses to the “old” pages have resulted in
making such pages young or otherwise respectively since the last invocation of the command.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time

Guidelines for innodb_old_blocks_pct and innodb_old_blocks_time

48

• young-making rate and not provides the same rate but in terms of overall buffer cache accesses
instead of accesses just to the “old” pages.

Note

Per second averages provided in InnoDB Monitor output are based on the elapsed
time between the current time and the last time InnoDB Monitor output was printed.

7.14.1 Guidelines for innodb_old_blocks_pct and
innodb_old_blocks_time

The default values of both parameters leave the original behavior as of InnoDB Plugin 1.0.4 intact. To take
advantage of this feature, you must set different values.

Because the effects of these parameters can vary widely based on your hardware configuration, your data,
and the details of your workload, always benchmark to verify the effectiveness before changing these
settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer cache.

When scanning large tables that cannot fit entirely in the buffer pool, setting innodb_old_blocks_pct to
a small value keeps the data that is only read once from consuming a significant portion of the buffer pool.
For example, setting innodb_old_blocks_pct=5 restricts this data that is only read once to 5% of the
buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around within
the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even higher, such as
innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To arrive
at an optimal value, conduct your own benchmarks if the performance improvement from adjusting
innodb_old_blocks_pct is not sufficient.

7.15 Improvements to Crash Recovery Performance

Starting with InnoDB Plugin 1.0.7, a number of optimizations speed up certain steps of the recovery that
happens on the next startup after a crash. In particular, scanning the redo log and applying the redo log
are faster. You do not need to take any actions to take advantage of this performance enhancement. If you
kept the size of your logfiles artificially low because recovery took a long time, you can consider increasing
the logfile size.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct

49

Chapter 8 Changes for Flexibility, Ease of Use and Reliability

Table of Contents
8.1 Overview .. 49
8.2 Enabling New File Formats ... 49
8.3 Dynamic Control of System Configuration Parameters .. 50

8.3.1 Dynamically Changing innodb_file_per_table ... 50
8.3.2 Dynamically Changing innodb_stats_on_metadata ... 50
8.3.3 Dynamically Changing innodb_lock_wait_timeout ... 51
8.3.4 Dynamically Changing innodb_adaptive_hash_index ... 51

8.4 TRUNCATE TABLE Reclaims Space .. 51
8.5 InnoDB Strict Mode .. 52
8.6 Controlling Optimizer Statistics Estimation ... 52
8.7 Better Error Handling when Dropping Indexes .. 53
8.8 More Compact Output of SHOW ENGINE INNODB MUTEX ... 54
8.9 More Read Ahead Statistics .. 54

8.1 Overview

This chapter describes several changes in the InnoDB Plugin that offer new flexibility and improve ease of
use, reliability and performance:

• Section 8.2, “Enabling New File Formats”

• Section 8.3, “Dynamic Control of System Configuration Parameters”

• Section 8.4, “TRUNCATE TABLE Reclaims Space”

• Section 8.5, “InnoDB Strict Mode”

• Section 8.6, “Controlling Optimizer Statistics Estimation”

• Section 8.7, “Better Error Handling when Dropping Indexes”

• Section 8.8, “More Compact Output of SHOW ENGINE INNODB MUTEX”

• Section 8.9, “More Read Ahead Statistics”

8.2 Enabling New File Formats

The InnoDB Plugin introduces named file formats to improve compatibility between database file formats
and various InnoDB versions.

To create new tables that require a new file format, you must enable the new “Barracuda” file format, using
the configuration parameter innodb_file_format. The value of this parameter will determine whether
it will be possible to create a table or index using compression or the new DYNAMIC row format. If you omit
innodb_file_format or set it to “Antelope”, you preclude the use of new features that would make your
database inaccessible to the built-in InnoDB in MySQL 5.1 and prior releases.

You can set the value of innodb_file_format on the command line when you start mysqld, or in the
option file my.cnf (Unix operating systems) or my.ini (Windows). You can also change it dynamically
with the SET GLOBAL command.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Dynamic Control of System Configuration Parameters

50

Further information about managing file formats is presented in Chapter 4, InnoDB File-Format
Management.

8.3 Dynamic Control of System Configuration Parameters

With the InnoDB Plugin it now is possible to change certain system configuration parameters dynamically,
without shutting down and restarting the server as was previously necessary. This increases up-time and
facilitates testing of various options. You can now set these parameters dynamically:

• innodb_file_per_table

• innodb_stats_on_metadata

• innodb_lock_wait_timeout

• innodb_adaptive_hash_index

8.3.1 Dynamically Changing innodb_file_per_table

Since MySQL version 4.1, InnoDB has provided two options for how tables are stored on disk. You can
choose to create a new table and its indexes in the shared system tablespace (corresponding to the set of
files named ibdata files), along with other internal InnoDB system information. Or, you can choose to use
a separate file (an .ibd file) to store a new table and its indexes.

The tablespace style used for new tables is determined by the setting of the configuration parameter
innodb_file_per_table at the time a table is created. Previously, the only way to set this parameter
was in the MySQL option file (my.cnf or my.ini), and changing it required shutting down and restarting
the server. Beginning with the InnoDB Plugin, the configuration parameter innodb_file_per_table is
dynamic, and can be set ON or OFF using the SET GLOBAL command. The default setting is OFF, so new
tables and indexes are created in the system tablespace. Dynamically changing the value of this parameter
requires the SUPER privilege and immediately affects the operation of all connections.

Tables created when innodb_file_per_table is disabled cannot use the new compression capability,
or use the new row format DYNAMIC. Tables created when innodb_file_per_table is enabled can use
those new features, and each table and its indexes will be stored in a new .ibd file.

The ability to change the setting of innodb_file_per_table dynamically is useful for testing. As noted
above, the parameter innodb_file_format is also dynamic, and must be set to “Barracuda” to create
new compressed tables, or tables that use the new row format DYNAMIC. Since both parameters are
dynamic, it is easy to experiment with these table formats and the downgrade procedure described in
Chapter 11, Downgrading from the InnoDB Plugin without a system shutdown and restart.

Note that the InnoDB Plugin can add and drop a table's secondary indexes without re-creating the
table, but must recreate the table when you change the clustered (primary key) index (see Chapter 2,
Fast Index Creation in the InnoDB Storage Engine). When a table is recreated as a result of creating
or dropping an index, the table and its indexes will be stored in the shared system tablespace or in its
own .ibd file just as if it were created using a CREATE TABLE command (and depending on the setting of
innodb_file_per_table). When an index is created without rebuilding the table, the index is stored in
the same file as the clustered index, regardless of the setting of innodb_file_per_table.

8.3.2 Dynamically Changing innodb_stats_on_metadata

As noted in Section 8.6, “Controlling Optimizer Statistics Estimation”, the InnoDB Plugin allows you to
control the way in which InnoDB gathers information about the number of distinct values in an index key.
A related parameter, innodb_stats_on_metadata, has existed since MySQL release 5.1.17 to control

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_on_metadata
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_on_metadata

Dynamically Changing innodb_lock_wait_timeout

51

whether or not InnoDB performs statistics gathering when metadata statements are executed. See the
MySQL manual on InnoDB Startup Options and System Variables for details.

Beginning with release 1.0.2 of the InnoDB Plugin, it is possible to change the setting of
innodb_stats_on_metadata dynamically at runtime with the command SET GLOBAL
innodb_stats_on_metadata=mode, where mode is either ON or OFF (or 1 or 0). Changing this setting
requires the SUPER privilege and immediately affects the operation of all connections.

8.3.3 Dynamically Changing innodb_lock_wait_timeout

When a transaction is waiting for a resource, it will wait for the resource to become free, or stop waiting
and return with the error

ERROR HY000: Lock wait timeout exceeded; try restarting transaction

The length of time a transaction will wait for a resource before “giving up” is determined by the value
of the configuration parameter innodb_lock_wait_timeout. The default setting for this parameter
is 50 seconds. The minimum setting is 1 second, and values above 100,000,000 disable the timeout,
so a transaction will wait “forever”. Following a timeout, the SQL statement that was executing will be
rolled back. (In MySQL 5.0.12 and earlier, the transaction rolled back.) The user application may try the
statement again (usually after waiting for a while), or rollback the entire transaction and restart.

Before InnoDB Plugin 1.0.2, the only way to set this parameter was in the MySQL option file (my.cnf or
my.ini), and changing it required shutting down and restarting the server. Beginning with the InnoDB
Plugin 1.0.2, the configuration parameter innodb_lock_wait_timeout can be set at runtime with the
SET GLOBAL or SET SESSION commands. Changing the GLOBAL setting requires the SUPER privilege
and affects the operation of all clients that subsequently connect. Any client can change the SESSION
setting for innodb_lock_wait_timeout, which affects only that client.

8.3.4 Dynamically Changing innodb_adaptive_hash_index

As described in Section 7.5, “Controlling Adaptive Hash Indexing”, it may be desirable, depending on your
workload, to dynamically enable or disable the adaptive hash indexing scheme InnoDB uses to improve
query performance.

Version 5.1.24 of MySQL introduced the start-up option innodb_adaptive_hash_index that allows
the adaptive hash index to be disabled. It is enabled by default. Starting with InnoDB Plugin 1.0.3, the
parameter can be modified by the SET GLOBAL command, without restarting the server. Changing the
setting requires the SUPER privilege.

Disabling the adaptive hash index will empty the hash table immediately. Normal operations can continue
while the hash table is emptied, and executing queries that have been using the hash table will access
the index B-trees directly instead of attempting to utilize the hash index. When the adaptive hash index is
enabled, the hash table will be populated during normal operation.

8.4 TRUNCATE TABLE Reclaims Space
Starting with the InnoDB Plugin, when the user requests to TRUNCATE a table that is stored in an .ibd file
of its own (because innodb_file_per_table was enabled when the table was created), and if the table
is not referenced in a FOREIGN KEY constraint, the InnoDB Plugin will drop and re-create the table in a
new .ibd file. This operation is much faster than deleting the rows one by one, and will return disk space
to the operating system and reduce the size of page-level backups.

Previous versions of InnoDB would re-use the existing .ibd file, thus releasing the space only to InnoDB
for storage management, but not to the operating system. Note that when the table is truncated, the count
of rows affected by the TRUNCATE command is an arbitrary number.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_on_metadata
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table

InnoDB Strict Mode

52

Note: if there are referential constraints between the table being truncated and other tables, MySQL
instead automatically converts the TRUNCATE command to a DELETE command that operates row-by-row,
so that ON DELETE operations can occur on “child” tables.

8.5 InnoDB Strict Mode

To guard against ignored typos and syntax errors in SQL, or other unintended consequences of various
combinations of operational modes and SQL commands, the InnoDB Plugin provides a “strict mode” of
operations. In this mode, InnoDB will raise error conditions in certain cases, rather than issue a warning
and process the specified command (perhaps with some unintended defaults). This is analogous to
MySQL's sql_mode, which controls what SQL syntax MySQL will accept, and determines whether it will
silently ignore errors, or validate input syntax and data values. Note that there is no strict mode with the
built-in InnoDB, so some commands that execute without errors with the built-in InnoDB will generate
errors with the InnoDB Plugin, unless you disable strict mode.

In the InnoDB Plugin, the setting of InnoDB strict mode affects the handling of syntax errors on the CREATE
TABLE, ALTER TABLE and CREATE INDEX commands. Starting with InnoDB Plugin version 1.0.2, the
strict mode also enables a record size check, so that an INSERT or UPDATE will never fail due to the record
being too large for the selected page size.

Using the new clauses and settings for ROW_FORMAT and KEY_BLOCK_SIZE on CREATE TABLE and
ALTER TABLE commands and the CREATE INDEX can be confusing when not running in strict mode.
Unless you run in strict mode, InnoDB will ignore certain syntax errors and will create the table or index,
with only a warning in the message log. However if InnoDB strict mode is on, such errors will generate an
immediate error and the table or index will not be created, thus saving time by catching the error at the time
the command is issued.

The default for strict mode is off, but in the future, the default may be changed. It is best to start using
strict mode with the InnoDB Plugin, and make sure your SQL scripts use commands that do not generate
warnings or unintended effects.

InnoDB strict mode is set with the configuration parameter innodb_strict_mode, which can be specified
as on or off. You can set the value on the command line when you start mysqld, or in the configuration
file my.cnf (Unix operating systems) or my.ini (Windows). You can also enable or disable InnoDB
strict mode at runtime with the command SET [GLOBAL|SESSION] innodb_strict_mode=mode,
where mode is either ON or OFF. Changing the GLOBAL setting requires the SUPER privilege and affects
the operation of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_strict_mode, which affects only that client.

8.6 Controlling Optimizer Statistics Estimation

The MySQL query optimizer uses estimated statistics about key distributions to select or avoid using an
index in an execution plan, based on the relative selectivity of the index. Previously, InnoDB sampled 8
random pages from an index to get an estimate of the cardinality of (i.e., the number of distinct values in)
the index. (This page sampling technique is frequently described as “index dives”.) This small number of
page samples frequently was insufficient, and could give inaccurate estimates of an index's selectivity and
thus lead to poor choices by the query optimizer.

To give users control over the quality of the statistics estimate (and thus better information for
the query optimizer), the number of sampled pages now can be changed using the parameter
innodb_stats_sample_pages.

This feature addresses user requests such as that as expressed in MySQL Bug #25640: InnoDB Analyze
Table Should Allow User Selection of Index Dives.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://bugs.mysql.com/25640
http://bugs.mysql.com/25640

Better Error Handling when Dropping Indexes

53

You can change the number of sampled pages using the global parameter
innodb_stats_sample_pages, which can be set at runtime (i.e., it is a dynamic parameter). The default
value for this parameter is 8, preserving the same behavior as in past releases.

Note that the value of innodb_stats_sample_pages affects the index sampling for all tables and
indexes. You should also be aware that there are the following potentially significant impacts when you
change the index sample size:

• small values like 1 or 2 can result in very inaccurate estimates of cardinality

• values much larger than 8 (say, 100), can cause a big slowdown in the time it takes to open a table or
execute SHOW TABLE STATUS.

• the optimizer may choose very different query plans based on different estimates of index selectivity

Note that the cardinality estimation can be disabled for metadata commands such as SHOW TABLE
STATUS by executing the command SET GLOBAL innodb_stats_on_metadata=OFF (or 0). Before
InnoDB Plugin 1.0.2, this variable could only be set in the MySQL option file (my.cnf or my.ini), and
changing it required shutting down and restarting the server.

The cardinality (the number of different key values) in every index of a table is calculated when a table
is opened, at SHOW TABLE STATUS and ANALYZE TABLE and on other circumstances (like when the
table has changed too much). Note that all tables are opened, and the statistics are re-estimated, when
the mysql client starts if the auto-rehash setting is set on (the default). The auto-rehash feature enables
automatic name completion of database, table, and column names for interactive users. You may prefer
setting auto-rehash off to improve the start up time of the mysql client.

You should note that it does not make sense to increase the index sample size, then run ANALYZE
TABLE and decrease sample size to attempt to obtain better statistics. This is because the statistics
are not persistent. They are automatically recalculated at various times other than on execution of
ANALYZE TABLE. Sooner or later the “better” statistics calculated by ANALYZE running with a high value of
innodb_stats_sample_pages will be wiped away.

The estimated cardinality for an index will be more accurate with a larger number of samples, but each
sample might require a disk read, so you do not want to make the sample size too large. You should
choose a value for innodb_stats_sample_pages that results in reasonably accurate estimates for all
tables in your database without requiring excessive I/O.

Although it is not possible to specify the sample size on a per-table basis, smaller tables generally would
require fewer index samples than larger tables require. If your database has many large tables, you may
want to consider using a higher value for innodb_stats_sample_pages than if you have mostly smaller
tables.

8.7 Better Error Handling when Dropping Indexes

For efficiency, InnoDB requires an index to exist on foreign key columns so that UPDATE and DELETE
operations on a “parent” table can easily check for the existence or non-existence of corresponding rows
in the “child” table. To ensure that there is an appropriate index for such checks, MySQL will sometimes
implicitly create or drop such indexes as a side-effect of CREATE TABLE, CREATE INDEX, and ALTER
TABLE statements.

When you explicitly DROP an index, InnoDB will check that an index suitable for referential integrity
checking will still exist following the DROP of the index. InnoDB will prevent you from dropping the last
usable index for enforcing any given referential constraint. Users have been confused by this behavior, as
reported in MySQL Bug #21395.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages

More Compact Output of SHOW ENGINE INNODB MUTEX

54

In releases prior to InnoDB Plugin 1.0.2, attempts to drop the only usable index would result in an error
message such as

ERROR 1025 (HY000): Error on rename of './db2/#sql-18eb_3'
to './db2/foo'(errno: 150)

Beginning with InnoDB Plugin 1.0.2, this error condition is reported with a more friendly message:

ERROR 1553 (HY000): Cannot drop index 'fooIdx':
needed in a foreign key constraint

As a related matter, because all user data in InnoDB is maintained in the so-called “clustered index” (or
primary key index), InnoDB ensures that there is such an index for every table, even if the user does not
declare an explicit PRIMARY KEY. In such cases, InnoDB will create an implicit clustered index using the
first columns of the table that have been declared UNIQUE and NOT NULL.

When the InnoDB Plugin is used with a MySQL version earlier than 5.1.29, an attempt to drop an implicit
clustered index (the first UNIQUE NOT NULL index) will fail if the table does not contain a PRIMARY KEY.
This has been reported as MySQL Bug #31233. Attempts to use the DROP INDEX or ALTER TABLE
command to drop such an index will generate this error:

ERROR 42000: This table type requires a primary key

Beginning with MySQL 5.1.29 when using the InnoDB Plugin, attempts to drop such an index will copy
the table, rebuilding the index using a different UNIQUE NOT NULL group of columns or a system-
generated key. Note that all indexes will be re-created by copying the table, as described in Section 2.3,
“Implementation”.

In those versions of MySQL that are affected by this bug, one way to change an index of this type is
to create a new table and copy the data into it using INSERT INTO newtable SELECT * FROM
oldtable, and then DROP the old table and rename the new table.

However, if there are existing tables with references to the table whose index you are dropping, you
will first need to use the ALTER TABLE command to remove foreign key references from or to other
tables. Unfortunately, MySQL does not support dropping or creating FOREIGN KEY constraints, even
though dropping a constraint would be trivial. Therefore, if you use ALTER TABLE to add or remove a
REFERENCES constraint, the child table will be copied, rather than using “Fast Index Creation”.

8.8 More Compact Output of SHOW ENGINE INNODB MUTEX

The command SHOW ENGINE INNODB MUTEX displays information about InnoDB mutexes and rw-locks.
It can be a useful tuning aid on multi-core systems. However, with a big buffer pool, the size of the output
may be overwhelming. There is a mutex and rw-lock in each 16K buffer pool block. It is highly improbable
that an individual block mutex or rw-lock could become a performance bottleneck, and there are 65,536
blocks per gigabyte.

Starting with InnoDB Plugin 1.0.4, SHOW ENGINE INNODB MUTEX will skip the mutexes and rw-locks of
buffer pool blocks. Furthermore, it will not list any mutexes or rw-locks that have never been waited on
(os_waits=0). Therefore, SHOW ENGINE INNODB MUTEX only displays information about such mutexes
and rw-locks that does not belong to the buffer pool blocks and for whom there have been at least one OS
level wait.

8.9 More Read Ahead Statistics

As described in Section 7.7, “Changes in the Read Ahead Algorithm” a read ahead request is an
asynchronous IO request issued in anticipation that the page being read in will be used in near future.

http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

More Read Ahead Statistics

55

It can be very useful if a DBA has the information about how many pages are read in as part of read
ahead and how many of them are evicted from the buffer pool without ever being accessed. Based on this
information a DBA can then fine tune the degree of aggressiveness of the read ahead using the parameter
innodb_read_ahead_threshold.

Starting from InnoDB Plugin 1.0.5 two new status variables are added to the SHOW
STATUS output. These global status variables Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted indicate the number of pages read in as part of
read ahead and the number of such pages evicted without ever being accessed respectively. These
counters provide global values since the start of the server. Please also note that the status variables
Innodb_buffer_pool_read_ahead_rnd and Innodb_buffer_pool_read_ahead_seq have been
removed from the SHOW STATUS output.

In addition to the two counters mentioned above SHOW INNODB STATUS will also show the rate at which
the read ahead pages are being read in and the rate at which such pages are being evicted without being
accessed. The per second averages are based on the statistics collected since the last invocation of SHOW
INNODB STATUS and are displayed in the BUFFER POOL AND MEMORY section of the output.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold

56

57

Chapter 9 Installing the InnoDB Plugin

Table of Contents
9.1 Overview of Installing the InnoDB Plugin ... 57
9.2 Checking for Compatible Version Levels .. 58
9.3 Installing the Precompiled InnoDB Plugin as a Shared Library ... 58

9.3.1 Installing the InnoDB Plugin as a Shared Library on Unix or Linux 59
9.3.2 Installing the Binary InnoDB Plugin as a Shared Library on Microsoft Windows 62
9.3.3 Errors When Installing the InnoDB Plugin on Microsoft Windows .. 64

9.4 Building the InnoDB Plugin from Source Code ... 65
9.4.1 Building the InnoDB Plugin on Linux or Unix ... 66
9.4.2 Building the InnoDB Plugin on Microsoft Windows ... 67

9.5 Configuring the InnoDB Plugin .. 68
9.6 Frequently Asked Questions about Plugin Installation ... 69

9.6.1 Should I use the InnoDB-supplied plugin or the one that is included with MySQL 5.1.38 or
higher? ... 69
9.6.2 Why doesn't the MySQL service on Windows start after the replacement? 69
9.6.3 The Plugin is installed... now what? .. 69
9.6.4 Once the Plugin is installed, is it permanent? .. 69

9.1 Overview of Installing the InnoDB Plugin
You can acquire the plugin in these formats:

• As a platform-specific executable binary file that is dynamically linked or “plugged in” to the MySQL
server.

• In source code form, available under the GNU General Public License (GPL), version 2.

Notes:

While it is possible to use the source code to build a special version of MySQL
containing the InnoDB Plugin, we recommend you install the binary shared library
for the InnoDB Plugin instead, without building from source. Replacing the shared
library is simpler and much less error prone than building from source.

The InnoDB Plugin is included in the MySQL distribution, starting from MySQL
5.1.38. From MySQL 5.1.46 and up, this is the only download location for the
InnoDB Plugin; it is not available from the InnoDB web site. If you used any
scripts or configuration files with the earlier InnoDB Plugin from the InnoDB web
site, be aware that the filename of the shared library as supplied by MySQL
is ha_innodb_plugin.so or ha_innodb_plugin.dll, as opposed to
ha_innodb.so or ha_innodb.dll in the older Plugin downloaded from the
InnoDB web site. You might need to change the applicable file names in your
startup or configuration scripts.

This discussion pertains to using the InnoDB Plugin with the MySQL Community
Edition, whether source or binary. Except for download locations for MySQL
software, the procedures documented here should work without change when you
use MySQL Enterprise.

Whether you dynamically install the binary InnoDB Plugin or build from source,
configure MySQL by editing the configuration file to use InnoDB as the default

Checking for Compatible Version Levels

58

engine (if desired) and set appropriate configuration parameters to enable use of
new InnoDB Plugin features, as described in Section 9.5, “Configuring the InnoDB
Plugin”.

At this time, the InnoDB Plugin has not been compiled or tested with the Intel C
Compiler (icc), so you should use a version of MySQL compiled with the GNU
Compiler Collection (gcc).

9.2 Checking for Compatible Version Levels
Use the following table to confirm that the version of the InnoDB Plugin (whether source or binary) is
compatible with your platform, hardware type (including 32-bit vs 64-bit) and with your version of MySQL.
In general, a specific release of the InnoDB Plugin is designed to be compatible with a range of MySQL
versions, but this may vary, so check the information on the download page.

When building MySQL from source, you can generally use the source for the InnoDB Plugin in place of the
source for the built-in InnoDB. However, due to limitations of MySQL, a given binary version of the InnoDB
Plugin is compatible only with a specific version of MySQL, as follows.

Table 9.1 InnoDB Plugin Compatibility

InnoDB Plugin Release MySQL Release
(Binary Compatibility)

MySQL Release
(Source Compatibility)

1.0.0 5.1.23 5.1.23 or newer

1.0.1 5.1.24 5.1.24 or newer

1.0.2 5.1.30 5.1.24 or newer

1.0.3 5.1.30 (not 5.1.31) 5.1.24 or newer

1.0.4 5.1.37 5.1.24 or newer

1.0.5 5.1.41 5.1.24 or newer

1.0.6 5.1.41 5.1.24 or newer

1.0.7 and higher Incorporated into the applicable
5.1.x MySQL release; not
separately downloadable.

N/A

Note

MySQL Bug #42610 prevents using the binary InnoDB Plugin with MySQL 5.1.31
or 5.1.32. There is no binary InnoDB Plugin for MySQL 5.1.33. The only way to use
InnoDB Plugin with MySQL 5.1.31 through 5.1.35 is by building from source. This
issue was resolved in MySQL 5.1.37 and InnoDB Plugin 1.0.4.

9.3 Installing the Precompiled InnoDB Plugin as a Shared Library
The simplest way to install the InnoDB Plugin is to use a precompiled (binary) shared library file, when
one is available. The procedures are similar for installing the InnoDB Plugin using the binary on different
hardware and operating systems platforms, but the specific details differ between Unix or Linux and
Microsoft Windows. See below for notes specific to your platform.

Note that due to MySQL Bug #42610, the procedure of installing the binary InnoDB Plugin changed in
MySQL 5.1.33. If your version of MySQL is older than 5.1.33, refer to Appendix B, Using the InnoDB Plugin
with MySQL 5.1.30 or Earlier.

The steps for installing the InnoDB Plugin as a shared library are as follows:

http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.23
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.23
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.30
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.30
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.37
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.41
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.41
http://downloads.mysql.com/archives.php?p=mysql-5.1&v=5.1.24
http://bugs.mysql.com/42610
http://bugs.mysql.com/42610

Installing the InnoDB Plugin as a Shared Library on Unix or Linux

59

• Download, extract and install the suitable MySQL executable for your platform.

• Make sure the MySQL server is not running. If you have to shut down the database server, you use a
special “slow” shutdown procedure, described later.

• On database startup, make MySQL ignore the builtin InnoDB, and load the InnoDB Plugin and all new
InnoDB Information Schema tables implemented in the InnoDB Plugin, using one of these alternatives:

• Edit the option file (my.cnf, or my.ini) to contain the necessary options.

• Specify equivalent options on the MySQL command line.

• Edit the option file to disable InnoDB, then use INSTALL statements on the MySQL command line
after startup.

These procedures are described in detail in the following sections.

• Set appropriate configuration parameters to enable new InnoDB Plugin features.

• Start MySQL, and verify the installation of the plugins.

The following sections detail these steps for Unix or Linux systems, and for Microsoft Windows.

9.3.1 Installing the InnoDB Plugin as a Shared Library on Unix or Linux

For Unix and Linux systems, use the following procedure to install the InnoDB Plugin as a shared library:

1. Download, extract and install the suitable MySQL executable for your server platform and operating
system from the MySQL download section for MySQL Database Server 5.1. Be sure to use a 32-bit or
64-bit version as appropriate for your hardware and operating system.

2. Make sure the MySQL server is not running. If the server is running, do a “slow” shutdown by issuing
the following command before performing the shutdown:

SET GLOBAL innodb_fast_shutdown=0;

Then finish the shutdown process, as described in The Shutdown Process in the MySQL
documentation. This option setting performs a full purge and an insert buffer merge before the
shutdown, which can typically take minutes, or even hours for very large and busy databases.

3. The InnoDB Plugin shared library is already installed in the directory lib/plugin as part of the
MySQL installation.

4. Edit the option file (my.cnf) to ignore the builtin InnoDB, and load the InnoDB Plugin and all Information
Schema tables implemented in the InnoDB Plugin when the server starts:

ignore_builtin_innodb
plugin-load=innodb=ha_innodb_plugin.so;innodb_trx=ha_innodb_plugin.so;
 innodb_locks=ha_innodb_plugin.so;innodb_lock_waits=ha_innodb_plugin.so;
 innodb_cmp=ha_innodb_plugin.so;innodb_cmp_reset=ha_innodb_plugin.so;
 innodb_cmpmem=ha_innodb_plugin.so;innodb_cmpmem_reset=ha_innodb_plugin.so

Note that all plugins for plugin-load should be on the same line in the option file.

Alternatively, you can use the equivalent options on the MySQL command line:

mysqld --ignore-builtin-innodb --plugin-load=innodb=ha_innodb_plugin.so;

http://downloads.mysql.com/archives.php?p=mysql-5.1
http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html

Installing the InnoDB Plugin as a Shared Library on Unix or Linux

60

 innodb_trx=ha_innodb_plugin.so;innodb_locks=ha_innodb_plugin.so;
 innodb_lock_waits=ha_innodb_plugin.so;innodb_cmp=ha_innodb_plugin.so;
 innodb_cmp_reset=ha_innodb_plugin.so;innodb_cmpmem=ha_innodb_plugin.so;
 innodb_cmpmem_reset=ha_innodb_plugin.so

You can also install the InnoDB Plugin and the new InnoDB Information Schema tables implemented in
ha_innodb_plugin.so with INSTALL commands:

INSTALL PLUGIN INNODB SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_TRX SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_LOCKS SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_LOCK_WAITS SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_CMP SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_CMP_RESET SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_CMPMEM SONAME 'ha_innodb_plugin.so';
INSTALL PLUGIN INNODB_CMPMEM_RESET SONAME 'ha_innodb_plugin.so';

If you use INSTALL PLUGIN statement to install the InnoDB Plugin and the Information Schema
tables, ensure the following conditions are set up:

• In the mysqld command line or my.cnf option file, prepend each InnoDB option with
loose_, so that MySQL will start even when InnoDB is unavailable. For example, write
loose_innodb_file_per_table instead of innodb_file_per_table.

• Start the MySQL server while it is configured to skip loading the built-in InnoDB and to make MyISAM
the default storage engine. This can be done by editing the option file my.cnf to contain these two
lines:

ignore_builtin_innodb
default_storage_engine=MyISAM

Or, you can use the equivalent options on the MySQL command line:

mysqld --ignore-builtin-innodb --default-storage-engine=MyISAM …

See the MySQL Manual section on INSTALL PLUGIN Syntax for information on how these commands
work.

5. Edit the option file my.cnf to use InnoDB as the default engine (if desired) and set appropriate
configuration parameters to enable use of new InnoDB Plugin features, as described in Section 9.5,
“Configuring the InnoDB Plugin”. In particular, we recommend that you set the following specific
parameters as follows:

default-storage-engine=InnoDB
innodb_file_per_table=1
innodb_file_format=barracuda
innodb_strict_mode=1

IMPORTANT:

The MySQL server always must be started with the option
ignore_builtin_innodb, as long as you want to use the InnoDB Plugin as
a shared library. Also, remember that the startup option skip_grant_tables
prevents MySQL from loading any plugins.

6. Verify the installation of the plugins with the MySQL command SHOW PLUGINS, which should produce
the following output:

http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb

Installing the InnoDB Plugin as a Shared Library on Unix or Linux

61

Name Status Type Library License

binlog ACTIVE STORAGE ENGINE NULL GPL

CSV ACTIVE STORAGE ENGINE NULL GPL

MEMORY ACTIVE STORAGE ENGINE NULL GPL

InnoDB ACTIVE STORAGE ENGINE ha_innodb_plugin.so GPL

INNODB_TRX ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_LOCKS ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_LOCK_WAITS ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_CMP ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_CMP_RESET ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_CMPMEM ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

INNODB_CMPMEM_RESET ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.so GPL

MRG_MYISAM ACTIVE STORAGE ENGINE NULL GPL

MyISAM ACTIVE STORAGE ENGINE NULL GPL

If the plugins fail to load properly, see Section 9.3.1.1, “Errors When Installing the InnoDB Plugin on
Unix or Linux” for possible causes and corrections.

After verifying that the Plugin is recognized by MySQL, create an InnoDB table as another confirmation
of success.

9.3.1.1 Errors When Installing the InnoDB Plugin on Unix or Linux

If MySQL or its associated daemon process cannot start, or a post-startup INSTALL PLUGIN statement
fails, look at the MySQL error log (usually named machine_name.err and located in the MySQL data
directory) for the detailed error message. The log is in chronological order, so look at the end of the file. Try
to resolve the problem based on other information in the message.

The following table outlines installation-related InnoDB Plugin error conditions or messages and possible
solutions.

Error Condition or Message Possible Solution

Can't open shared library library_name Diagnose the cause from the following message
details.

API version for STORAGE ENGINE plugin
is too different

The version of the Plugin is not compatible with
the version of the MySQL server. Consult the
compatibility chart.

No such file or directory Check that the file ha_innodb_plugin.so
or .dll was copied to the correct location.
Confirm that you specified the right file name
(ha_innodb_plugin.so or .dll for the library

Installing the Binary InnoDB Plugin as a Shared Library on Microsoft Windows

62

Error Condition or Message Possible Solution
from the InnoDB web site; ha_innodb_plugin.so
or .dll for the library supplied along with MySQL
5.1.38 and up.)

Permission denied Check that the directory and file access permissions
are set properly, or change them using chmod
on Unix-like systems . The mysqld process
must have permission to read (r) the file
ha_innodb_plugin.so and to access files (x) in
the plugin directory.

wrong ELF class or any other message Ensure that ha_innodb_plugin.so is for the
same system platform as mysqld. In particular,
note that a 32-bit mysqld is unable to load a 64-
bit plugin, and vice versa. Be sure to download an
InnoDB Plugin that is compatible with your platform.

Note

The Information Schema tables are themselves plugins to the MySQL server, but
they depend on having the InnoDB storage engine plugin installed as well. These
tables will appear to be empty if the storage engine is not installed.

9.3.2 Installing the Binary InnoDB Plugin as a Shared Library on Microsoft
Windows

The InnoDB Plugin is supported on any of the Windows operating system versions supported by MySQL.
In particular, this includes Microsoft Windows 2008 Server, Windows Vista, Windows 2003 Server and
Windows XP. Note that on Vista certain special procedures must be followed that are not documented
here.

Use the following procedure to dynamically install the InnoDB Plugin on Microsoft Windows.

1. Download, extract and install the suitable MySQL executable for your server platform and operating
system from the MySQL download section for MySQL Database Server 5.1. Be sure to use a 32-bit or
64-bit version as appropriate for your hardware and Windows version.

2. Make sure the MySQL server is not running. You do a “slow” shutdown by issuing the following
command before performing the shutdown:

SET GLOBAL innodb_fast_shutdown=0;

Then finish the shutdown process, as described in The Shutdown Process in the MySQL
documentation. This option setting performs a full purge and an insert buffer merge before the
shutdown, which can typically take minutes, or even hours for very large and busy databases.

3. The InnoDB Plugin shared library is already installed in the directory lib\plugin as part of the
MySQL installation.

4. Edit the option file (my.ini) to ignore the builtin InnoDB, and load the InnoDB Plugin and all Information
Schema tables implemented in the InnoDB Plugin when the server starts:

ignore_builtin_innodb
plugin-load=innodb=ha_innodb_plugin.dll;innodb_trx=ha_innodb_plugin.dll;
 innodb_locks=ha_innodb_plugin.dll;innodb_lock_waits=ha_innodb_plugin.dll;
 innodb_cmp=ha_innodb_plugin.dll;innodb_cmp_reset=ha_innodb_plugin.dll;

http://downloads.mysql.com/archives.php?p=mysql-5.1
http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html

Installing the Binary InnoDB Plugin as a Shared Library on Microsoft Windows

63

 innodb_cmpmem=ha_innodb_plugin.dll;innodb_cmpmem_reset=ha_innodb_plugin.dll

Note

All plugins for plugin-load should be on the same line in the option file. Be
careful when copying and pasting that the line does not split.

Alternatively, you can use the equivalent options on the MySQL command line:

mysqld --ignore-builtin-innodb --plugin-load=
 innodb=ha_innodb_plugin.dll;
 innodb_trx=ha_innodb_plugin.dll;innodb_locks=ha_innodb_plugin.dll;
 innodb_lock_waits=ha_innodb_plugin.dll;innodb_cmp=ha_innodb_plugin.dll;
 innodb_cmp_reset=ha_innodb_plugin.dll;innodb_cmpmem=ha_innodb_plugin.dll;
 innodb_cmpmem_reset=ha_innodb_plugin.dll

You can also install the InnoDB Plugin and the new InnoDB Information Schema tables implemented in
ha_innodb_plugin.so with INSTALL commands, as follows:

INSTALL PLUGIN INNODB SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_TRX SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_LOCKS SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_LOCK_WAITS SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_CMP SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_CMP_RESET SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_CMPMEM SONAME 'ha_innodb_plugin.dll';
INSTALL PLUGIN INNODB_CMPMEM_RESET SONAME 'ha_innodb_plugin.dll';

If you use INSTALL PLUGIN statements to install the InnoDB Plugin and the Information Schema
tables, ensure the following conditions are set up:

• In the mysqld command line or my.ini option file, prepend each InnoDB option with
loose_, so that MySQL will start even when InnoDB is unavailable. For example, write
loose_innodb_file_per_table instead of innodb_file_per_table.

• Start the MySQL server while it is configured to skip loading the built-in InnoDB and to make MyISAM
the default storage engine. This can be done by editing the option file my.cnf to contain these two
lines:

ignore_builtin_innodb
default_storage_engine=MyISAM

Or, you can use the equivalent options on the MySQL command line:

mysqld --ignore-builtin-innodb --default-storage-engine=MyISAM …

See the MySQL Manual section on INSTALL PLUGIN Syntax for information on how these commands
work.

5. Edit the option file my.ini to use InnoDB as the default engine (if desired) and set appropriate
configuration parameters to enable use of new InnoDB Plugin features, as described in Section 9.5,
“Configuring the InnoDB Plugin”. In particular, we recommend that you set the following specific
parameters as follows:

default-storage-engine=InnoDB
innodb_file_per_table=1

http://dev.mysql.com/doc/refman/5.1/en/install-plugin.html

Errors When Installing the InnoDB Plugin on Microsoft Windows

64

innodb_file_format=barracuda
innodb_strict_mode=1

IMPORTANT: The MySQL server always must be started with the option ignore_builtin_innodb,
as long as you want to use the dynamic InnoDB Plugin. Also, remember that the startup option
skip_grant_tables prevents MySQL from loading any plugins.

6. Verify the installation of the plugins with the MySQL command SHOW PLUGINS, which should produce
the following output:

Name Status Type Library License

binlog ACTIVE STORAGE ENGINE NULL GPL

CSV ACTIVE STORAGE ENGINE NULL GPL

MEMORY ACTIVE STORAGE ENGINE NULL GPL

InnoDB ACTIVE STORAGE ENGINE ha_innodb_plugin.dll GPL

INNODB_TRX ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_LOCKS ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_LOCK_WAITS ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_CMP ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_CMP_RESET ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_CMPMEM ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

INNODB_CMPMEM_RESET ACTIVE INFORMATION
SCHEMA

ha_innodb_plugin.dll GPL

MRG_MYISAM ACTIVE STORAGE ENGINE NULL GPL

MyISAM ACTIVE STORAGE ENGINE NULL GPL

If the plugins fail to load properly, see Section 9.3.3, “Errors When Installing the InnoDB Plugin on
Microsoft Windows” for possible causes and corrections.

After verifying that the Plugin is recognized by MySQL, create an InnoDB table as another confirmation
of success.

9.3.3 Errors When Installing the InnoDB Plugin on Microsoft Windows

If MySQL or the associated Windows service can not start, or a post-startup INSTALL PLUGIN statement
fails, look at the MySQL error log (usually named machine_name.err and located in the MySQL data
directory) for the detailed error message. The log is in chronological order, so look at the end of the file. Try
to resolve the problem based on other information in the message.

The following table outlines installation-related InnoDB Plugin error conditions or messages and possible
solutions.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb

Building the InnoDB Plugin from Source Code

65

Error Condition or Message Possible Solution

Can't open shared library library_name Diagnose the cause from the following message
details.

API version for STORAGE ENGINE plugin
is too different

The version of the Plugin is not compatible with
the version of the MySQL server. Consult the
compatibility chart.

No such file or directory Check that the file ha_innodb_plugin.so
or .dll was copied to the correct location.
Confirm that you specified the right file name
(ha_innodb_plugin.so or .dll for the library
from the InnoDB web site; ha_innodb_plugin.so
or .dll for the library supplied along with MySQL
5.1.38 and up.)

Permission denied Check that the folder and file access
permissions are set properly. The mysqld
process must have permission to read the file
ha_innodb_plugin.dll and to read files in the
plugin folder. On Windows XP, file permissions
can be seen or changed by right-clicking a file and
pressing Properties, and then the Security Tab. To
see the Security Tab, you may need to adjust the
Folder Options on the Control Panel to turn off “Use
Simple File Sharing”.

Can't open shared library
'ha_innodb_plugin.dll' (errno: 0)

Ensure that ha_innodb_plugin.dll is for the
same system platform as mysqld. In particular,
note that a 32-bit mysqld is unable to load a 64-bit
plugin, and vice versa.

Note: The Information Schema tables are themselves plugins to the MySQL server, but they depend on
having the InnoDB storage engine plugin installed as well. These tables will appear to be empty if the
storage engine is not installed.

9.4 Building the InnoDB Plugin from Source Code
Sometimes, you may wish to build the plugin from the source code using special compilation options,
or there might be no binary plugin available for your server platform. With the resulting special version
of MySQL containing the new InnoDB functionality, it is not necessary to INSTALL any plugins or be
concerned about startup parameters that preclude loading plugins.

To build the InnoDB Plugin from the source code, you also need the MySQL source code and some
software tools. You should become familiar with the MySQL manual section on Installing MySQL from
Source.

The general steps for building MySQL from source, containing the InnoDB Plugin in place of the standard
built-in InnoDB, are as follows:

• Download the MySQL source code.

• Download the InnoDB Plugin source code.

• Replace the source code for the built-in InnoDB with the InnoDB Plugin source tree.

• Compile MySQL as usual, generating a new mysqld executable file.

http://dev.mysql.com/doc/refman/5.1/en/source-installation.html
http://dev.mysql.com/doc/refman/5.1/en/source-installation.html

Building the InnoDB Plugin on Linux or Unix

66

• Configure the MySQL server by editing the configuration file to use InnoDB as the default engine (if
desired) and set appropriate configuration parameters to enable use of new InnoDB Plugin features.

The following sections detail these steps for Linux or Unix systems, and for Microsoft Windows.

9.4.1 Building the InnoDB Plugin on Linux or Unix

1. Download the MySQL source code, version 5.1.24 or later from http://dev.mysql.com/downloads/
mysql/5.1.html#source and extract it.

2. Download the InnoDB Plugin source code from http://dev.mysql.com/downloads/.

3. Replace the contents of the storage/innobase directory in the MySQL source tree with the InnoDB
Plugin source tree.

Note

In MySQL 5.1.38 and up, the MySQL source tree also contains a storage/
innodb_plugin directory, but that does not affect this procedure. The source
that you download from the InnoDB web site may contain additional changes
and fixes.

4. Compile and build MySQL. Instead of building a dynamic InnoDB Plugin, it is advisable to build a
version of MySQL that contains the InnoDB Plugin. This is because a dynamic InnoDB Plugin must
be built with exactly the same tools and options as the mysqld executable, or spurious errors may
occur. Example:

% wget ftp://ftp.easynet.be/mysql/Downloads/MySQL-5.1/mysql-5.1.37.tar.gz
% tar -zxf mysql-5.1.37.tar.gz
% cd mysql-5.1.37/storage
% wget http://dev.mysql.com/downloads/innodb_plugin/innodb_plugin-1.0.8.tar.gz
% tar -zxf innodb-1.0.8.tar.gz
% rm -fr innobase
% mv innodb-1.0.8 innobase
% cd ..
% ./configure --with-plugins=innobase
% make

5. Reconfigure the MySQL server by editing the my.cnf option file to use InnoDB as the default engine (if
desired) and set appropriate configuration parameters to enable use of new InnoDB Plugin features, as
described in section Section 9.5, “Configuring the InnoDB Plugin”. In particular, we recommend that you
set the following specific parameters as follows:

default_storage_engine=InnoDB
innodb_file_per_table=1
innodb_file_format=barracuda
innodb_strict_mode=1

6. If you build a version of MySQL that contains the InnoDB Plugin (--with-plugins=innobase), you
do not have to tell MySQL to specify ignore_builtin_innodb or specify plugin-load, or issue
any INSTALL PLUGIN statements. The mysqld executable that you compiled will contain the new
InnoDB Plugin features.

Note: To fully exploit the performance improvements discussed in Section 7.2, “Faster Locking for
Improved Scalability”, the InnoDB Plugin source code and build process makes some compile-time tests
of platform capabilities to automatically use instructions for atomic memory access where available. If this
logic fails, you may need to contact MySQL support.

http://dev.mysql.com/downloads/mysql/5.1.html#source
http://dev.mysql.com/downloads/mysql/5.1.html#source
http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb

Building the InnoDB Plugin on Microsoft Windows

67

9.4.2 Building the InnoDB Plugin on Microsoft Windows

Installing MySQL from Source on Windows includes some information about building from source on
Windows. The following discussion is specifically focused on building a version of MySQL containing the
InnoDB Plugin.

You need the following tools:

• A compiler environment, one of the following:

• Microsoft Visual C++ 2003

• Microsoft Visual C++ 2005

• Microsoft Visual C++ 2008 (Note: for building MySQL 5.1.31 or later)

• Microsoft Visual C++ 2005 Express Edition (free of charge)

• Download and install the Microsoft Visual C++ 2005 Express Edition.

• Download and install the Windows Platform SDK .

• Configure the Visual Studio Express Edition to use the Platform SDK according to the instruction.

• Microsoft Visual C++ 2008 Express Edition (free of charge, for building MySQL 5.1.31 or later)

• Download and install the Microsoft Visual C++ 2008 Express Edition. The Visual C++ 2008 Express
Edition has already been integrated with the Windows SDK.

• GNU Bison for Windows, a general-purpose parser generator that is largely compatible with Berkeley
Yacc. This tool is used automatically as part of compiling and building MySQL. For most users, it is
sufficient to download and run the “complete package” to install GNU Bison.

• CMake 2.6.0 or later, a cross-platform make system that can generate MSVC project files.

In addition to installing these tools, you must also set CScript as the default Windows script host by
executing the following command in the Command Prompt:

cscript //H:CScript

After you have installed and configured all the required tools, you may proceed with the compilation.

1. Download the MySQL source code, version 5.1.24 or later from the MySQL website and extract the
source files.

2. Download the InnoDB plugin source code from the MySQL download site.

3. Extract the files from the source code archives.

4. Replace the contents of the storage\innobase folder in the MySQL source tree with the InnoDB
plugin source tree.

In MySQL 5.1.38 and up, the MySQL source tree also contains a storage\innodb_plugin
directory, but that does not affect this procedure. The source that you download from the InnoDB web
site may contain additional changes and fixes.

5. Compile and build MySQL under the Microsoft Visual Studio Command Prompt as follows:

Visual Studio 2003:

http://dev.mysql.com/doc/refman/5.1/en/windows-source-build.html
http://www.microsoft.com/express/2005/
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB
http://www.microsoft.com/express/2005/platformsdk/default.aspx
http://www.microsoft.com/express/download/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://gnuwin32.sourceforge.net/downlinks/bison.php
http://www.cmake.org/
http://dev.mysql.com/downloads/mysql/5.1.html#source
http://dev.mysql.com/downloads/

Configuring the InnoDB Plugin

68

win\configure WITH_INNOBASE_STORAGE_ENGINE __NT__
win\build-vs7.bat
devenv mysql /build release /project ALL_BUILD

Visual Studio 2005:
win\configure WITH_INNOBASE_STORAGE_ENGINE __NT__
win\build-vs8.bat
devenv mysql /build release /project ALL_BUILD

Visual Studio 2008:
win\configure WITH_INNOBASE_STORAGE_ENGINE __NT__
win\build-vs9.bat
vcbuild mysql.sln "Release"

For the 64-bit version, use win\build-vsN_x64.bat instead of win\build-vsN.bat.

6. Install the compiled mysqld.exe from the sql\release folder of the source tree by doing one of the
following:

a. Copy the mysqld.exe to the bin folder of an earlier MySQL 5.1 installation.

b. Make a distribution package and unpack it to the folder where MySQL will be installed. See the
MySQL manual section on make_win_bin_dist — Package MySQL Distribution as Zip Archive.
Note that scripts\make_win_bin_dist requires the Cygwin environment.

7. Reconfigure the MySQL server by editing the my.cnf or my.ini option file to use InnoDB as the
default engine (if desired) and set appropriate configuration parameters to enable use of new InnoDB
Plugin features, as described in section Section 9.5, “Configuring the InnoDB Plugin”. In particular, we
recommend that you set the following specific parameters as follows:

default_storage_engine=InnoDB
innodb_file_per_table=1
innodb_file_format=barracuda
innodb_strict_mode=1

8. Since you built a version of MySQL that contains the InnoDB Plugin, you do not have to specify
ignore_builtin_innodb or specify plugin-load, or issue any INSTALL PLUGIN statements.
The mysqld.exe that you compiled contains the new InnoDB Plugin features.

9.5 Configuring the InnoDB Plugin
Because the MySQL server as distributed by MySQL includes a built-in copy of InnoDB, if you are using
the dynamic InnoDB Plugin and have INSTALLed it into the MySQL server, you must always start the
server with the option ignore_builtin_innodb, either in the option file or on the mysqld command
line. Also, remember that the startup option skip_grant_tables prevents MySQL from loading any
plugins. Neither of these options is needed when using a specialized version of MySQL that you build from
source.

By default, the InnoDB Plugin does not create tables in a format that is incompatible with the built-in
InnoDB in MySQL. Tables in the new format may be compressed, and they may store portions of long
columns off-page, outside the B-tree nodes. You may wish to enable the creation of tables in the new
format, using one of these techniques:

• Include innodb_file_per_table=1 and innodb_file_format=barracuda in the [mysqld]
section of the MySQL option file.

• Add --innodb_file_per_table=1 and --innodb_file_format=barracuda to the mysqld
command line.

http://dev.mysql.com/doc/refman/5.1/en/make-win-bin-dist.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb

Frequently Asked Questions about Plugin Installation

69

• Issue the statements:

SET GLOBAL innodb_file_format=barracuda;
SET GLOBAL innodb_file_per_table=ON;

in the MySQL client when running with SUPER privileges.

You may also want to enable the new InnoDB strict mode, which guards SQL or certain operational errors
that otherwise generate warnings and possible unintended consequences of ignored or incorrect SQL
commands or parameters. As described in Section 8.5, “InnoDB Strict Mode”, the GLOBAL parameter
innodb_strict_mode can be set ON or OFF in the same way as the parameters just mentioned. You
can also use the command SET SESSION innodb_strict_mode=mode (where mode is ON or OFF) to
enable or disable InnoDB strict mode on a per-session basis.

Take care when using new InnoDB configuration parameters or values that apply only when using
the InnoDB Plugin. When the MySQL server encounters an unknown option, it fails to start and
returns an error: unknown variable. This happens, for example, if you include the new parameter
innodb_file_format when you start the MySQL server with the built-in InnoDB rather than the plugin.
This can cause a problem if you accidentally use the built-in InnoDB after a system crash, because InnoDB
crash recovery runs before MySQL checks the startup parameters. See Section 11.4, “Possible Problems”
why this can be a problem. One safeguard is to specify the prefix loose_ before the names of new
options, so that if they are not recognized on startup, the server gives a warning instead of a fatal error.

9.6 Frequently Asked Questions about Plugin Installation

9.6.1 Should I use the InnoDB-supplied plugin or the one that is included with
MySQL 5.1.38 or higher?

The Plugin that you download from the InnoDB web site should always be at the same level or newer than
the shared library that is included with the MySQL distribution starting with version 5.1.38. To pick up the
very latest fixes, download from the InnoDB site.

9.6.2 Why doesn't the MySQL service on Windows start after the replacement?

For the types of errors and how to diagnose them, see Section 9.3.3, “Errors When Installing the InnoDB
Plugin on Microsoft Windows”. Be especially careful that the plugin-load line in the option file does not
get split across lines when you copy and paste from the README or this manual, which can produce an
“unrecognized option” error in the error log.

9.6.3 The Plugin is installed... now what?

You automatically benefit from the “fast index creation” feature for every index you create on a large
InnoDB table. If you switch to the “Barracuda” file format using the innodb_file_format option in
combination with the innodb_file_per_table option, you can take advantage of other features such
as table compression. For the full list of features, refer to Section 1.2, “Features of the InnoDB Plugin”.

9.6.4 Once the Plugin is installed, is it permanent?

The Plugin must loaded whenever the MySQL database server is started. As we saw earlier, there are
several ways to configure MySQL to use the Plugin rather than the built-in InnoDB: in the option file, with
mysqld command-line options, or with INSTALL statements after the server starts.

To ensure that you do not accidentally revert to the older InnoDB, be careful to carry any configuration file,
command-line options, or post-startup commands forward in the future, such as when transitioning from a

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

Once the Plugin is installed, is it permanent?

70

development system to a test system, setting up a replication slave, or when writing new mysqld startup
scripts.

71

Chapter 10 Upgrading the InnoDB Plugin

Table of Contents
10.1 Upgrading the Dynamic InnoDB Plugin .. 71
10.2 Upgrading a Statically Built InnoDB Plugin ... 71
10.3 Converting Compressed Tables Created Before Version 1.0.2 .. 72

Thanks to the pluggable storage engine architecture of MySQL, upgrading the InnoDB Plugin should
be a simple matter of shutting down MySQL, replacing a platform-specific executable file, and restarting
the server. If you wish to upgrade and use your existing database, it is essential to perform a “slow”
shutdown, or the new plugin may fail when merging buffered inserts or purging deleted records. If your
database does not contain any compressed tables, you should be able to use your database with the
newest InnoDB Plugin without problems after a slow shutdown.

However, if your database contains compressed tables, it may not be compatible with InnoDB Plugin 1.0.8.
Because of an incompatible change introduced in InnoDB Plugin version 1.0.2, some compressed tables
may need to be rebuilt, as noted in Section 10.3, “Converting Compressed Tables Created Before Version
1.0.2”. Please follow these steps carefully.

You may, of course, rebuild your database using mysqldump or other methods. This may be a preferable
approach if your database is small or there are many referential constraints among tables.

Note that once you have accessed your database with InnoDB Plugin 1.0.8, you should not try to use it
with the Plugin prior to 1.0.2.

10.1 Upgrading the Dynamic InnoDB Plugin

Before shutting down the MySQL server containing the InnoDB Plugin, you must enable “slow”
shutdown:

SET GLOBAL innodb_fast_shutdown=0;

For the details of the shutdown procedure, see the MySQL manual on The Shutdown Process.

In the directory where the MySQL server looks for plugins, rename the executable file of the old InnoDB
Plugin (ha_innodb_plugin.so or ha_innodb_plugin.dll), so that you can restore it later if needed.
You may remove the file later. The plugin directory is specified by the system variable plugin_dir. The
default location is usually the lib/plugin subdirectory of the directory specified by basedir.

Download a suitable package for your server platform, operating system and MySQL version. Extract the
contents of the archive using tar or a similar tool for Linux and Unix, or Windows Explorer or WinZip or
similar utility for Windows. Copy the file ha_innodb_plugin.so or ha_innodb_plugin.dll to the
directory where the MySQL server looks for plugins.

Start the MySQL server. Follow the procedure in Section 10.3, “Converting Compressed Tables Created
Before Version 1.0.2” to convert any compressed tables if needed.

10.2 Upgrading a Statically Built InnoDB Plugin

As with a dynamically installed InnoDB Plugin, you must perform a “slow” shutdown of the MySQL server.
If you have built MySQL from source code and replaced the built-in InnoDB in MySQL with the InnoDB

http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html

Converting Compressed Tables Created Before Version 1.0.2

72

Plugin in the source tree as discussed in Section 9.4, “Building the InnoDB Plugin from Source Code”, you
will have a special version of the mysqld executable that contains the InnoDB Plugin.

If you intend to upgrade to a dynamically linked InnoDB Plugin, you can follow the advice of Section 11.3.4,
“Uninstalling a Statically Built InnoDB Plugin” and Section 9.3, “Installing the Precompiled InnoDB Plugin
as a Shared Library”.

If you intend to upgrade a statically built InnoDB Plugin to another statically built plugin, you will have to
rebuild the mysqld executable, shut down the server, and replace the mysqld executable before starting
the server.

Either way, please be sure to follow the instructions of Section 10.3, “Converting Compressed Tables
Created Before Version 1.0.2” if any compressed tables were created.

10.3 Converting Compressed Tables Created Before Version 1.0.2

The InnoDB Plugin version 1.0.2 introduces an incompatible change to the format of compressed
tables. This means that some compressed tables that were created with an earlier version of the InnoDB
Plugin may need to be rebuilt with a bigger KEY_BLOCK_SIZE before they can be used.

If you must keep your existing database when you upgrade to InnoDB Plugin 1.0.2 or newer, you will need
to perform a “slow” shutdown of MySQL running the previous version of the InnoDB Plugin. Following
such a shutdown, and using the newer release of the InnoDB Plugin, you will need to determine which
compressed tables need conversion and then follow a procedure to upgrade these tables. Because most
users will not have tables where this process is required, this manual does not detail the procedures
required. If you have created compressed tables with the InnoDB Plugin prior to release 1.0.2, you may
want to contact MySQL support.

73

Chapter 11 Downgrading from the InnoDB Plugin

Table of Contents
11.1 Overview .. 73
11.2 The Built-in InnoDB, the Plugin and File Formats ... 73
11.3 How to Downgrade ... 74

11.3.1 Converting Tables .. 74
11.3.2 Adjusting the Configuration ... 74
11.3.3 Uninstalling a Dynamic Library .. 74
11.3.4 Uninstalling a Statically Built InnoDB Plugin ... 75

11.4 Possible Problems .. 75
11.4.1 Accessing COMPRESSED or DYNAMIC Tables ... 75
11.4.2 Issues with UNDO and REDO .. 76
11.4.3 Issues with the Doublewrite Buffer .. 76
11.4.4 Issues with the Insert Buffer ... 77

11.1 Overview
There are times when you might want to use the InnoDB Plugin with a given database, and then
downgrade to the built-in InnoDB in MySQL. One reason to do this is because you want to take advantage
of a new InnoDB Plugin feature (such as “Fast Index Creation”), but revert to the standard built-in InnoDB
in MySQL for production operation.

If you have created new tables using the InnoDB Plugin, you may need to convert them to a
format that the built-in InnoDB in MySQL can read. Specifically, if you have created tables that use
ROW_FORMAT=COMPRESSED or ROW_FORMAT=DYNAMIC you must convert them to a different format, if you
plan to access these tables with the built-in InnoDB in MySQL. If you do not do so, anomalous results may
occur.

Although InnoDB checks the format of tables and database files (specifically *.ibd files) for compatibility,
it is unable to start if there are buffered changes for “too new format” tables in the redo log or in the system
tablespace. Thus it is important to carefully follow these procedures when downgrading from the InnoDB
Plugin to the built-in InnoDB in MySQL, version 5.1.

This chapter describes the downgrade scenario, and the steps you should follow to ensure correct
processing of your database.

11.2 The Built-in InnoDB, the Plugin and File Formats
Starting with version 5.0.21, the built-in InnoDB in MySQL checks the table type before opening a table.
Until now, all InnoDB tables have been tagged with the same type, although some changes to the format
have been introduced in MySQL versions 4.0, 4.1, and 5.0.

One of the important new features introduced with the InnoDB Plugin is support for identified file formats.
This allows the InnoDB Plugin and versions of InnoDB since 5.0.21 to check for file compatibility. It also
allows the user to preclude the use of features that would generate downward incompatibilities. By paying
attention to the file format used, you can protect your database from corruptions, and ensure a smooth
downgrade process.

In general, before using a database file created with the InnoDB Plugin with the built-in InnoDB in
MySQL you should verify that the tablespace files (the *.ibd files) are compatible with the built-in
InnoDB in MySQL. The InnoDB Plugin can read and write tablespaces in both the formats “Antelope” and

How to Downgrade

74

“Barracuda”. The built-in InnoDB can only read and write tablespaces in “Antelope” format. To make all
tablespaces “legible” to the built-in InnoDB in MySQL, you should follow the instructions in Section 11.3,
“How to Downgrade” to reformat all tablespaces to be in the “Antelope” format.

Generally, after a “slow” shutdown of the InnoDB Plugin (innodb_fast_shutdown=0), it should be safe
to open the data files with the built-in InnoDB in MySQL. See Section 11.4, “Possible Problems” for a
discussion of possible problems that can arise in this scenario and workarounds for them.

11.3 How to Downgrade

11.3.1 Converting Tables

The built-in InnoDB in MySQL can access only tables in the “Antelope” file format, that is, in the
REDUNDANT or COMPACT row format. If you have created tables in COMPRESSED or DYNAMIC format, the
corresponding tablespaces in the new “Barracuda” file format, and it is necessary to downgrade these
tables.

First, identify the tables that require conversion, by executing this command:

SELECT table_schema, table_name, row_format
FROM information_schema.tables
WHERE engine='innodb'
AND row_format NOT IN ('Redundant', 'Compact');

Next, for each table that requires conversion, run the following command:

ALTER TABLE table_name ROW_FORMAT=COMPACT;

This command copies the table and its indexes to a new tablespace in the “Antelope” format. See
Chapter 2, Fast Index Creation in the InnoDB Storage Engine for a discussion of exactly how such index
creation operations are performed.

11.3.2 Adjusting the Configuration

Before you shut down the InnoDB Plugin and start the basic built-in InnoDB in MySQL, review the
configuration files. Changes to the startup options do not take effect until the server is restarted, or the
InnoDB Plugin is uninstalled and reinstalled.

The InnoDB Plugin introduces several configuration parameters that are not recognized by the built-
in InnoDB in MySQL, including: innodb_file_format, innodb_file_format_check, and
innodb_strict_mode. See Section C.1, “New Parameters” for a complete list of new configuration
parameters in the InnoDB Plugin. You can include these parameters in the configuration file, only if you
use the loose_ form of the parameter names, so that the built-in InnoDB in MySQL can start.

If the InnoDB Plugin was installed as a dynamic plugin, the startup option ignore_builtin_innodb
or skip_innodb must have been set to disable the built-in InnoDB in MySQL. These options must be
removed, so that the built-in InnoDB in MySQL is enabled the next time the server is started.

If the InnoDB Plugin was loaded using plugin-load option. This option has to be removed, too.

In MySQL, configuration options can be specified in the mysqld command line or the option file (my.cnf
or my.ini). See the MySQL manual on Using Option Files for more information.

11.3.3 Uninstalling a Dynamic Library

The following applies if the InnoDB Plugin was installed as a dynamic library with the INSTALL PLUGIN
command, as described in Section 9.3, “Installing the Precompiled InnoDB Plugin as a Shared Library”.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb
http://dev.mysql.com/doc/refman/5.1/en/option-files.html

Uninstalling a Statically Built InnoDB Plugin

75

Issue the command UNINSTALL PLUGIN for every “plugin” supplied by the library
ha_innodb_plugin.so (or ha_innodb_plugin.dll on Windows). Note that the following commands
initiate a shutdown of the InnoDB Plugin:

SET GLOBAL innodb_fast_shutdown=0;
UNINSTALL PLUGIN INNODB;
UNINSTALL PLUGIN INNODB_CMP;
UNINSTALL PLUGIN INNODB_CMP_RESET;
UNINSTALL PLUGIN INNODB_CMPMEM;
UNINSTALL PLUGIN INNODB_CMPMEM_RESET;
UNINSTALL PLUGIN INNODB_TRX;
UNINSTALL PLUGIN INNODB_LOCKS;
UNINSTALL PLUGIN INNODB_LOCK_WAITS;

Due to MySQL Bug #33731, please ensure that the plugin definitions are actually deleted from the
database, so that they are not loaded again:

SELECT * FROM mysql.plugin;
DELETE FROM mysql.plugin WHERE name='…';

Restart the server. For the details of the shutdown procedure, see the MySQL manual on The Shutdown
Process.

11.3.4 Uninstalling a Statically Built InnoDB Plugin

If you have built MySQL from source code and replaced the built-in InnoDB in MySQL with the InnoDB
Plugin in the source tree as discussed in Section 9.4, “Building the InnoDB Plugin from Source Code”,
you have a special version of the mysqld executable that contains the InnoDB Plugin. To “uninstall” the
InnoDB Plugin, you replace this executable with something that is built from an unmodified MySQL source
code distribution.

Before shutting down the version of the MySQL server with built-in InnoDB Plugin, you must enable
“slow” shutdown:

SET GLOBAL innodb_fast_shutdown=0;

For the details of the shutdown procedure, see the MySQL manual on The Shutdown Process.

11.4 Possible Problems
Failure to follow the downgrading procedure described in Section 11.3, “How to Downgrade” may lead to
compatibility issues when files written by the InnoDB Plugin are accessed by the built-in InnoDB in MySQL.
This section describes some internal recovery algorithms, to help explain why it is important to follow the
downgrade procedure described above. It discusses the issues that may arise, and covers possible ways
to fix them.

A general fix is to install the plugin as described in Chapter 9, Installing the InnoDB Plugin and then follow
the downgrading procedure described in Section 11.3, “How to Downgrade”.

In the future, the file format management features described in Chapter 4, InnoDB File-Format
Management will guard against the types of problems described in this section.

11.4.1 Accessing COMPRESSED or DYNAMIC Tables

The built-in InnoDB in MySQL can only open tables that were created in REDUNDANT or COMPACT format.
Starting with MySQL version 5.0.21, an attempt to open a table in some other format results in ERROR
1146 (42S02): Table 'test.t' doesn't exist. Furthermore, a message “unknown table
type” appears in the error log.

http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html
http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html
http://dev.mysql.com/doc/refman/5.1/en/server-shutdown.html

Issues with UNDO and REDO

76

In the InnoDB Plugin, you may rebuild an incompatible table by issuing a statement ALTER TABLE
table_name ROW_FORMAT=COMPACT.

11.4.2 Issues with UNDO and REDO

As noted in Section 11.3, “How to Downgrade”, you should ensure a “slow” shutdown is done with the
InnoDB Plugin, before running with the built-in InnoDB in MySQL, to clean up all buffers. To initiate a
slow shutdown, execute the command SET GLOBAL innodb_fast_shutdown=0 before initiating the
shutdown of the InnoDB Plugin.

We recommend “slow” shutdown (innodb_fast_shutdown=0) because the InnoDB Plugin may write
special records to the transaction undo log that cause problems if the built-in InnoDB in MySQL attempts to
read the log. Specifically, these special records are written when a record in a COMPRESSED or DYNAMIC
table is updated or deleted and the record contains columns stored off-page. The built-in InnoDB in MySQL
cannot read these undo log records. Also, the built-in InnoDB in MySQL cannot roll back incomplete
transactions that affect tables that it is unable to read (tables in COMPRESSED or DYNAMIC format).

Note that a “normal” shutdown does not necessarily empty the undo log. A normal shutdown occurs
when innodb_fast_shutdown=1, the default. When InnoDB is shut down, some active transactions
may have uncommitted modifications, or they may be holding a read view that prevents the purging of
some version information from the undo log. The next time InnoDB is started after a normal shutdown
(innodb_fast_shutdown=1), it rolls back any incomplete transactions and purge old version
information. Therefore, it is important to perform a “slow” shutdown (innodb_fast_shutdown=0) as part
of the downgrade process.

In case it is not possible to have the InnoDB Plugin clear the undo log, you can prevent the built-in InnoDB
in MySQL from accessing the undo log by setting innodb_force_recovery=3. However, this is not
a recommended approach, since in addition to preventing the purge of old versions, this recovery mode
prevents the rollback of uncommitted transactions. For more information, see the MySQL manual on
Forcing InnoDB Recovery.

When it comes to downgrading, there are also considerations with respect to redo log information. For
the purpose of crash recovery, InnoDB writes to the log files information about every modification to the
data files. When recording changes to tables that were created in DYNAMIC or COMPRESSED format, the
InnoDB Plugin writes redo log entries that cannot be recognized by the built-in InnoDB in MySQL. The
built-in InnoDB in MySQL refuses to start if it sees any unknown entries in the redo log.

When InnoDB is shut down cleanly, it flushes all unwritten changes from the buffer pool to the data files
and makes a checkpoint in the redo log. When InnoDB is subsequently restarted, it scans the redo log
starting from the last checkpoint. After a clean shutdown, InnoDB crash recovery only then sees the end-
of-log marker in the redo log. In this case, the built-in InnoDB in MySQL would not see any unrecognizable
redo log entries. This is a second reason why you should ensure a clean, slow shutdown of MySQL
(innodb_fast_shutdown=0) before you attempt a downgrade.

In an emergency, you may prevent the redo log scan and the crash recovery from the redo log by setting
the parameter innodb_force_recovery=6. However, this is strongly discouraged, because may lead
into severe corruption. See the MySQL manual on Forcing InnoDB Recovery for more information.

11.4.3 Issues with the Doublewrite Buffer

InnoDB uses a novel file flush technique called doublewrite. Before writing pages to a data file, InnoDB
first writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the
doublewrite buffer have completed does InnoDB write the pages to their proper positions in the data file. If
the operating system crashes in the middle of a page write, InnoDB can later find a good copy of the page
from the doublewrite buffer during recovery.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_force_recovery
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_force_recovery
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html

Issues with the Insert Buffer

77

The doublewrite buffer may also contain compressed pages. However, the built-in InnoDB in MySQL
cannot recognize such pages, and it assumes that compressed pages in the doublewrite buffer are
corrupted. It also wrongly assumes that the tablespace (the .ibd file) consists of 16K byte pages. Thus,
you may find InnoDB warnings in the error log of the form “a page in the doublewrite buffer is not within
space bounds”.

The doublewrite buffer is not scanned after a clean shutdown. In an emergency, you may prevent crash
recovery by setting innodb_force_recovery=6. However, this is strongly discouraged, because
it may lead into severe corruption. For more information, see the MySQL manual on Forcing InnoDB
Recovery

11.4.4 Issues with the Insert Buffer

Secondary indexes are usually nonunique, and insertions into secondary indexes happen in a relatively
random order. This would cause a lot of random disk I/O operations without a special mechanism used in
InnoDB called the insert buffer.

When a record is inserted into a nonunique secondary index page that is not in the buffer pool, InnoDB
inserts the record into a special B-tree: the insert buffer. Periodically, the insert buffer is merged into the
secondary index trees in the database. A merge also occurs whenever a secondary index page is loaded
to the buffer pool.

A “normal” shutdown does not clear the insert buffer. A normal shutdown occurs when
innodb_fast_shutdown=1, the default. If the insert buffer is not empty when the InnoDB Plugin is shut
down, it may contain changes for tables in DYNAMIC or COMPRESSED format. Thus, starting the built-in
InnoDB in MySQL on the data files may lead into a crash if the insert buffer is not empty.

A “slow” shutdown merges all changes from the insert buffer. To initiate a slow shutdown, execute the
command SET GLOBAL innodb_fast_shutdown=0 before initiating the shutdown of the InnoDB
Plugin.

To disable insert buffer merges, you may set innodb_force_recovery=4 so that you can back up the
uncompressed tables with the built-in InnoDB in MySQL. Be sure not to use any WHERE conditions that
would require access to secondary indexes. For more information, see the MySQL manual on Forcing
InnoDB Recovery

In the InnoDB Plugin 1.0.3 and later, you can disable the buffering of new operations by setting the
parameter innodb_change_buffering. See Section 7.4, “Controlling InnoDB Insert Buffering” for
details.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_force_recovery
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_force_recovery
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/forcing-innodb-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering

78

79

Chapter 12 InnoDB Plugin Change History

Table of Contents
12.1 Changes in InnoDB Plugin 1.0.9 and Higher .. 79
12.2 Changes in InnoDB Plugin 1.0.8 (May, 2010) ... 79
12.3 Changes in InnoDB Plugin 1.0.7 (April, 2010) .. 79
12.4 Changes in InnoDB Plugin 1.0.6 (November 27, 2009) ... 80
12.5 Changes in InnoDB Plugin 1.0.5 (November 18, 2009) ... 80
12.6 Changes in InnoDB Plugin 1.0.4 (August 11, 2009) .. 81
12.7 Changes in InnoDB Plugin 1.0.3 (March 11, 2009) ... 82
12.8 Changes in InnoDB Plugin 1.0.2 (December 1, 2008) ... 83
12.9 Changes in InnoDB Plugin 1.0.1 (May 8, 2008) .. 83
12.10 Changes in InnoDB Plugin 1.0.0 (April 15, 2008) .. 84

The complete change history of the InnoDB Plugin can be viewed in the file ChangeLog that is included in
the source and binary distributions.

12.1 Changes in InnoDB Plugin 1.0.9 and Higher

With the tighter integration of InnoDB into the MySQL server starting in MySQL 5.1, you can find recent
InnoDB change log entries in the MySQL 5.1 Release Notes.

12.2 Changes in InnoDB Plugin 1.0.8 (May, 2010)

12.3 Changes in InnoDB Plugin 1.0.7 (April, 2010)

Improved crash recovery performance.

Fixed MySQL Bug #52102: InnoDB Plugin shows performance drop comparing to builtin InnoDB on
Windows only. Disabled Windows atomics by default.

Fixed MySQL Bug #51378: Init 'ref_length' to correct value, in case of an out of bound MySQL
primary_key.

Made SHOW ENGINE INNODB MUTEX STATUS display SUM(os_waits) for the buffer pool block
mutexes and locks.

Fixed ALTER TABLE ... IMPORT TABLESPACE of compressed tables.

Fixed MySQL Bug #49535: Available memory check slows down crash recovery tens of times.

Let the master thread sleep if the amount of work to be done is calibrated as taking less than a second.

Fixed MySQL Bug #49001: SHOW INNODB STATUS deadlock info incorrect when deadlock detection
aborts.

Fixed MySQL Bug #35077: Very slow DROP TABLE (ALTER TABLE, OPTIMIZE TABLE) on compressed
tables.

Fixed MySQL Bug #49497: Error 1467 (ER_AUTOINC_READ_FAILED) on inserting a negative value.

http://dev.mysql.com/doc/relnotes/mysql/5.1/en/

Changes in InnoDB Plugin 1.0.6 (November 27, 2009)

80

Do not merge buffered inserts to compressed pages before the redo log has been applied in crash
recovery.

Do not attempt to access a clustered index record that has been marked for deletion, On the READ
UNCOMMITTED isolation level. In previous versions, the InnoDB would attempt to retrieve a previous
version of the record in this case.

Fixed an uninitialized access to block->is_hashed, when disabling the adaptive hash index.

Fixed MySQL Bug #46193>: Crash when accessing tables after enabling innodb_force_recovery
option.

Fixed MySQL Bug #49238: Creating / Dropping a temporary table while at 1023 transactions will cause
assert.

Display the zlib version number at startup.

12.4 Changes in InnoDB Plugin 1.0.6 (November 27, 2009)

Fixed MySQL Bug #48782: On lock wait timeout, CREATE INDEX attempts DROP TABLE.

Report duplicate table names to the client connection, not to the error log.

Allow CREATE INDEX to be interrupted.

Fixed MySQL Bug #47167: InnoDB Plugin "set global innodb_file_format_check" cannot set
value by User-Defined Variable.

Fixed MySQL Bug #45992: InnoDB memory not freed after shutdown; and MySQL Bug #46656: InnoDB
Plugin memory leaks (Valgrind).

12.5 Changes in InnoDB Plugin 1.0.5 (November 18, 2009)

Clean up after a crash during DROP INDEX. When InnoDB crashes while dropping an index, ensure that
the index will be completely dropped during crash recovery.

When a secondary index exists in the MySQL .frm file but not in the InnoDB data dictionary, return an error
instead of letting an assertion fail in index_read.

Prevent the reuse of tablespace identifiers after InnoDB has crashed during table creation. Also, refuse to
start if files with duplicate tablespace identifiers are encountered.

Fixed MySQL Bug #47055: Unconditional exit on ERROR_WORKING_SET_QUOTA 1453 (0x5AD) for
InnoDB backend.

Fixed MySQL Bug #37232: InnoDB might get too many read locks for DML with repeatable-read.

Fixed MySQL Bug #31183: Tablespace full problems not reported in error log; error message unclear.

Modified innodb-zip.test so that the test will pass with zlib 1.2.3.3. Apparently, the zlib function
compressBound() has been slightly changed, and the maximum record size of a table with 1K
compressed page size has been reduced by one byte.

Fixed a regression introduced by the fix for MySQL Bug #26316.

Fixed MySQL Bug #44571: InnoDB Plugin crashes on ADD INDEX.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_force_recovery

Changes in InnoDB Plugin 1.0.4 (August 11, 2009)

81

Fixed a bug in the merge sort that can corrupt indexes in fast index creation.

Introduced the settable global variables innodb_old_blocks_pct and innodb_old_blocks_time for
controlling the buffer pool eviction policy, making it possible to tune the buffer pool LRU eviction policy to
be more resistant against index scans. See Section 7.14, “Making Buffer Cache Scan Resistant”.

Fixed MySQL Bug #42885: buf_read_ahead_random, buf_read_ahead_linear counters, thread
wakeups. See Section 8.9, “More Read Ahead Statistics”.

Fixed MySQL Bug #46650: InnoDB assertion autoinc_lock == lock in lock_table_remove_low
on INSERT SELECT.

Fixed MySQL Bug #46657: InnoDB Plugin: invalid read in index_merge_innodb test (Valgrind).

Fixed MySQL Bug #42829: binlogging enabled for all schemas regardless of binlog-db-db / binlog-ignore-
db.

12.6 Changes in InnoDB Plugin 1.0.4 (August 11, 2009)

Enabled inlining of functions and prefetch with Sun Studio.

Changed the defaults for innodb_sync_spin_loops from 20 to 30 and innodb_spin_wait_delay
from 5 to 6.

Implemented adaptive flushing of dirty pages, which uses heuristics to avoid I/O bursts at checkpoint. A
new parameter innodb_adaptive_flushing is added to control whether the new flushing algorithm
should be used. See Section 7.11, “Controlling the Flushing Rate of Dirty Pages”.

Implemented I/O capacity tuning. A new parameter innodb_io_capacity is added to control the
master threads I/O rate. (To preserve the former behavior, set this parameter to a value of 100.) The
ibuf merge is also changed from synchronous to asynchronous. See Section 7.10, “Controlling the
Master Thread I/O Rate”.

Introduced the PAUSE instruction inside spin-loop where available. See Section 7.12, “Using the PAUSE
instruction in InnoDB spin loops”.

Fixed a crash on SET GLOBAL innodb_file_format=DEFAULT or SET GLOBAL
innodb_file_format_check=DEFAULT.

Changed the default values for innodb_max_dirty_pages_pct,
innodb_additional_mem_pool_size, innodb_buffer_pool_size, and
innodb_log_buffer_size.

Enabled group commit functionality that was broken in 5.0 when distributed transactions were introduced.
See Section 7.9, “Group Commit”.

Enabled the functionality of having multiple background threads, with two new configuration parameters,
innodb_read_io_threads and innodb_write_io_threads. The Windows only parameter
innodb_file_io_threads has been removed. See Section 7.8, “Multiple Background I/O Threads”.

Changed the linear read ahead algorithm and disabled random read ahead. Also introduced a new
configuration parameter innodb_read_ahead_threshold to control the sensitivity of the linear read
ahead. See Section 7.7, “Changes in the Read Ahead Algorithm”.

Standardized comments that allow the extraction of documentation from code base with the Doxygen tool.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://bugs.mysql.com/42829
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_sync_spin_loops
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_spin_wait_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_flushing
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_io_capacity
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_max_dirty_pages_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_additional_mem_pool_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_buffer_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_write_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold

Changes in InnoDB Plugin 1.0.3 (March 11, 2009)

82

Fixed a bug that could cause failures in secondary index lookups in consistent reads right after crash
recovery.

Corrected the estimation of space needed on a compressed page when performing an update by delete-
and-insert.

Removed the statically linked copies of the zlib and strings libraries from the binary Windows plugin.
Invoke the copies of these libraries in the mysqld executable, like the binary InnoDB Plugin does on other
platforms.

Trimmed the output of SHOW ENGINE INNODB MUTEX. See Section 8.8, “More Compact Output of SHOW
ENGINE INNODB MUTEX”.

On Microsoft Windows, make use of atomic memory access to implement mutexes and rw-locks more
efficiently. On Sun Solaris 10, if GCC built-in functions for atomic memory access are unavailable, use
library functions instead. See Section 7.2, “Faster Locking for Improved Scalability”.

Fixed MySQL Bug #44032: in ROW_FORMAT=REDUNDANT, update UTF-8 CHAR to/from NULL is not in-
place.

Fixed MySQL Bug #43660: SHOW INDEXES/ANALYZE does not update cardinality for indexes of InnoDB
table.

Made the parameter innodb_change_buffering settable by mysqld start-up option. Due to a
programming mistake, it was only possible to set this parameter by the SET GLOBAL command in InnoDB
Plugin 1.0.3.

Added a parameter innodb_spin_wait_delay for controlling the polling of mutexes and rw-locks. See
Section 7.13, “Control of Spin Lock Polling”.

In consistent reads, issue an error message on attempts to use newly created indexes that may lack
required history. See Section 2.6, “Limitations”.

12.7 Changes in InnoDB Plugin 1.0.3 (March 11, 2009)

Improved the scalability of InnoDB on multi-core CPUs. See Section 7.2, “Faster Locking for Improved
Scalability”.

Added a parameter innodb_change_buffering for controlling the insert buffering. See Section 7.4,
“Controlling InnoDB Insert Buffering”.

Added a parameter innodb_use_sys_malloc for using an operating system memory allocation rather
than the InnoDB internal memory allocator. See Section 7.3, “Using Operating System Memory Allocators”.

Made it possible to dynamically enable or disable adaptive hash indexing. See Section 7.5, “Controlling
Adaptive Hash Indexing”.

Changed the default value of innodb_thread_concurrency from 8 to 0, for unlimited concurrency by
default. See Section 7.6, “Changes Regarding Thread Concurrency”.

Fixed an issue that the InnoDB Plugin fails if innodb_buffer_pool_size is defined bigger than 4095M
on 64-bit Windows.

Fixed MySQL Bug #41676: Table names are case insensitive in locking.

Fixed MySQL Bug #41904: Create unique index problem.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_spin_wait_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_thread_concurrency
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size

Changes in InnoDB Plugin 1.0.2 (December 1, 2008)

83

Fixed MySQL Bug #43043: Crash on BLOB delete operation.

Fixed a bug in recovery when dropping incomplete indexes left behind by fast index creation.

Fixed a crash bug when all rows of a compressed table are deleted.

Fixed a corruption bug when a table is dropped on a busy system that contains compressed tables.

Fixed an assertion failure involving the variable ut_total_allocated_memory that was caused by
unprotected access during fast index creation.

12.8 Changes in InnoDB Plugin 1.0.2 (December 1, 2008)

Implemented the dynamic plugin (ha_innodb.dll) on Windows.

Added a parameter innodb_stats_sample_pages for controlling the index cardinality estimates.

Made innodb_stats_on_metadata a settable global parameter. (MySQL Bug #38189)

Made innodb_lock_wait_timeout a settable session parameter. (MySQL Bug #36285)

Fixed bugs related to off-page columns (see Section 5.3, “DYNAMIC Row Format”).

Fixed various bugs related to compressed tables. This includes MySQL Bug #36172, a possible but rare
corruption, and an incompatible file format change relating to very long rows in compressed tables, and to
off-page storage of long column values.

Fixed a bug in crash recovery which was a side effect of incorrect implementation of the system tablespace
tagging.

Fixed MySQL bugs related to auto_increment columns: Bug #26316, Bug #35498, Bug #35602, Bug
#36411, Bug #37531, Bug #37788, Bug #38839, Bug #39830, Bug #40224.

Fixed some race conditions, hangs or crashes related to INFORMATION_SCHEMA tables, fast index
creation, and to the recovery of PREPARED transactions.

Fixed crashes on DROP TABLE or CREATE TABLE when there are FOREIGN KEY constraints. (MySQL
Bug #38786)

Fixed a crash caused by a conflict between TRUNCATE TABLE and LOCK TABLES. (MySQL Bug #38231)

Fixed MySQL Bug #39939: DROP TABLE or DISCARD TABLESPACE takes a long time.

Fixed MySQL Bug #40359: InnoDB plugin error/warning message during shutdown.

Fixed MySQL Bug #40360: Binlog related errors with binlog off.

Applied all changes from MySQL through version 5.1.30.

12.9 Changes in InnoDB Plugin 1.0.1 (May 8, 2008)

Fixed bugs related to the packaging of the InnoDB Plugin: MySQL Bug #36222, Bug #36434.

Fixed crash bugs related to the new features of the InnoDB Plugin: MySQL Bug #36169, Bug #36310.

Implemented the system tablespace tagging discussed in Section 4.4.1, “Startup File Format Compatibility
Checking”.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_on_metadata
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout

Changes in InnoDB Plugin 1.0.0 (April 15, 2008)

84

Applied all changes from MySQL through version 5.1.25.

12.10 Changes in InnoDB Plugin 1.0.0 (April 15, 2008)

The initial release of the InnoDB Plugin is based on the built-in InnoDB in MySQL version 5.1. See
Section 1.2, “Features of the InnoDB Plugin” for the main features.

85

Appendix A Third-Party Software

Table of Contents
A.1 Performance Patches from Google .. 85
A.2 Multiple Background I/O Threads Patch from Percona .. 86
A.3 Performance Patches from Sun Microsystems ... 86

Innobase Oy acknowledges that certain Third Party and Open Source software has been used to develop
or is incorporated in InnoDB (including the InnoDB Plugin). This appendix includes required third-party
license information.

A.1 Performance Patches from Google
Innobase Oy gratefully acknowledges the following contributions from Google, Inc. to improve InnoDB
performance:

• Replacing InnoDB's use of Pthreads mutexes with calls to GCC atomic builtins, as discussed in
Section 7.2, “Faster Locking for Improved Scalability”. This change means that InnoDB mutex and rw-
lock operations take less CPU time, and improves throughput on those platforms where the atomic
operations are available.

• Controlling master thread I/O rate, as discussed in Section 7.10, “Controlling the Master Thread I/
O Rate”. The master thread in InnoDB is a thread that performs various tasks in the background.
Historically, InnoDB has used a hard coded value as the total I/O capacity of the server. With this
change, user can control the number of I/O operations that can be performed per second based on their
own workload.

Changes from the Google contributions were incorporated in the following source code files: btr0cur.c,
btr0sea.c, buf0buf.c, buf0buf.ic, ha_innodb.cc, log0log.c, log0log.h, os0sync.h,
row0sel.c, srv0srv.c, srv0srv.h, srv0start.c, sync0arr.c, sync0rw.c, sync0rw.h,
sync0rw.ic, sync0sync.c, sync0sync.h, sync0sync.ic, and univ.i.

These contributions are incorporated subject to the conditions contained in the file COPYING.Google,
which are reproduced here.

Copyright (c) 2008, 2009, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

Multiple Background I/O Threads Patch from Percona

86

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.2 Multiple Background I/O Threads Patch from Percona

Innobase Oy gratefully acknowledges the contribution of Percona, Inc. to improve InnoDB performance
by implementing configurable background threads, as discussed in Section 7.8, “Multiple Background I/O
Threads”. InnoDB uses background threads to service various types of I/O requests. The change provides
another way to make InnoDB more scalable on high end systems.

Changes from the Percona, Inc. contribution were incorporated in the following source code files:
ha_innodb.cc, os0file.c, os0file.h, srv0srv.c, srv0srv.h, and srv0start.c.

This contribution is incorporated subject to the conditions contained in the file COPYING.Percona, which
are reproduced here.

Copyright (c) 2008, 2009, Percona Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.
 * Neither the name of the Percona Inc. nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.3 Performance Patches from Sun Microsystems

Innobase Oy gratefully acknowledges the following contributions from Sun Microsystems, Inc. to improve
InnoDB performance:

• Introducing the PAUSE instruction inside spin loops, as discussed in Section 7.12, “Using the PAUSE
instruction in InnoDB spin loops”. This change increases performance in high concurrency, CPU-bound
workloads.

Performance Patches from Sun Microsystems

87

• Enabling inlining of functions and prefetch with Sun Studio.

Changes from the Sun Microsystems, Inc. contribution were incorporated in the following source code files:
univ.i, ut0ut.c, and ut0ut.h.

This contribution is incorporated subject to the conditions contained in the file
COPYING.Sun_Microsystems, which are reproduced here.

Copyright (c) 2009, Sun Microsystems, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.
 * Neither the name of Sun Microsystems, Inc. nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

88

89

Appendix B Using the InnoDB Plugin with MySQL 5.1.30 or
Earlier

Up to MySQL 5.1.30, the InnoDB Plugin replaced the built-in InnoDB in MySQL when the server was
started with the option skip_innodb. Due to MySQL Bug #42610, it was impossible to replace the built-
in InnoDB in MySQL with a plugin in MySQL 5.1.31 and 5.1.32. MySQL 5.1.33 introduced the option
ignore_builtin_innodb to allow InnoDB Plugin installation in the binary release.

Up to MySQL 5.1.30, installing the binary InnoDB Plugin requires that MySQL be shut down and restarted
after issuing the INSTALL PLUGIN statements. This is because the INSTALL PLUGIN statement started
the plugin with default options. The options would only be read from the option file (my.cnf or my.ini)
after restarting the server. The InnoDB Plugin worked around this limitation by copying parameters from
the internal data structures of the built-in InnoDB in MySQL. Beginning with MySQL 5.1.33, the INSTALL
PLUGIN statement re-reads the option file and passes all options to the plugin, even those that are not
recognized by the built-in InnoDB in MySQL.

To use the binary InnoDB Plugin with MySQL 5.1.30 or earlier, you may follow the instructions given in
Section 9.3, “Installing the Precompiled InnoDB Plugin as a Shared Library”, with one change: Replace the
option ignore_builtin_innodb with skip_innodb. The general steps for dynamically installing the
binary InnoDB Plugin are thus as follows:

• Make sure the MySQL server is not running, using a “slow” shutdown.

• Prepend each InnoDB option with loose_, e.g., loose_innodb_file_per_table instead of
innodb_file_per_table, so that MySQL starts even when InnoDB is unavailable.

• Add skip_innodb and default_storage_engine=MyISAM to the options, to prevent the built-in
InnoDB from starting.

• Start the MySQL server.

• INSTALL the InnoDB Plugin and the Information Schema tables, using the supplied script or equivalent
commands.

• Verify the installation of the plugins.

• Shut down and reconfigure the MySQL server by editing the appropriate configuration file to use InnoDB
as the default engine (if desired), and set appropriate configuration parameters to enable use of new
InnoDB Plugin features.

This change only affects the binary distributions of MySQL and InnoDB Plugin. The procedure for building
from source code is unchanged.

http://bugs.mysql.com/42610
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_ignore_builtin_innodb

90

91

Appendix C List of Parameters Changed in the InnoDB Plugin 1.0

Table of Contents
C.1 New Parameters .. 91
C.2 Deprecated Parameters .. 93
C.3 Parameters with New Defaults .. 93

C.1 New Parameters
Throughout the course of development, the InnoDB Plugin has introduced new configuration parameters.
The following table summarizes those parameters:

Table C.1 InnoDB Plugin New Parameter Summary

Name Cmd-
Line

Option
File

System
Var

Scope Dynamic Default

innodb_adaptive_flushing YES YES YES GLOBAL YES TRUE

innodb_change_buffering YES YES YES GLOBAL YES inserts

innodb_file_format YES YES YES GLOBAL YES Antelope

innodb_file_format_check YES YES YES GLOBAL YES ON

innodb_io_capacity YES YES YES GLOBAL YES 200

innodb_old_blocks_pct YES YES YES GLOBAL YES 37

innodb_old_blocks_time YES YES YES GLOBAL YES 0

innodb_read_ahead_threshold YES YES YES GLOBAL YES 56

innodb_read_io_threads YES YES YES GLOBAL NO 4

innodb_spin_wait_delay YES YES YES GLOBAL YES 6

innodb_stats_sample_pages YES YES YES GLOBAL YES 8

innodb_strict_mode YES YES YES GLOBAL|
SESSION

YES FALSE

innodb_use_sys_malloc YES YES YES GLOBAL NO TRUE

innodb_write_io_threads YES YES YES GLOBAL NO 4

innodb_adaptive_flushing Whether InnoDB uses a new algorithm to estimate the required
rate of flushing. The default value is TRUE. This parameter was
added in InnoDB Plugin 1.0.4. See Section 7.11, “Controlling
the Flushing Rate of Dirty Pages” for more information.

innodb_change_buffering Whether InnoDB performs insert buffering. The default value
is "inserts" (buffer insert operations). This parameter was
added in InnoDB Plugin 1.0.3. See Section 7.4, “Controlling
InnoDB Insert Buffering” for more information.

innodb_file_format Whether to enable the new “Barracuda” file format. The default
value is “Antelope”. This parameter was added in InnoDB
Plugin 1.0.1. See Section 4.3, “Enabling File Formats” for more
information.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_flushing
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

New Parameters

92

innodb_file_format_check Whether InnoDB performs file format compatibility checking
when opening a database. The default value is ON.
This parameter was added in InnoDB Plugin 1.0.1. See
Section 4.4.1, “Startup File Format Compatibility Checking” for
more information.

innodb_io_capacity The number of I/O operations that can be performed per
second. The allowable value range is any number 100 or
greater, and the default value is 200. This parameter was
added in InnoDB Plugin 1.0.4. To reproduce the earlier
behavior, use a value of 100. See Section 7.10, “Controlling the
Master Thread I/O Rate” for more information.

innodb_old_blocks_pct Controls the desired percentage of “old” blocks in the LRU list of
the buffer pool. The default value is 37 and the allowable value
range is 5 to 95. This parameter was added in InnoDB Plugin
1.0.5. See Section 7.14, “Making Buffer Cache Scan Resistant”
for more information.

innodb_old_blocks_time The time in milliseconds since the first access to a block during
which it can be accessed again without being made “young”.
The default value is 0 which means that blocks are moved
to the “young” end of the LRU list at the first access. This
parameter was added in InnoDB Plugin 1.0.5. See Section 7.14,
“Making Buffer Cache Scan Resistant” for more information.

innodb_read_ahead_threshold Control the sensitivity of the linear read ahead. The allowable
value range is 0 to 64 and the default value is 56. This
parameter was added in InnoDB Plugin 1.0.4. See Section 7.7,
“Changes in the Read Ahead Algorithm” for more information.

innodb_read_io_threads The number of background I/O threads used for reads. The
allowable value range is 1 to 64 and the default value is 4. This
parameter was added in InnoDB Plugin 1.0.4. See Section 7.8,
“Multiple Background I/O Threads” for more information.

innodb_spin_wait_delay Maximum delay between polling for a spin lock. The allowable
value range is 0 (meaning unlimited) or positive integers and
the default value is 6. This parameter was added in InnoDB
Plugin 1.0.4. See Section 7.13, “Control of Spin Lock Polling”
for more information.

innodb_stats_sample_pages The number of index pages to sample when calculating
statistics. The allowable value range is 1-unlimited and
the default value is 8. This parameter was added in InnoDB
Plugin 1.0.2. See Section 8.6, “Controlling Optimizer Statistics
Estimation” for more information.

innodb_strict_mode Whether InnoDB raises error conditions in certain cases,
rather than issuing a warning. The default value is OFF. This
parameter was added in InnoDB Plugin 1.0.2. See Section 8.5,
“InnoDB Strict Mode” for more information.

innodb_use_sys_malloc Whether InnoDB uses its own memory allocator or an allocator
of the operating system. The default value is ON (use an
allocator of the underlying system). This parameter was added

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format_check
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_io_capacity
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_ahead_threshold
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_spin_wait_delay
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_use_sys_malloc

Deprecated Parameters

93

in InnoDB Plugin 1.0.3. See Section 7.3, “Using Operating
System Memory Allocators” for more information.

innodb_write_io_threads The number of background I/O threads used for writes. The
allowable value range is 1 to 64 and the default value is 4. This
parameter was added in InnoDB Plugin 1.0.4. See Section 7.8,
“Multiple Background I/O Threads” for more information.

C.2 Deprecated Parameters

Beginning in InnoDB Plugin 1.0.4 the following configuration parameter has been removed:

innodb_file_io_threads This parameter has been replaced by two new
parameters innodb_read_io_threads and
innodb_write_io_threads. See Section 7.8, “Multiple
Background I/O Threads” for more information.

C.3 Parameters with New Defaults

For better out-of-the-box performance, InnoDB Plugin 1.0.4 changes the default values for the following
configuration parameters:

Table C.2 InnoDB Plugin Parameters with New Defaults

Name Old Default New Default

innodb_additional_mem_pool_size 1MB 8MB

innodb_buffer_pool_size 8MB 128MB

innodb_log_buffer_size 1MB 8MB

innodb_max_dirty_pages_pct 90 75

innodb_sync_spin_loops 20 30

innodb_thread_concurrency 8 0

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_write_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_read_io_threads
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_write_io_threads

94

95

InnoDB Glossary
These terms are commonly used in information about the InnoDB storage engine.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable in
a database system, and are all closely tied to the notion of a transaction. The transactional features of InnoDB
adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

The database remains in a consistent state at all times -- after each commit or rollback, and while transactions
are in progress. If related data is being updated across multiple tables, queries see either all old values or all new
values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that transaction
are safe from power failures, system crashes, race conditions, or other potential dangers that many non-
database applications are vulnerable to. Durability typically involves writing to disk storage, with a certain amount
of redundancy to protect against power failures or software crashes during write operations. (In InnoDB, the
doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small sets
of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to perform
these periodic flushes, based on the rate of flushing and how fast redo information is generated. First introduced
in MySQL 5.1, in the InnoDB Plugin.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing a hash
index in memory. MySQL monitors index searches for InnoDB tables, and if queries could benefit from a hash
index, it builds one automatically for index pages that are frequently accessed. In a sense, the adaptive hash
index configures MySQL at runtime to take advantage of ample main memory, coming closer to the architecture

96

of main-memory databases. This feature is controlled by the innodb_adaptive_hash_index configuration
option. Because this feature benefits some workloads and not others, and the memory used for the hash index is
reserved in the buffer pool, typically you should benchmark with this feature both enabled and disabled.

The hash index is always built based on an existing InnoDB secondary index, which is organized as a B-tree
structure. MySQL can build a hash index on a prefix of any length of the key defined for the B-tree, depending on
the pattern of searches against the index. A hash index can be partial; the whole B-tree index does not need to be
cached in the buffer pool.

In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is to use
the memcached interface to InnoDB. See InnoDB Integration with memcached for details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.

AHI
 Acronym for adaptive hash index.
See Also adaptive hash index.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

Antelope
 The code name for the original InnoDB file format. It supports the redundant and compact row formats, but not
the newer dynamic and compressed row formats available in the Barracuda file format.

If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that could
benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the file format
to use by setting the innodb_file_format option before creating the table.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent changes
that occurred while the backup was underway, the process of updating the backup files to include those changes
is known as the apply step. It is specified by the apply-log option of the mysqlbackup command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer to
the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply step is
finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as non-
blocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in parallel
without affecting the reliability of the database, such as reading pages into the buffer pool that have not actually
been requested, but might be needed soon.

Historically, InnoDB has used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1,
InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency on libaio. On other
Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, non-blocking I/O.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index
http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

97

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have no
effect at all (when rolled back). The indivisible ("atomic") property of transactions is the "A" in the acronym ACID.
See Also ACID, commit, rollback, transaction.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an ascending
sequence of values in the column. InnoDB supports auto-increment only for primary key columns.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It provides
useful information for the query optimizer, because the column is known to be not null and with unique values.
The values from such a column can be used as lookup keys in various contexts, and because they are auto-
generated there is no reason to ever change them; for this reason, primary key columns are often specified as
auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the statements
on a slave might not produce the same set of column values as on the master, due to timing issues. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which allows higher
concurrency for insert operations, use row-based replication rather than statement-based replication. The
setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and should not be used
except for compatibility purposes.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own inserts
into that table, so that rows inserted by the first transaction receive consecutive primary key values. InnoDB
includes optimizations, and the innodb_autoinc_lock_mode option, so that you can choose how to trade off
between predictable sequences of auto-increment values and maximum concurrency for insert operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for
working with InnoDB tables with transactions that span several statements. It can help performance for read-
only transactions on InnoDB tables, where it minimizes overhead from locking and generation of undo data,
especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where transactions are
not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than, and
BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and MyISAM.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode

98

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine
can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use
range operators.
See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain special
characters or reserved words. For example, to refer to a table named FOO#BAR or a column named SELECT, you
would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an extra level of safety,
they are used extensively in program-generated SQL statements, where the identifier names might not be known
in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also
refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in terms of
size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database
operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports compression for table data. This file format was first
introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table compression,
and the dynamic row format that improves the storage layout for BLOB and large text columns. You can select it
through the innodb_file_format option.

Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda file
format you must also enable the file-per-table setting, which puts newly created tables in their own tablespaces
separate from the system tablespace.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-table,
innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a definite
release number or a number less than 1. InnoDB does not use the beta designation, preferring an early adopter
phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be replayed
to bring slave servers up to date in a replication scenario, or to bring a database up to date after restoring table

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

99

data from a backup. The binary logging feature can be turned on and off, although Oracle recommends always
enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysqlbinlog command. For full information about the binary log, see The Binary Log. For MySQL
configuration options related to the binary log, see Binary Log Options and Variables.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the master server when taking a backup in a replication
context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages
or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput. For
example, a memory area might be smaller than necessary; access to a single required resource might prevent
multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the CPU from
running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the ability to have
multiple InnoDB buffer pool instances reduces contention when multiple sessions read from and write to the
buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so that
performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written to disk
efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for greater
reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible time. The
main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the insert buffer.
See Also buffer pool, crash, doublewrite buffer, insert buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume read
operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of cache

http://dev.mysql.com/doc/refman/5.1/en/binary-log.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html

100

management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged out of the
cache, using a variation of the LRU algorithm. On systems with large memory, you can improve concurrency by
dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, information_schema tables, and performance_schema tables help
to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can also dump and restore
the contents of the buffer pool, either automatically during shutdown and restart, or manually at any time,
through a set of InnoDB configuration variables such as innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup.
See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by the
innodb_buffer_pool_size is divided among all the instances. Typically, multiple buffer pool instances are
appropriate for systems devoting multiple gigabytes to the InnoDB buffer pool, with each instance 1 gigabyte or
larger. On systems loading or looking up large amounts of data in the buffer pool from many concurrent sessions,
having multiple instances reduces the contention for exclusive access to the data structures that manage the
buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the MySQL
code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but
not the built-in InnoDB, or vice versa.
See Also InnoDB, plugin.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a commercial
company. Sometimes these rules are dictated by law, other times by company policy. Careful planning ensures
that the relationships encoded and enforced by the database, and the actions performed through application logic,
accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data being
removed from a database, or the data might be moved or flagged so that it could be recovered if the account
is re-opened. A company might establish policies regarding salary maximums, minimums, and adjustments, in
addition to basic sanity checks such as the salary not being a negative number. A retail database might not allow
a purchase with the same serial number to be returned more than once, or might not allow credit card purchases
above a certain value, while a database used to detect fraud might allow these kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command FLUSH
TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to another server.
The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal values of the .ibd
file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_dump_at_shutdown
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_load_at_startup
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_buffer_pool_instances
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size

101

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In InnoDB,
the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated index,
the cardinality of each column influences which access method is most efficient. For example, for a column with
a unique constraint, the number of different values is equal to the number of rows in the table. If a table has a
million rows but only 10 different values for a particular column, each value occurs (on average) 100,000 times. A
query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge number of rows, and
the database server might process the query differently depending on the cardinality of c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50 and
a million rows when x=30. In such a case, you might need to use index hints to pass along advice about which
lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite index.

For InnoDB, the process of estimating cardinality for indexes is influenced by the
innodb_stats_sample_pages and the innodb_stats_on_metadata configuration options. The estimated
values are more stable when the persistent statistics feature is enabled (in MySQL 5.6 and higher).
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result from
SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer is known
collectively as change buffering, consisting of insert buffering, delete buffering, and purge buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in the
buffer pool. When the relevant index page is brought into the buffer pool while associated changes are still in the
change buffer, the changes for that page are applied in the buffer pool (merged) using the data from the change
buffer. Periodically, the purge operation that runs during times when the system is mostly idle, or during a slow
shutdown, writes the new index pages to disk. The purge operation can write the disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered across
database restarts. The changes are only applied (merged) when the pages are brought into the buffer pool due to
some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data in
the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page, purge,
purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete buffering,
and purge buffering. Index changes resulting from SQL statements, which could normally involve random I/
O operations, are held back and performed periodically by a background thread. This sequence of operations
can write the disk blocks for a series of index values more efficiently than if each value were written to disk

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_on_metadata
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_change_buffer_max_size
http://dev.mysql.com/doc/refman/5.1/en/show-engine.html

102

immediately. Controlled by the innodb_change_buffering and innodb_change_buffer_max_size
configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the data
files sometime later, a process known as flushing. The checkpoint is a record of the latest changes (represented
by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk
into the InnoDB buffer pool. This feature is turned on and off by the innodb_checksums configuration
option. In MySQL 5.6, you can enable a faster checksum algorithm by also specifying the configuration option
innodb_checksum_algorithm=crc32.

The innochecksum command helps to diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, master_verify_checksum, and slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table must
exist before the row can be created in the child table. The values in the child table can prevent delete or update
operations on the parent table, or can cause automatic deletion or updates in the child table, based on the ON
CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to the
data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as opposed
to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A type of program that sends requests to a server, and interprets or processes the results. The client software
might run only some of the time (such as a mail or chat program), and might run interactively (such as the mysql
command processor).
See Also mysql, server.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the primary
key columns, to speed up queries and sorts involving the primary key columns. For best performance, choose the
primary key columns carefully based on the most performance-critical queries. Because modifying the columns of
the clustered index is an expensive operation, choose primary columns that are rarely or never updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_change_buffering
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_change_buffer_max_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_checksums
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_master_verify_checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_sql_verify_checksum

103

cold backup
 A backup taken while the database is shut down. For busy applications and web sites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary key.
A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different columns,
even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, primary key, row, SQL, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and storing
the entire value in the index would waste space, the index automatically uses the first N (typically 768) characters
of the value to do lookups and sorts.
See Also index.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before the
commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is required
in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format since MySQL 5.0.3. Available for tables that use the Antelope file format. It
has a more compact representation for nulls and variable-length fields than the prior default (redundant row
format).

Because of the B-tree indexes that make row lookups so fast in InnoDB, there is little if any performance benefit
to keeping all rows the same size.

For additional information about InnoDB COMPACT row format, see Section 5.2, “COMPACT and REDUNDANT Row
Formats”.
See Also Antelope, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.

104

See Also index, index prefix.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing the backup data allows you to keep more
backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed
during the restore operation. When a compressed backup operation processes a table that is already
compressed, it skips the compression step for that table, because compressing again would result in little or no
space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed. The
compressed files are renamed with a .ibz file extension.

Applying compression right at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server. The
process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds the
rest of the row data, as in dynamic row format. Both index pages and the large fields are compressed, yielding
memory and disk savings. Depending on the structure of the data, the decrease in memory and disk usage might
or might not outweigh the performance overhead of uncompressing the data as it is used. See Chapter 3, InnoDB
Data Compression for usage details.

For additional information about InnoDB COMPRESSED row format, see Section 5.3, “DYNAMIC Row Format”.
See Also Barracuda, compression, dynamic row format, row format.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory for
caching. InnoDB table and index data can be kept in a compressed format during database operation.

The data is uncompressed when needed for queries, and re-compressed when changes are made by DML
operations. After you enable compression for a table, this processing is transparent to users and application
developers. DBAs can consult information_schema tables to monitor how efficiently the compression
parameters work for the MySQL instance and for particular compressed tables.

When InnoDB table data is compressed, the compression applies to the table itself, any associated index data,
and the pages loaded into the buffer pool. Compression does not apply to pages in the undo buffer.

The table compression feature requires using MySQL 5.5 or higher, or the InnoDB Plugin in MySQL 5.1
or earlier, and creating the table using the Barracuda file format and compressed row format, with the
innodb_file_per_table setting turned on. The compression for each table is influenced by the KEY_BLOCK_SIZE
clause of the CREATE TABLE and ALTER TABLE statements. In MySQL 5.6 and higher, compression is also
affected by the server-wide configuration options innodb_compression_failure_threshold_pct,
innodb_compression_level, and innodb_compression_pad_pct_max. See Chapter 3, InnoDB Data
Compression for usage details.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed row format, DML, hot backup, index, INFORMATION_SCHEMA,
innodb_file_per_table, plugin, table, undo buffer.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in combination
with DML operations. It occurs when: updates to a compressed page overflow the area on the page

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_failure_threshold_pct
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_level
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_pad_pct_max

105

reserved for recording modifications; the page is compressed again, with all changes applied to the table
data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into
two new pages and compress each one separately. To check the frequency of this condition, query the
table INFORMATION_SCHEMA.INNODB_CMP and check how much the value of the COMPRESS_OPS
column exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not
occur often; when they do, you can adjust the configuration options innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection for
multiple simultaneous transactions works with a minimum of performance overhead, using efficient mechanisms
for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and UNIX this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB under
the [mysqld] section of the file.

Typically, this file is searched for in the locations /etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/
etc/my.cnf and ~/.my.cnf. See Using Option Files for details about the search path for this file.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file for
your real server), and a stripped-down one containing only a small set of options that specify where the backup
data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product
must contain certain options that are typically left out of regular configuration files, so you might need to add some
options to your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, option file.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time, regardless of
changes performed by other transactions running at the same time. If queried data has been changed by another
transaction, the original data is reconstructed based on the contents of the undo log. This technique avoids some
of the locking issues that can reduce concurrency by forcing transactions to wait for other transactions to finish.

With the repeatable read isolation level, the snapshot is based on the time when the first read operation is
performed. With the read committed isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables it
accesses, other sessions are free to modify those tables while a consistent read is being performed on the table.

For technical details about the applicable isolation levels, see Consistent Nonlocking Reads.
See Also ACID, concurrency, isolation level, locking, MVCC, READ COMMITTED, READ UNCOMMITTED,
REPEATABLE READ, SERIALIZABLE, transaction, undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of

http://dev.mysql.com/doc/refman/5.5/en/innodb-cmp-table.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_level
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_failure_threshold_pct
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_pad_pct_max
http://dev.mysql.com/doc/refman/5.1/en/option-files.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-consistent-read.html

106

the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, relational, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of
counters are available through performance_schema tables and information_schema tables, particularly
information_schema.innodb_metrics.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply this
optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also include the
primary key columns. InnoDB cannot apply this technique for queries against tables modified by a transaction,
until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your indexes
and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, secondary index.

crash
 MySQL uses the term "crash" to refer generally to any unexpected shutdown operation where the server cannot
do its normal cleanup. For example, a crash could happen due to a hardware fault on the database server
machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to halt; a
fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for InnoDB
tables ensures that data is made consistent when the server is restarted, without any extra work for the DBA.
See Also crash recovery, fast shutdown, InnoDB, redo log, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes from
incomplete transactions are replayed using data from the redo log. Changes that were committed before the
crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When the database is
shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for "create, read, update, delete", a common sequence of operations in database applications. Often
denotes a class of applications with relatively simple database usage (basic DDL, DML and query statements in
SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal data structure that is used to represent the result set of a query, or other operation that performs a
search using an SQL WHERE clause. It works like an iterator in other high-level languages, producing each value
from the result set as requested.

Although usually SQL handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.

107

See Also query.

D
data definition language

See DDL.

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include
the contents of the data dictionary.
See Also column, .frm file, hot backup, index, MySQL Enterprise Backup, system tablespace, table.

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain the InnoDB table and index data. There can be a one-to-many relationship
between data files and tables, as in the case of the system tablespace, which can hold multiple InnoDB tables
as well as the data dictionary. There can also be a one-to-one relationship between data files and tables,
as when the file-per-table setting is enabled, causing each newly created table to be stored in a separate
tablespace.
See Also data dictionary, file-per-table, index, system tablespace, table, tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB system
tablespace, which can hold table data from multiple databases within a MySQL instance, is kept in its data
files that reside outside the individual database directories. When file-per-table mode is enabled, the .ibd files
representing individual InnoDB tables are stored inside the database directories.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database background
will find that the MySQL meaning of a database is closer to what Oracle Database calls a schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT and
REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual table
rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE statement,

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_datadir
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/revoke.html

108

because it works differently than a DELETE FROM table_name statement, even though the ultimate effect is
similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

The InnoDB-related aspects of DDL include speed improvements for CREATE INDEX and DROP INDEX
statements, and the way the file-per-table setting affects the behavior of the TRUNCATE TABLE statement.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other needs.
Because both transactions are waiting for a resource to become available, neither will ever release the locks it
holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a timing
issue.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLE statements; keep transactions
that insert or update data small enough that they do not stay open for long periods of time; when different
transactions update multiple tables or large ranges of rows, use the same order of operations (such as
SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used in SELECT ... FOR
UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not affected by the isolation level,
because the isolation level changes the behavior of read operations, while deadlocks occur because of write
operations.

If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions (the victim).
Thus, even if your application logic is perfectly correct, you must still handle the case where a transaction must
be retried. To see the last deadlock in an InnoDB user transaction, use the command SHOW ENGINE INNODB
STATUS. If frequent deadlocks highlight a problem with transaction structure or application error handling, run with
the innodb_print_all_deadlocks setting enabled to print information about all deadlocks to the mysqld
error log.

For background information on how deadlocks are automatically detected and handled, see Deadlock Detection
and Rollback. For tips on avoiding and recovering from deadlock conditions, see How to Cope with Deadlocks.
See Also concurrency, gap, isolation level, lock, locking, rollback, transaction, victim.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer are
returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection known as the
purge operation, performed by a separate thread. For removing large quantities of data, related operations with
their own performance characteristics are truncate and drop.
See Also drop, purge, truncate.

delete buffering
 The technique of storing index changes due to DELETE operations in the insert buffer rather than writing them
immediately, so that the physical writes can be performed to minimize random I/O. (Because delete operations
are a two-step process, this operation buffers the write that normally marks an index record for deletion.) It is one
of the types of change buffering; the others are insert buffering and purge buffering.

http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_print_all_deadlocks
http://dev.mysql.com/doc/refman/5.1/en/innodb-deadlock-detection.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-deadlock-detection.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-deadlocks.html

109

See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated after
loading. In such applications, query performance is more important than making it simple to maintain consistent
data during updates. Contrast with normalized.
See Also data warehouse, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER BY
column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE statement, it
does not use any special storage layout for the resulting index.
See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet committed.
It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction doing
the dirty read would be using data that was never confirmed as accurate.

Its polar opposite is consistent read, where InnoDB goes to great lengths to ensure that a transaction does not
read information updated by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ COMMITTED, READ UNCOMMITTED, rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought back
and forth between disk and memory to be operated upon. It is the opposite of an in-memory database. Although
InnoDB is disk-based, it also contains features such as the buffer pool, multiple buffer pool instances, and the
adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, disk-bound, workload.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, disk-bound, workload.

DML
 Data manipulation language, a set of SQL statements for performing insert, update, and delete operations. The
SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR UPDATE form
is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be committed
or rolled back as a single unit.

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html

110

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the column
to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a novel file flush technique called doublewrite. Before writing pages to the data files, InnoDB first
writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the doublewrite
buffer have completed, does InnoDB write the pages to their proper positions in the data file. If the operating
system crashes in the middle of a page write, InnoDB can later find a good copy of the page from the doublewrite
buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead or twice
as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single fsync() call
to the operating system.

To turn off the doublewrite buffer, specify the option innodb_doublewrite=0.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE or DROP
INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the performance
considerations of such operations involve the time that the data dictionary is locked to ensure that interrelated
objects are all updated, and the time to update memory structures such as the buffer pool. For a table, the drop
operation has somewhat different characteristics than a truncate operation (TRUNCATE TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because TEXT
and BLOB fields are stored outside of the rest of the page that holds the row data, it is very efficient for rows that
include large objects. Since the large fields are typically not accessed to evaluate query conditions, they are not
brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of cache memory.

For additional information about InnoDB DYNAMIC row format, see Section 5.3, “DYNAMIC Row Format”.
See Also Barracuda, buffer pool, file format, row format.

E
early adopter

 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting. InnoDB uses the early adopter designation rather than beta,
through a succession of point releases leading up to a GA release.
See Also beta, GA.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see The Error Log.
See Also crash, log.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_doublewrite
http://dev.mysql.com/doc/refman/5.1/en/drop-table.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.1/en/error-log.html

111

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer pool.
Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page is evicted,
its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also block
other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE READ, enables
higher concurrency by allowing transactions to read rows that have exclusive locks, a technique known as
consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace totaling 1 megabyte. With the default page size of 16KB, an extent
contains 64 pages. In MySQL 5.6, the page size can also be 4KB or 8KB, in which case an extent contains more
pages, still adding up to 1MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations that
read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, neighbor page, page, page size, read-ahead, segment, tablespace.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system tablespace;
the .frm files are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an
ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB tables
perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the .frm
files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the
database at the time of the backup.
See Also MySQL Enterprise Backup.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of the MySQL server in 5.5 and higher, that speeds
up creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The
speedup applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general: you can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table, without
blocking DML operations, or both. Thus in MySQL 5.6 and higher, we typically refer to this set of features as
online DDL rather than Fast Index Creation.
See Also DML, index, online DDL, secondary index.

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

112

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting innodb_fast_shutdown=1.
To save time, certain flush operations are skipped. This type of shutdown is safe during normal usage, because
the flush operations are performed during the next startup, using the same mechanism as in crash recovery.
In cases where the database is being shut down for an upgrade or downgrade, do a slow shutdown instead to
ensure that all relevant changes are applied to the data files during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The format used by InnoDB for each table, typically with the file-per-table setting enabled so that each table
is stored in a separate .ibd file. Currently, the file formats available in InnoDB are known as Antelope and
Barracuda. Each file format supports one or more row formats. The row formats available for Barracuda tables,
COMPRESSED and DYNAMIC, enable important new storage features for InnoDB tables.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option. That is a very important
configuration option that affects many aspects of InnoDB file storage, availability of features, and I/O
characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by default.

For each table created while this setting is in effect, the data is stored in a separate .ibd file rather than in the
ibdata files of the system tablespace. When table data is stored in individual files, you have more flexibility to
choose nondefault file formats and row formats, which are required for features such as data compression.
The TRUNCATE TABLE operation is also much faster, and the reclaimed space can be used by the operating
system rather than remaining reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example, tables
can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for tables that
are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, row format,
system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The unused
space when index data is first divided between pages allows for rows to be updated with longer string values
without requiring expensive index maintenance operations. If the fill factor is too low, the index consumes more
space than needed, causing extra I/O overhead when reading the index. If the fill factor is too high, any update
that increases the length of column values can cause extra I/O overhead for index maintenance. See Physical
Structure of an InnoDB Index for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with the
option row_format=fixed, InnoDB translates this option to use the compact row format instead, although the
fixed value might still show up in output such as SHOW TABLE STATUS reports.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space, because
a commit operation means the changes from a transaction can be finalized, or because a slow shutdown
operation means that all outstanding work should be finalized. When it is not critical to flush all the buffered data

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_fast_shutdown
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-table-and-index.html#innodb-physical-structure
http://dev.mysql.com/doc/refman/5.1/en/innodb-table-and-index.html#innodb-physical-structure

113

at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of pages to spread out
the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, neighbor page, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB's internal
mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is defined on
one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent the
deletion, cause the corresponding column values in the other table to become null, or automatically delete the
corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single table,
using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other kinds
of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in this case,
the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML operation is
performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to different values, or
set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for full
table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an index.
Typically performed either with small lookup tables, or in data warehousing situations with large tables where all
available data is aggregated and analyzed. How frequently these operations occur, and the sizes of the tables
relative to available memory, have implications for the algorithms used in query optimization and managing the
buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index, LRU.

114

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data, in a
faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own application-
level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism. Represents
the words from values of a column, omitting any that are specified as stopwords. Originally, only available for
MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty pages
at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 "Generally available", the stage when a software product leaves beta and is available for sale, official support,
and production use.
See Also beta, early adopter.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows with
a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as well as the
actual values in the index. For example, if you select all values greater than 10 for update, a gap lock prevents
another transaction from inserting a new value that is greater than 10. The supremum record and infimum
record represent the gaps containing all values greater than or less than all the current index values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record. For
example, SELECT c1 FOR UPDATE FROM t WHERE c1 BETWEEN 10 and 20; prevents other transactions
from inserting a value of 15 into the column t.c1, whether or not there was already any such value in the column,
because the gaps between all existing values in the range are locked. Contrast with record lock and next-key
lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server. Can
be stored in a file or in a database table. You must enable this feature through the general_log configuration
option to use it. You can disable it for a specific connection through the sql_log_off configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for replication,
the general query log contains SELECT statements and does not maintain strict ordering. For more information,
see The General Query Log.
See Also binary log, general query log, log.

http://dev.mysql.com/doc/refman/5.1/en/fulltext-search.html#function_match
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_log_off
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/query-log.html

115

global_transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In essence,
this extends ACID properties "up a level" so that multiple ACID transactions can be executed in concert as
components of a global operation that also has ACID properties. For this type of distributed transaction, you must
use the SERIALIZABLE isolation level to achieve ACID properties.
See Also ACID, SERIALIZABLE, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.

When the binlog is enabled, you typically also set the configuration option sync_binlog=0, because group
commit for the binary log is only supported if it is set to 0.
See Also commit, plugin, XA.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables
for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for general-
purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

HDD
 Acronym for "hard disk drive". Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if the
master stops sending such messages, one of the slaves can take its place. Similar techniques can be used
between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of the
maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge operation.
Recorded in the undo log. The length of the history list is reported by the command SHOW ENGINE INNODB
STATUS. If the history list grows longer than the value of the innodb_max_purge_lag configuration option,
each DML operation is delayed slightly to allow the purge operation to finish flushing the deleted records.

Also known as purge lag.
See Also flush, purge, purge lag, rollback segment, transaction, undo log.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_max_purge_lag

116

Although "hot" typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database and is running and applications are reading and writing to it. The backup
involves more than simply copying data files: it must include any data that was inserted or updated while the
backup was in process; it must exclude any data that was deleted while the backup was in process; and it must
ignore any changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup. The
apply step incorporates any changes to the database that happened while the backup was running. Applying the
changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

I
.ibd file

 Each InnoDB table created using the file-per-table mode goes into its own tablespace file, with a .ibd
extension, inside the database directory. This file contains the table data and any indexes for the table. File-per-
table mode, controlled by the innodb_file_per_table option, affects many aspects of InnoDB storage usage and
performance, and is enabled by default in MySQL 5.6.7 and higher.

This extension does not apply to the system tablespace, which consists of the ibdata files.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.

If a table is create with the DATA DIRECTORY = clause in MySQL 5.6 and higher, the .ibd file is located outside
the normal database directory, and is pointed to by a .isl file.
See Also database, file-per-table, ibdata file, .ibz file, index, innodb_file_per_table, .isl file, MySQL Enterprise
Backup, system tablespace, table, tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace
file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the backup
but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of a .ibd file for an InnoDB table created with the DATA DIRECTORY = clause in
MySQL 5.6 and higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic link
mechanism. You can store InnoDB tablespaces outside the database directory, for example, on an especially
large or fast storage device depending on the usage of the table. For details, see Specifying the Location of a
Tablespace.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

http://dev.mysql.com/doc/refman/5.5/en/tablespace-placing.html
http://dev.mysql.com/doc/refman/5.5/en/tablespace-placing.html

117

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, any file-per-table
tablespaces, and the (typically 2) redo log files. Used sometimes in detailed discussions of InnoDB file structures
and formats, to avoid ambiguity between the meanings of database between different DBMS products, and the
non-InnoDB files that may be part of a MySQL database.
See Also database, file-per-table, redo log, system tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup operation.
It contains information about any data changes that occurred while the backup was running. The initial backup
files, including ibbackup_logfile, are known as a raw backup, because the changes that occurred during
the backup operation are not yet incorporated. After you perform the apply step to the raw backup files, the
resulting files do include those final data changes, and are known as a prepared backup. At this stage, the
ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system tablespace.
These files contain metadata about InnoDB tables, (the data dictionary), and the storage areas for the
undo log, the change buffer, and the doublewrite buffer. They also can contain some or all of the table
data also (depending on whether the file-per-table mode is in effect when each table is created). When the
innodb_file_per_table option is enabled, data and indexes for newly created tables are stored in separate .ibd
files rather than in the system tablespace.

The growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table, system
tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related objects.
The configuration file option, innodb_temp_data_file_path, allows users to define a relative path for the
temporary data file. If innodb_temp_data_file_path is not specified, the default behavior is to create a single
auto- extending 12MB data file named ibtmp1 in the data directory, alongside ibdata1.
See Also temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables. These
statements are replayed automatically to correct data written by incomplete transactions, on startup following a
crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional information
for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the "D" in the ACID

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoextend_increment
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path

118

design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more suitable
for read-only operations. Other in-memory databases do use durability mechanisms such as logging changes to
disk or using non-volatile memory.

MySQL features that are address the same kinds of memory-intensive processing include the InnoDB buffer
pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the MyISAM
key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You can
restore the full backup and then apply each of the incremental backups in succession, or you can keep the full
backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure (B-
tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or more
secondary indexes defined on one or more columns. Depending on their structure, secondary indexes can be
classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes to
allow fast lookups for data needed by applications. The ideal database design uses a covering index where
practical; the query results are computed entirely from the index, without reading the actual table data. Each
foreign key constraint also requires an index, to efficiently check whether values exist in both the parent and
child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in the
MEMORY storage engine and the InnoDB adaptive hash index.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering index,
foreign key, hash index, parent table, partial index, primary key, query, row, secondary index, table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/O
when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written to disk
when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache, whose size
is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of the
index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index, even if
the query does not reference all the columns in the index.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_ft_cache_size

119

See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction has a
statement such as SELECT ... FOR UPDATE ... WHERE col < 10;, and the smallest value in the column
is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller values such as
0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is defined
by the ANSI SQL standard.) To examine information (metadata) about the database, you can query tables such
as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using SHOW commands
that produce unstructured output.

The information schema contains some tables that are specific to InnoDB, such as INNODB_LOCKS and
INNODB_TRX. You use these tables not to see how the database is structured, but to get real-time information
about the workings of InnoDB tables to help with performance monitoring, tuning, and troubleshooting. In
particular, these tables provide information about MySQL features related to compression, and transactions
and their associated locks.
See Also compression, data dictionary, database, InnoDB, lock, transaction.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it handles
tables created or altered with the ENGINE=INNODB clause. See The InnoDB Storage Engine for architectural
details and administration procedures, and Optimizing for InnoDB Tables for performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB clause is
not required. In MySQL 5.1 only, many of the advanced InnoDB features require enabling the component known
as the InnoDB Plugin. See InnoDB as the Default MySQL Storage Engine for the considerations involved in
transitioning to recent releases where InnoDB tables are the default.

InnoDB tables are ideally suited for hot backups. See MySQL Enterprise Backup for information about the
MySQL Enterprise Backup product for backing up MySQL servers without interrupting normal processing.
See Also ACID, hot backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode, because multi-row inserts
within a transaction receive consecutive auto-increment values. If you have innodb_autoinc_lock_mode=2,
which allows higher concurrency for insert operations, use row-based replication rather than statement-
based replication. This setting is known as interleaved lock mode, because multiple multi-row insert
statements running at the same time can receive autoincrement values that are interleaved. The setting
innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and should not be used except for
compatibility purposes.
See Also auto-increment locking, mixed-mode insert, primary key.

innodb_file_format
 The innodb_file_format option determines the file format for all InnoDB tablespaces created after you
specify a value for this option. To create tablespaces other than the system tablespace, you must also use the
file-per-table option. Currently, you can specify the Antelope and Barracuda file formats.

http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-trx-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/optimizing-innodb.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_format

120

See Also Antelope, Barracuda, file format, file-per-table, innodb_file_per_table, system tablespace, tablespace.

innodb_file_per_table
 A very important configuration option that affects many aspects of InnoDB file storage, availability of features,
and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by
default. The innodb_file_per_table option turns on file-per-table mode, which stores each newly created
InnoDB table and its associated index in its own .ibd file, outside the system tablespace.

This option affects the performance and storage considerations for a number of SQL statements, such as DROP
TABLE and TRUNCATE TABLE.

This option is needed to take full advantage of many other InnoDB features, such as such as table compression,
or backups of named tables in MySQL Enterprise Backup.

This option was once static, but can now be set using the SET GLOBAL command.

For reference information, see innodb_file_per_table. For usage information, see Using Per-Table
Tablespaces.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to become
available, or giving up and handling the error, retrying, or doing alternative processing in your application.
Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock. Especially useful if
deadlocks are caused by updates to multiple tables controlled by different storage engines; such deadlocks are
not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that are
normally treated as warnings, cause errors instead (and the underlying statements fail).

This mode is the default setting in MySQL 5.5.5 and higher.
See Also strict mode.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn about
InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 Former name for the change buffer. Now that change buffering includes delete and update operations as well
as inserts, "change buffer" is the preferred term.
See Also change buffer, change buffering.

insert buffering
 The technique of storing secondary index changes due to INSERT operations in the insert buffer rather than
writing them immediately, so that the physical writes can be performed to minimize random I/O. It is one of the
types of change buffering; the others are delete buffering and purge buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot be
verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/drop-table.html
http://dev.mysql.com/doc/refman/5.1/en/drop-table.html
http://dev.mysql.com/doc/refman/5.1/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.1/en/set-statement.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode

121

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of tables.
It is common in development, testing, and some replication scenarios to have multiple instances on the same
server machine, each managing its own data directory and listening on its own port or socket. With one instance
running a disk-bound workload, the server might still have extra CPU and memory capacity to run additional
instances.
See Also data directory, database, disk-bound, mysqld, replication, server.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL,
data collected by instrumentation is exposed through a SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table level, used to indicate what kind of lock the transaction intends to acquire
on rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the
first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring
any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a
table prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock
requests to be resolved in order, without blocking locks and corresponding operations that are compatible. For
more details on this locking mechanism, see InnoDB Lock Modes.
See Also lock, lock mode, locking.

intention shared lock
See intention lock.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can become
disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the
setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results
when multiple transactions are making changes and performing queries at the same time.

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the read committed level as they push the boundaries of scalability with OLTP
processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED) change
the processing behavior to such an extent that they are rarely used.

http://dev.mysql.com/doc/refman/5.1/en/innodb-lock-modes.html

122

See Also ACID, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J

join
 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance by
replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K

KEY_BLOCK_SIZE
 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.
See Also compressed row format.

L

latch
 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically
held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes
(for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance
tuning, such as the data dictionary mutex. Statistics about latch use and contention are available through the
Performance Schema interface.
See Also data dictionary, lock, locking, mutex, Performance Schema, rw-lock.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
actually divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, sublist.

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for row
locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same
row at the same time.

123

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind of
lock on that same row at the same time.

Intention locks apply to the table level, and are used to indicate what kind of lock the transaction intends to
acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same
table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions
from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared
(IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase process
allows the lock requests to be resolved in order, without blocking locks and corresponding operations that are
compatible.
See Also intention lock, lock, locking.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by other
transactions. The locking strategy must balance reliability and consistency of database operations (the principles
of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the locking strategy
often involves choosing an isolation level and ensuring all your database operations are safe and reliable for that
isolation level.
See Also ACID, concurrency, isolation level, latch, lock, mutex, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on the
isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a read-
only transaction.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, "log" or "log files" typically refers to the redo log represented by the ib_logfile* files.
Another log area, which is physically part of the system tablespace, is the undo log.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime problems),
binary log (for working with replication and performing point-in-time restores), the general query log (for
diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, system tablespace, undo log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by the
innodb_log_buffer_size configuration option.
See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer
memory area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that reason,
sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other SQL
concepts. Typically, logical aspects are important to make database administration and application development
convenient and usable. Contrast with physical.

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_buffer_size

124

See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers flexibility
(for example, you could edit table definitions or insert statements before restoring), but can take substantially
longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 In MySQL 5.1, a prefix added to InnoDB configuration options when installing the InnoDB Plugin after server
startup, so any new configuration options not recognized by the current level of MySQL do not cause a startup
failure. MySQL processes configuration options that start with this prefix, but gives a warning rather than a failure
if the part after the prefix is not a recognized option.
See Also plugin.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or becomes
more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for "least recently used", a common method for managing storage areas. The items that have not
been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU mechanism
by default to manage the pages within the buffer pool, but makes exceptions in cases where a page might
be read only a single time, such as during a full table scan. This variation of the LRU algorithm is called the
midpoint insertion strategy. The ways in which the buffer pool management differs from the traditional LRU
algorithm is fine-tuned by the options innodb_old_blocks_pct, innodb_old_blocks_time, and the new
MySQL 5.6 options innodb_lru_scan_depth and innodb_flush_neighbors.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for "log sequence number". This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries;
it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and for
managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-bit
rather than 32-bit variables to store and compare LSN values.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to
take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command. Once
you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent
incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_time
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_lru_scan_depth
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_neighbors

125

See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master server
 Frequently shortened to "master". A database server machine in a replication scenario that processes the initial
insert, update, and delete requests for data. These changes are propagated to, and repeated on, other servers
known as slave servers.
See Also replication, slave server.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such as
writing changes from the insert buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background threads.
For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page cleaner
thread rather than the master thread.
See Also buffer pool, dirty page, flush, insert buffer, page cleaner, thread.

MDL
 Acronym for "metadata lock".
See Also metadata lock.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it was not
cached yet in memory. Now, applications can use the simple memcached protocol, supported by client libraries
for many languages, to communicate directly with MySQL servers using InnoDB or MySQL Cluster tables. These
NoSQL interfaces to MySQL tables allow applications to achieve higher read and write performance than by
issuing SQL commands directly, and can simplify application logic and deployment configurations for systems that
already incorporated memcached for in-memory caching.

The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see InnoDB Integration with
memcached for details. The memcached interface to MySQL Cluster tables is available in MySQL Cluster 7.2;
see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also InnoDB, NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The updated
data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Metadata Locking.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the amount
of metadata locking. The objective is for DDL operations that do not change the table structure (such as CREATE

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/refman/5.5/en/metadata-locking.html
http://dev.mysql.com/doc/refman/5.1/en/create-index.html

126

INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried, updated, and so on by
other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the innodb_metrics table in the information_schema, in MySQL 5.6 and higher.
You can query counts and totals for low-level InnoDB operations, and use the results for performance tuning in
combination with data from the performance_schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the "newest" end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that blocks that are only read once, such as during a full table
scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data structures
during DML operations. A mini-transaction has no notion of rollback; multiple mini-transactions can occur within
a single transaction. Mini-transactions write information to the redo log that is used during crash recovery.
A mini-transaction can also happen outside the context of a regular transaction, for example during purge
processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows. For
example, a multi-value INSERT could specify a value for the auto-increment column in some cases and NULL
in other cases. InnoDB generates auto-increment values for the rows where the column value was specified as
NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where auto-increment
values might be generated but not used, for any duplicate rows that are processed as UPDATE rather than
INSERT statements.

Can cause consistency issues between master and slave servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, master server, replication, slave server.

multi-core
 A type of processor that can take advantage of multi-threaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for "mutex variable". (Mutex itself is short for "mutual exclusion".) The low-level object that
InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures. Once the
lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock. Contrast with
rw-locks, which allow shared access. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for "multiversion concurrency control". This technique lets InnoDB transactions with certain isolation
levels to perform consistent read operations; that is, to query rows that are being updated by other transactions,
and see the values from before those updates occurred. This is a powerful technique to increase concurrency,
by allowing queries to proceed without waiting due to locks held by the other transactions.

http://dev.mysql.com/doc/refman/5.1/en/create-index.html
http://dev.mysql.com/doc/refman/5.1/en/drop-index.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-metrics-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_old_blocks_pct
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert-on-duplicate.html

127

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on UNIX or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements, and
also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and flexibility
when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation for InnoDB
tables, and a warm backup for MyISAM and other kinds of tables. See MySQL Enterprise Backup for more
information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqld
 The mysqld program is the database engine for the MySQL database. It runs as a UNIX daemon or Windows
service, constantly waiting for requests and performing maintenance work in the background.
See Also mysql.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
natural key

 A indexed column, typically a primary key, where the values have some real-world significance. Usually advised
against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered index
and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly in the
database. For example, one country can change into two or several, making the original country code obsolete.
Or, rules about unique values might have exceptions. For example, even if taxpayer IDs are intended to be
unique to a single person, a database might have to handle records that violate that rule, such as in cases of
identity theft. Taxpayer IDs and other sensitive ID numbers also make poor primary keys, because they may
need to be secured, encrypted, and otherwise treated differently than other columns.

http://dev.mysql.com/doc/refman/5.1/en/mysql-enterprise-backup.html

128

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor pages
that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL 5.6 and up,
this behavior can be controlled by the configuration variable innodb_flush_neighbors; you might turn that
setting off for SSD drives, which do not have the same overhead for writing smaller batches of data at random
locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-blocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE clauses.
The only kind of query allowed for global tables in a read-only transaction. The opposite of a locking read.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what should
be the same data, but the queries return different results (changed by another transaction committing in the
meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should be
consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and repeatable
read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into single
rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is typically
used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the relationship
lives at this address by associating that ID with each member of a family, rather than storing multiple copies of a
complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the same
table as a person's name and address, a phone company database might give each phone number a special
ID, and store the numbers and IDs in a separate table. This normalized representation could simplify large-scale
updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_neighbors

129

See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with SQL
operations for flexibility and convenience, by using the memcached API to directly access some kinds of MySQL
tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see InnoDB Integration
with memcached for details. The memcached interface to MySQL Cluster tables is available in MySQL Cluster
7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also ACID, InnoDB, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps in the
arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an index on
that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, "not a
number".) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how many
rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT NULL.

NULL values play a part in index operations, because for performance a database must minimize the overhead
of keeping track of missing data values. Typically, NULL values are not stored in an index, because a query that
tests an indexed column using a standard comparison operator could never match a row with a NULL value for
that column. For the same reason, unique indexes do not prevent NULL values; those values simply are not
represented in the index. Declaring a NOT NULL constraint on a column provides reassurance that there are
no rows left out of the index, allowing for better query optimization (accurate counting of rows and estimation of
whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary key
cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL values in all
columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result of
such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree page.
The data is stored in overflow pages. The DYNAMIC row format in the InnoDB Barracuda file format is more
efficient for such storage than the older COMPACT row format.
See Also B-tree, Barracuda, overflow page.

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

130

OLTP
 Acronym for "Online Transaction Processing". A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of data
at a time. For example, an airline reservation system or an application that processes bank deposits. The data
might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and query
efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL (primarily
ALTER TABLE) operations. See InnoDB and Online DDL for details.

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without doing
a table copy, or using a specially optimized type of table copy. Space usage is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5 and the InnoDB Plugin for
MySQL 5.1.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started or
dispatched quickly. The requirements of consistency and referential integrity mean that any operation could fail:
a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock could cause
a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes most requests or
attempts will succeed, so that relatively little work is done to prepare for the failure case. When this assumption is
true, the database does little unnecessary work; when requests do fail, extra work must be done to clean up and
undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed by
a transaction can be written to the data files before the commit occurs, making the commit itself very fast, but
requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with operations
that are unreliable and frequently unsuccessful. This methodology is rare in a database system, because so much
care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_online_alter_log_max_size

131

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and UNIX this file is
named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, option.

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.PAR file

 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and memory
(the buffer pool). A page can contain one or more rows, depending on how much data is in each row. If a
row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so that the
information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large text
fields, compact row format allows those large columns to be stored separately from the rest of the row, reducing
I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent at
a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this activity
was performed by the master thread
See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This value
represents a balance: large enough to hold the data for most rows, yet small enough to minimize the performance
overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled by the
innodb_page_size configuration option. You set the size when creating the MySQL instance, and it remains
constant afterwards. The same page size applies to all InnoDB tablespaces, both the system tablespace and
any separate tablespaces created in file-per-table mode.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size

132

See Also disk-bound, file-per-table, instance, OLTP, page, SSD, system tablespace, tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table. The
consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON DELETE
clauses in the foreign key definition. Rows with corresponding values in the child table could be automatically
deleted or updated in turn, or those columns could be set to NULL, or the operation could be prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to get
detailed information about the performance characteristics of many internal parts of the MySQL server.
See Also latch, mutex, rw-lock.

persistent statistics
 A feature in MySQL 5.6 that stores index statistics for InnoDB tables on disk, providing better plan stability for
queries.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high proportion
of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB uses what is
known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the application level, you
might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a transaction at the very
beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a query
is run twice within a transaction, and in the meantime, another transaction commits after inserting a new row or
updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read, because
locking all the rows from the first query result set does not prevent the changes that cause the phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed by
the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits, disk
reads, and so on. Typically, physical aspects are important during expert-level performance tuning and problem
diagnosis. Contrast with logical.

133

See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL Enterprise
Backup product produces a physical backup, because its output contains data files that can be used directly by
the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

plugin
 In MySQL 5.1 and earlier, a separately installable form of the InnoDB storage engine that includes features and
performance enhancements not included in the built-in InnoDB for those releases.

For MySQL 5.5 and higher, the MySQL distribution includes the very latest InnoDB features and performance
enhancements, known as InnoDB 1.1, and there is no longer a separate InnoDB Plugin.

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but
not the built-in InnoDB, or vice versa.
See Also built-in, InnoDB.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time. Commonly
abbreviated PITR. Because it is unlikely that the specified time corresponds exactly to the time of a backup, this
technique usually requires a combination of a physical backup and a logical backup. For example, with the
MySQL Enterprise Backup product, you restore the last backup that you took before the specified point in time,
then replay changes from the binary log between the time of the backup and the PITR time.
See Also backup, logical backup, MySQL Enterprise Backup, physical backup, PITR.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

primary key
 A set of columns -- and by implication, the index based on this set of columns -- that can uniquely identify every
row in a table. As such, it must be a unique index that does not contain any NULL values.

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

134

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on UNIX and Linux
systems. On UNIX and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by a separate thread, running on a periodic schedule. The purge includes
these actions: removing obsolete values from indexes; physically removing rows that were marked for deletion by
previous DELETE statements.
See Also crash recovery, delete, doublewrite buffer.

purge buffering
 The technique of storing index changes due to DELETE operations in the insert buffer rather than writing them
immediately, so that the physical writes can be performed to minimize random I/O. (Because delete operations
are a two-step process, this operation buffers the write that normally purges an index record that was previously
marked for deletion.) It is one of the types of change buffering; the others are insert buffering. and delete
buffering
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL 5.6
and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Q
query

 In SQL, an operation that reads information from one or more tables. Depending on the organization of data and
the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are involved,
the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use "query" in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which index
or indexes to use, and the order in which to join tables. Plan stability involves the same choices being made
consistently for a given query.
See Also index, join, plan stability, query.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_max_purge_lag
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_purge_threads

135

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE, a
backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB does
not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for InnoDB
tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R
RAID

 Acronym for "Redundant Array of Inexpensive Drives". Spreading I/O operations across multiple drives enables
greater concurrency at the hardware level, and improves the efficiency of low-level write operations that
otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality). InnoDB
samples pages at random from the index and uses that data to estimate the number of different values. This
operation occurs when each table is first opened.

Originally, the number of sampled pages was fixed at 8; now, it is determined by the setting of the
innodb_stats_sample_pages parameter.

The way the random pages are picked depends on the setting of the innodb_use_legacy_cardinality_algorithm
parameter. The default setting (OFF) has better randomness than in older releases.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes reflected
in the binary log and any incremental backups are applied. At this stage, the files are not ready to restore.
After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions, in
the interest of performance. Transactions cannot see uncommitted data from other transactions, but they can see
data that is committed by another transaction after the current transaction started. Thus, a transaction never sees
any bad data, but the data that it does see may depend to some extent on the timing of other transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE operations,
other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE, and LOCK IN
SHARE MODE operations without making other transactions wait.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ a
locking strategy that allows them to proceed in situations where they would normally wait for another transaction.
However, this extra performance comes at the cost of less reliable results, including data that has been changed
by other transactions and not committed yet (known as dirty read). Use this isolation level only with great caution,

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages

136

and be aware that the results might not be consistent or reproducible, depending on what other transactions
are doing at the same time. Typically, transactions with this isolation level do only queries, not insert, update, or
delete operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool asynchronously,
in anticipation that these pages will be needed soon. The linear read-ahead technique prefetches all the pages
of one extent based on access patterns for pages in the preceding extent, and is part of all MySQL versions
starting with the InnoDB Plugin for MySQL 5.1. The random read-ahead technique prefetches all the pages for
an extent once a certain number of pages from the same extent are in the buffer pool. Random read-ahead is not
part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the innodb_random_read_ahead
configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping involved
with creating a read view for each transaction. Can only perform non-locking read queries. It can be started
explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain conditions. See
Optimizations for Read-Only Transactions for details.
See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FOR UPDATE FROM t WHERE c1 = 10; prevents any
other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with gap lock
and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB tables.
It is used during crash recovery to correct data written by incomplete transactions. The ever-increasing LSN
value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements or
low-level API calls through NoSQL interfaces. Modifications that did not finish updating the data files before an
unexpected shutdown are replayed automatically.

The redo log is physically represented as a set of files, typically named ib_logfile0 and ib_logfile1. The
data in the redo log is encoded in terms of records affected; this data is collectively referred to as redo. The
passage of data through the redo logs is represented by the ever-increasing LSN value. The original 4GB limit on
maximum size for the redo log is raised to 512GB in MySQL 5.6.3.

The disk layout of the redo log is influenced by the configuration options innodb_log_file_size,
innodb_log_group_home_dir, and (rarely) innodb_log_files_in_group. The performance of redo

http://dev.mysql.com/doc/refman/5.1/en/commit.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-performance-ro-txn
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_file_size
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_files_in_group

137

log operations is also affected by the log buffer, which is controlled by the innodb_log_buffer_size
configuration option.
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redundant row format
 The oldest InnoDB row format, available for tables using the Antelope file format. Prior to MySQL 5.0.3, it was
the only row format available in InnoDB. In My SQL 5.0.3 and later, the default is compact row format. You can
still specify redundant row format for compatibility with older InnoDB tables.

For additional information about InnoDB REDUNDANT row format, see Section 5.2, “COMPACT and REDUNDANT
Row Formats”.
See Also Antelope, compact row format, file format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular, data
in different tables is kept consistent through the use of foreign key constraints, which can prevent changes
from happening or automatically propagate those changes to all related tables. Related mechanisms include
the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT NULL
constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero, one,
or many phone numbers in an address database; a single phone number might be associated with several family
members. In a financial database, a person might be required to have exactly one taxpayer ID, and any taxpayer
ID could only be associated with one person.

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a table,
unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex relationships
typically involve data split between more than one table. Often, the data is normalized, so that duplicate values in
one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR and
AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in the
FULLTEXT index. For example, when you search for a single word, that word is typically more relevant for a row
where if it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking
strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at the
time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE, SELECT ...
FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_log_buffer_size

138

See Also ACID, consistent read, isolation level, locking, phantom, SERIALIZABLE, transaction.

replication
 The practice of sending changes from a master database, to one or more slave databases, so that all
databases have the same data. This technique has a wide range of uses, such as load-balancing for better
scalability, disaster recovery, and testing software upgrades and configuration changes. The changes can be sent
between the database by methods called row-based replication and statement-based replication.
See Also row-based replication, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time, or (in
a replication context) to set up a new slave database. In the MySQL Enterprise Backup product, this operation
is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replication.

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite of
commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, commit, transaction.

rollback segment
 The storage area containing the undo log, part of the system tablespace.
See Also system tablespace, undo log.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property of
each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as compression,
new row formats are introduced to support the resulting improvements in storage efficiency and performance.

Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for
each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system
tablespace share the same row format, to take advantage of other row formats typically requires setting the
innodb_file_per_table option, so that each table is stored in a separate tablespace.
See Also compact row format, compressed row format, dynamic row format, fixed row format, redundant row
format, row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows in
the same table can be freely written to by other transactions. This is the type of locking done by DML operations
on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done with
online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table

139

row-based replication
 A form of replication where events are propagated from the master server specifying how to change individual
rows on the slave server. It is safe to use for all settings of the innodb_autoinc_lock_mode option.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, slave server, statement-
based replication.

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row does
one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory data
structures. Once the lock is acquired, any other process, thread, and so on can read the data structure, but no
one else can write to it. Contrast with mutexes, which enforce exclusive access. Mutexes and rw-locks are known
collectively as latches.
See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on tables
that are part of a larger transaction. For example, scheduling a trip in a reservation system might involve booking
several different flights; if a desired flight is unavailable, you might roll back the changes involved in booking that
one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,
application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing hardware
or software) and scale out (adding new servers and more instances of MySQL). Often paired with availability as
critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, MySQL Cluster, connection pooling, or other features that spread work across a group of
servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are also
connected logically, working together as part of a unified application or flexible framework. For example, the

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_buffer_pool_instances

140

information_schema and performance_schema databases use "schema" in their names to emphasize the
close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, ib-file set, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and up,
InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available for
MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or many
secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and stores the
data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through lookups
using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the data
in the InnoDB table. The fast index creation feature of the InnoDB Plugin makes both CREATE INDEX and DROP
INDEX statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are analogous
to files within that directory. A segment can grow. New segments can be created.

For example, within a file-per-table tablespace, the table data is in one segment and each associated index is in
its own segment. The system tablespace contains many different segments, because it can hold many tables
and their associated indexes. The system tablespace also includes up to 128 rollback segments making up the
undo log.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended by
one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the data in
that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the number
of records in the table. High selectivity means that the column values are relatively unique, and can retrieved
efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause only matches
a small number (or proportion) of rows in a table, the overall query tends to be efficient if it evaluates that test
first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of read committed and consistent
read. When an UPDATE statement examines a row that is already locked, InnoDB returns the latest committed

141

version to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE. If
the row matches (must be updated), MySQL reads the row again, and this time InnoDB either locks it or waits for
a lock on it. This type of read operation can only happen when the transaction has the read committed isolation
level, or when the innodb_locks_unsafe_for_binlog option is enabled.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can be
run over and over within a transaction, and be certain to retrieve the same set of results each time. Any attempt
to change data that was committed by another transaction since the start of the current transaction, cause the
current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, repeatable read.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program (the
client). Because often an entire computer is dedicated to running one or more server programs (such as a
database server, a web server, an application server, or some combination of these), the term server can also
refer to the computer that runs the server software.
See Also client, mysqld.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared locks on
it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace.
See Also system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion
of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion.
Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process does cleanup operations for InnoDB tables,
so it can slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to shut down but
must do the cleanup during the next restart.

The shutdown mode is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave server
 Frequently shortened to "slave". A database server machine in a replication scenario that receives changes
from another server (the master) and applies those same changes. Thus it maintains the same contents as the
master, although it might lag somewhat behind.

In MySQL, slave servers are commonly used in disaster recovery, to take the place of a master servers that
fails. They are also commonly used for testing software upgrades and new settings, to ensure that database
configuration changes do not cause problems with performance or reliability.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_locks_unsafe_for_binlog
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_fast_shutdown

142

Slave servers typically have high workloads, because they process all the DML (write) operations relayed from
the master, as well as user queries. To ensure that slave servers can apply changes from the master fast enough,
they frequently have fast I/O devices and sufficient CPU and memory to run multiple database instances on the
same slave server. For example, the master server might use hard drive storage while the slave servers use
SSDs.
See Also DML, replication, server, SSD.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of "slow" SQL
statements are logged. For more information, see The Slow Query Log.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command SET
GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time will be saved on
the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by other
transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for
the system tablespace is always zero; this same ID applies to all tables within the system tablespace. Each
tablespace file created in file-per-table mode also has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information needed
to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See Improved
Tablespace Management for details.
See Also .cfg file, file-per-table, .ibd file, system tablespace, tablespace, transportable tablespace.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is used
for resources that are typically held only for brief periods, where it is more efficient to wait in a "busy loop" than
to put the thread to sleep and perform a context switch. If the resource does not become available within a short
time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into the
categories DDL, DML, and queries. MySQL includes some additional statement categories such as replication.
See Language Structure for the building blocks of SQL syntax, Data Types for the data types to use for MySQL
table columns, SQL Statement Syntax for details about SQL statements and their associated categories, and
Functions and Operators for standard and MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.

SSD
 Acronym for "solid-state drive". A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with

http://dev.mysql.com/doc/refman/5.1/en/slow-query-log.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_fast_shutdown
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-tablespace-management
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-tablespace-management
http://dev.mysql.com/doc/refman/5.1/en/language-structure.html
http://dev.mysql.com/doc/refman/5.1/en/data-types.html
http://dev.mysql.com/doc/refman/5.1/en/sql-syntax.html
http://dev.mysql.com/doc/refman/5.1/en/functions.html

143

a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, SSD.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in MySQL Server and
Server-Startup Programs. The opposite of shutdown.
See Also shutdown.

statement-based replication
 A form of replication where SQL statements are sent from the master server and replayed on the slave server.
It requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential timing
problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, row-based replication,
slave server.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows or index
entries. The statistics for the table represent the data in its primary key index. The statistics for a secondary
index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can be
inserting and deleting rows from the same table. To keep the values from being recalculated frequently, you can
enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed only when you
issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the innodb_stats_method
configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics, primary
key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and plural,
or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search feature but
not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB and
MyISAM tables. See Full-Text Stopwords for details.
See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying data.
In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM. Different
storage engines are designed with different tradeoffs between factors such as memory usage versus disk usage,
read speed versus write speed, and speed versus robustness. Each storage engine manages specific tables, so
we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables
handled by MyISAM and other storage engines.

http://dev.mysql.com/doc/refman/5.1/en/programs-server.html
http://dev.mysql.com/doc/refman/5.1/en/programs-server.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_autoinc_lock_mode
http://dev.mysql.com/doc/refman/5.1/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_stats_method
http://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html

144

See Also InnoDB, MySQL Enterprise Backup, table type.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting causes
certain conditions that are normally treated as warnings, to be considered errors. For example, certain invalid
combinations of options related to file format and row format, that normally produce a warning and continue with
default values, now cause the CREATE TABLE operation to fail.

MySQL also has something called strict mode.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the dividing
point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has a
statement such as SELECT ... FOR UPDATE ... WHERE col > 10;, and the largest value in the column is
20, it is a lock on the supremum record that prevents other transactions from inserting even larger values such as
50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 A indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using an auto-
increment column. By treating the value as completely arbitrary, you can avoid overly restrictive rules and faulty
application assumptions. For example, a numeric sequence representing employee numbers might have a gap if
an employee was approved for hiring but never actually joined. Or employee number 100 might have a later hiring
date than employee number 500, if they left the company and later rejoined. Numeric values also produce shorter
values of predictable length. For example, storing numeric codes meaning "Road", "Boulevard", "Expressway",
and so on is more space-efficient than repeating those strings over and over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 A small set of data files (the ibdata files) containing the metadata for InnoDB-related objects (the data
dictionary), and the storage areas for the undo log, the change buffer, and the doublewrite buffer. Depending
on the setting of the innodb_file_per_table, when tables are created, it might also contain table and index
data for some or all InnoDB tables. The data and metadata in the system tablespace apply to all the databases in
a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace, often
causing this file to become very large. Because the system tablespace never shrinks, storage problems could
arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.6.7 and higher, the default
is file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file. This new
default makes it easier to use InnoDB features that rely on the Barracuda file format, such as table compression
and the DYNAMIC row format.

In MySQL 5.6 and higher, setting a value for the innodb_undo_tablespaces option splits the undo log into
one or more separate tablespace files. These files are still considered part of the system tablespace.

http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_strict_mode
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces

145

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the filesystem operations to process thousands of .ibd
files can cause bottlenecks.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic row
format, file-per-table, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise Backup, tablespace,
undo log.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical and
logical characteristics that affect performance, scalability, backup, administration, and application development.

In terms of file storage, each InnoDB table is either part of the single big InnoDB system tablespace, or in a
separate .ibd file if the table is created in file-per-table mode. The .ibd file holds data for the table and all its
indexes, and is known as a tablespace.

InnoDB tables created in file-per-table mode can use the Barracuda file format. Barracuda tables can use the
DYNAMIC row format or the COMPRESSED row format. These relatively new settings enable a number of
InnoDB features, such as compression, fast index creation, and off-page columns

For backward compatibility with MySQL 5.1 and earlier, InnoDB tables inside the system tablespace must use the
Antelope file format, which supports the compact row format and the redundant row format.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with entries
sorted based on the primary key columns of the table. Data access is optimized for queries that filter and sort
on the primary key columns, and each index contains a copy of the associated primary key columns for each
entry. Modifying values for any of the primary key columns is an expensive operation. Thus an important aspect
of InnoDB table design is choosing a primary key with columns that are used in the most important queries, and
keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads for
processing DML statements and queries. You can create such a lock through SQL using the LOCK TABLE
statement; one of the steps in migrating from other database systems or MySQL storage engines is to remove
such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

146

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes. The system tablespace
contains the tables that make up the data dictionary, and prior to MySQL 5.6 holds all the other InnoDB tables
by default. Turning on the innodb_file_per_table option, the default in MySQL 5.6 and higher, allows newly
created tables to each have their own tablespace, with a separate data file for each table.

Using multiple tablespaces, by turning on the innodb_file_per_table option, is vital to using many MySQL
features such as table compression and transportable tablespaces, and managing disk usage. See Using Per-
Table Tablespaces and Improved Tablespace Management for details.

Tablespaces created by the built-in InnoDB storage engine are upward compatible with the InnoDB Plugin.
Tablespaces created by the InnoDB Plugin are downward compatible with the built-in InnoDB storage engine, if
they use the Antelope file format.

MySQL Cluster also groups its tables into tablespaces. See MySQL Cluster Disk Data Objects for details.
See Also Antelope, Barracuda, compressed row format, data dictionary, data files, file-per-table, index,
innodb_file_per_table, system tablespace, table.

tablespace dictionary
 A representation of the data dictionary metadata for a table, within the InnoDB tablespace. This metadata can
be checked against the .frm file for consistency when the table is opened, to diagnose errors resulting from out-
of-date .frm files. This information is present for InnoDB tables that are part of the system tablespace, as well
as for tables that have their own .ibd file because of the file-per-table option.
See Also data dictionary, file-per-table, .frm file, .ibd file, system tablespace, tablespace.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data would
not need to be recovered after a crash. Database products can take various shortcuts to improve the performance
of operations on temporary tables, by being less scrupulous about writing data to disk and other measures to
protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when the
session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects. This tablespace was
introduced in MySQL 5.7.1. The configuration file option, innodb_temp_data_file_path, allows users to
define a relative path for the temporary data file. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside
ibdata1. The temporary tablespace is recreated on each server start and receives a dynamically generated
space-id, which helps avoid conflicts with existing space-ids. The temporary tablespace cannot reside on a raw
device. Inability or error creating the temporary table is treated as fatal and server startup will be refused.

The tablespace is removed on normal shutdown or on init abort, which may occur when a user specifies the
wrong startup options, for example. The temporary tablespace is not removed when a crash occurs. In this case,
the database administrator can remove the tablespace manually or restart the server with the same configuration,
which will remove and recreate the temporary tablespace.
See Also ibtmp file.

http://dev.mysql.com/doc/refman/5.1/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/5.1/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-tablespace-management
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data-objects.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path

147

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure. If data is
written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while writing could
result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against this possibility.
See Also doublewrite buffer.

TPS
 Acronym for "transactions per second", a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the acronym
ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE
operations to record which transaction has locked the row.
See Also implicit row lock.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not been
possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL 5.6 and
higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to another server;
running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT TABLESPACE on
the other server brings the copied data file into the other instance. A separate .cfg file, copied along with the
.ibd file, is used to update the table metadata (for example the space ID) as the tablespace is imported. See
Improved Tablespace Management for usage information.
See Also .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 Resources for troubleshooting InnoDB reliability and performance issues include: the Information Schema tables.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes intact.
Contrast with drop. Although conceptually it has the same result as a DELETE statement with no WHERE clause, it
operates differently behind the scenes: InnoDB creates a new empty table, drops the old table, then renames the
new table to take the place of the old one. Because this is a DDL operation, it cannot be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses a
slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can be
deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower form of
truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement instead.

http://dev.mysql.com/doc/refman/5.1/en/flush.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-tablespace-management

148

See Also DDL, drop, foreign key, rollback.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions of
database theory. In the database field, tuples are usually represented by the columns of a table row. They could
also be represented by the result sets of queries, for example, queries that retrieved only some columns of a
table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be undone in
case of a rollback operation. It is stored in the undo log, also known as the rollback segment, either within the
system tablespace or in separate undo tablespaces.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see the
original data (as part of a consistent read operation), the unmodified data is retrieved from this storage area.

By default, this area is physically part of the system tablespace. In MySQL 5.6 and higher, you can use the
innodb_undo_tablespaces and innodb_undo_directory configuration options to split it into one or more
separate tablespace files, the undo tablespaces, optionally stored on another storage device such as an SSD.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer. Collectively,
these parts are also known as the rollback segment, a familiar term for Oracle DBAs.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo tablespace
 One of a set of files containing the undo log, when the undo log is separated from the system tablespace
by the innodb_undo_tablespaces and innodb_undo_directory configuration options. Only applies to
MySQL 5.6 and higher.
See Also system tablespace, undo log.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted (that
is, the value does not already exist in the column), a unique constraint is supported by an underlying unique
index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not to
contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the normal
kind of index. Most of the lookups against this type of index are simply to determine if a certain value exists or not.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory

149

The number of values in the index is the same as the number of rows in the table, or at least the number of rows
with non-null values for the associated columns.

The insert buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, insert buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling can
be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V
victim

 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls back
the transaction that has updated the fewest rows.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name, the
wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system wait()
calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB STATUS
command to determine whether threads are spending too much time waiting, and if so, how you can improve
concurrency.
See Also concurrency, latch, lock, mutex, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and web sites, you might prefer a
hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other memory
regions are filled as they would be under normal conditions.

This process happens naturally over time when a MySQL server is restarted or subjected to a new workload.
Starting in MySQL 5.6, you can speed up the warmup process by setting the configuration variables
innodb_buffer_pool_dump_at_shutdown=ON and innodb_buffer_pool_load_at_startup=ON, to
bring the contents of the buffer pool back into memory after a restart. Typically, you run a workload for some time
to warm up the buffer pool before running performance tests, to ensure consistent results across multiple runs;
otherwise, performance might be artificially low during the first run.
See Also buffer pool, workload.

Windows
 The built-in InnoDB storage engine and the InnoDB Plugin are supported on all the same Microsoft Windows
versions as the MySQL server. The MySQL Enterprise Backup product has more comprehensive support for
Windows systems than the InnoDB Hot Backup product that it supersedes.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_dump_at_shutdown
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_load_at_startup

150

See Also InnoDB, MySQL Enterprise Backup, plugin.

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance testing to
identify bottlenecks, or during capacity planning.
See Also bottleneck, disk-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB buffer
pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all of those
changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see XA Transactions.

XA Distributed Transaction support is turned on by default. If you are not using this feature, you can disable
the innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.
See Also commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning it has been accessed recently, and so is moved
within the buffer pool data structure, so that it will not be flushed soon by the LRU algorithm. This term is used in
some information schema column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

http://dev.mysql.com/doc/refman/5.1/en/xa.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_support_xa

151

Index

Symbols
.ARM file, 95
.ARZ file, 95
.cfg file, 100
.frm file, 111
.ibd file, 116
.ibz file, 116
.isl file, 116
.MRG file, 124
.MYD file, 125
.MYI file, 125
.OPT file, 129
.PAR file, 131
.TRG file, 145
.TRN file, 145

A
ACID, 95
adaptive flushing, 95
adaptive hash index, 42, 51, 95
AHI, 96
AIO, 96
ALTER TABLE

ROW_FORMAT, 26
Antelope, 96
Antelope file format, 19
application programming interface (API), 96
apply, 96
asynchronous I/O, 96
atomic, 97
atomic instruction, 97
auto-increment, 97
auto-increment locking, 97
autocommit, 97
availability, 97

B
B-tree, 97
background threads

master, 45, 45
read, 44
write, 44

backticks, 98
backup, 98
Barracuda, 98
Barracuda file format, 19
beta, 98
binary log, 98
binlog, 99
blind query expansion, 99

bottleneck, 99
bounce, 99
buddy allocator, 28, 99
buffer, 99
buffer cache, 46
buffer pool, 99
buffer pool instance, 100
built-in, 100
business rules, 100

C
cache, 101
cardinality, 101
change buffer, 101
change buffering, 77, 101

disabling, 41
checkpoint, 102
checksum, 102
child table, 102
clean page, 102
clean shutdown, 102
client, 102
clustered index, 102
cold backup, 103
column, 103
column index, 103
column prefix, 103
commit, 103
compact row format, 103
compiling, 65
composite index, 103
compressed backup, 104
compressed row format, 104
compression, 104

algorithms, 16
application and schema design, 13
BLOBs, VARCHAR and TEXT, 17
buffer pool, 18
compressed page size, 15
configuration characteristics, 14
data and indexes, 16
data characteristics, 13
enabling for a table, 9
implementation, 16
information schema, 27, 27
innodb_strict_mode, 52
KEY_BLOCK_SIZE, 15
log files, 18
modification log, 16
monitoring, 15
overflow pages, 17
overview, 9
tuning, 12

152

workload characteristics, 14
compression failure, 104
concurrency, 105
configuration file, 105
configuring, 68
consistent read, 105
constraint, 105
counter, 106
covering index, 106
crash, 106
crash recovery, 106
CREATE INDEX, 5
CREATE TABLE

KEY_BLOCK_SIZE, 15
options for table compression, 9
ROW_FORMAT, 26

CRUD, 106
cursor, 106

D
data dictionary, 107
data directory, 107
data files, 107
data warehouse, 107
database, 107
DCL, 107
DDL, 107
deadlock, 108
deadlock detection, 108
delete, 108
delete buffering, 108
denormalized, 109
descending index, 109
dirty page, 109
dirty read, 109
disk-based, 109
disk-bound, 109, 109
DML, 109
document id, 110
doublewrite buffer, 110
downgrading, 73
drop, 110
DROP INDEX, 5
dynamic row format, 110

E
early adopter, 110
error log, 110
eviction, 111
exclusive lock, 111
extent, 111

F
Fast Index Creation, 111

concurrency, 7
crash recovery, 7
examples, 5
implementation, 6
limitations, 8
overview, 5

fast shutdown, 112
file format, 19, 112

Antelope, 17
Barracuda, 9
downgrading, 24
identifying, 23

file format management
downgrading, 73
enabling new file formats, 49

file per table, 50
file-per-table, 112
fill factor, 112
fixed row format, 112
flush, 112
flush list, 113
foreign key, 113
FOREIGN KEY constraint, 113
FOREIGN KEY constraints

and fast index creation, 8
and TRUNCATE_TABLE, 51

FTS, 113
full backup, 113
full table scan, 113
full-text search, 114
FULLTEXT index, 114
fuzzy checkpointing, 114

G
GA, 114
gap, 114
gap lock, 114
general query log, 114
global_transaction, 115
group commit, 44, 115

H
hash index, 115
HDD, 115
heartbeat, 115
high-water mark, 115
history list, 115
hot, 115
hot backup, 116

153

I
ib-file set, 20, 117
ibbackup_logfile, 117
ibdata file, 117
ibtmp file, 117
ib_logfile, 117
ignore_builtin_innodb, 58

and skip_innodb, 89
ilist, 117
implicit row lock, 117
in-memory database, 117
incremental backup, 118
index, 118
index cache, 118
index dives (for statistics estimation), 52
index hint, 118
index prefix, 118
indexes

creating and dropping, 6
primary (clustered) and secondary, 6

infimum record, 119
INFORMATION_SCHEMA, 27, 119

INNODB_CMP table, 27
INNODB_CMPMEM table, 28
INNODB_CMPMEM_RESET table, 28
INNODB_CMP_RESET table, 27
INNODB_LOCKS table, 30
INNODB_LOCK_WAITS table, 31
INNODB_TRX table, 29

InnoDB, 119
troubleshooting

fast index creation, 8
InnoDB Plugin

compatibility, 1
downloading, 3
features, 1
installing, 3
restrictions, 4

innodb_adaptive_flushing, 45
innodb_adaptive_hash_index, 42

and innodb_thread_concurrency, 42
dynamically changing, 51

innodb_additional_mem_pool_size
and innodb_use_sys_malloc, 40

innodb_autoinc_lock_mode, 119
innodb_change_buffering, 41
innodb_concurrency_tickets, 42
innodb_file_format, 19, 119

Antelope, 17
Barracuda, 9
downgrading, 73
enabling new file formats, 49
identifying, 23

innodb_file_format_check, 21
innodb_file_io_threads, 44
innodb_file_per_table, 9, 120

dynamically changing, 50
innodb_io_capacity, 45
innodb_lock_wait_timeout, 120

dynamically changing, 51
innodb_max_dirty_pages_pct, 45
innodb_old_blocks_pct, 46
innodb_old_blocks_time, 46
innodb_read_ahead_threshold, 43
innodb_read_io_threads, 44
innodb_spin_wait_delay, 46
innodb_stats_on_metadata

dynamically changing, 50
innodb_stats_sample_pages, 52
innodb_strict_mode, 52, 120
innodb_thread_concurrency, 42
innodb_thread_sleep_delay, 42
innodb_use_sys_malloc, 40

and innodb_thread_concurrency, 42
innodb_write_io_threads, 44
insert, 120
insert buffer, 120
insert buffering, 77, 120

disabling, 41
installing

binary InnoDB Plugin, 58, 89
instance, 121
instrumentation, 121
intention lock, 121
internal memory allocator

disabling, 40
inverted index, 121
IOPS, 121
isolation level, 121

J
join, 122

K
KEY_BLOCK_SIZE, 9, 15, 122

L
latch, 122
list, 122
lock, 122
lock escalation, 122
lock mode, 122
lock wait timeout, 51
locking, 123

information schema, 27, 29, 36
locking read, 123

154

log, 123
log buffer, 123
log file, 123
log group, 123
logical, 123
logical backup, 124
loose_, 124
low-water mark, 124
LRU, 124
LRU page replacement, 46
LSN, 124

M
master server, 125
master thread, 125
MDL, 125
memcached, 125
memory allocator

innodb_use_sys_malloc, 40
merge, 125
metadata lock, 125
metrics counter, 126
midpoint insertion, 46
midpoint insertion strategy, 126
mini-transaction, 126
mixed-mode insert, 126
multi-core, 126
mutex, 126
MVCC, 126
my.cnf, 127
my.ini, 127
mysql, 127
MySQL Enterprise Backup, 127
mysqlbackup command, 127
mysqld, 127
mysqldump, 127

N
natural key, 127
neighbor page, 128
next-key lock, 128
non-blocking I/O, 128
non-locking read, 128
non-repeatable read, 128
normalized, 128
NoSQL, 129
NOT NULL constraint, 129
NULL, 129

O
off-page column, 129
OLTP, 130
online, 130

online DDL, 130
optimistic, 130
optimizer, 130
optimizer statistics estimation, 50, 52
option, 131
option file, 131
overflow page, 131

P
page, 131
page cleaner, 131
page size, 131
parameters, deprecated, 93

innodb_file_io_threads, 44
parameters, new, 91

innodb_adaptive_flushing, 45
innodb_change_buffering, 41
innodb_file_format, 49
innodb_file_format_check, 21
innodb_io_capacity, 45
innodb_read_ahead_threshold, 43
innodb_read_io_threads, 44
innodb_spin_wait_delay, 46
innodb_stats_sample_pages, 52
innodb_strict_mode, 52
innodb_use_sys_malloc, 40
innodb_write_io_threads, 44

parameters, with new defaults, 93
innodb_additional_mem_pool_size, 93
innodb_buffer_pool_size, 93
innodb_log_buffer_size, 93
innodb_max_dirty_pages_pct, 45, 93
innodb_sync_spin_loops, 93
innodb_thread_concurrency, 93

parent table, 132
partial backup, 132
partial index, 132
Performance Schema, 132
persistent statistics, 132
pessimistic, 132
phantom, 132
physical, 132
physical backup, 133
PITR, 133
plan stability, 133
plugin, 133
point-in-time recovery, 133
prepared backup, 133
primary key, 133
process, 134
PROCESSLIST

possible inconsistency with INFORMATION_SCHEMA
tables, 37

155

pseudo-record, 134
Pthreads, 134
purge, 134
purge buffering, 134
purge lag, 134
purge thread, 134

Q
query, 134
query execution plan, 134
quiesce, 135

R
RAID, 135
random dive, 135
raw backup, 135
read ahead, 54

linear, 43
random, 43

READ COMMITTED, 135
READ UNCOMMITTED, 135
read view, 136
read-ahead, 136
read-only transaction, 136
record lock, 136
redo, 136
redo log, 136
redundant row format, 137
referential integrity, 137
relational, 137
relevance, 137
REPEATABLE READ, 137
replication, 138
restore, 138
rollback, 138
rollback segment, 138
row, 138
row format, 138
row lock, 138
row-based replication, 139
row-level locking, 139
ROW_FORMAT

COMPACT, 25
COMPRESSED, 9, 25
DYNAMIC, 25
REDUNDANT, 25

rw-lock, 139

S
savepoint, 139
scalability, 139
scale out, 139
scale up, 139

schema, 139
search index, 140
secondary index, 140
segment, 140
selectivity, 140
semi-consistent read, 140
SERIALIZABLE, 141
server, 141
shared lock, 141
shared tablespace, 141
sharp checkpoint, 141
SHOW ENGINE INNODB MUTEX, 54
SHOW ENGINE INNODB STATUS

and innodb_adaptive_hash_index, 42
and innodb_use_sys_malloc, 40

shutdown, 141
skip_innodb

and ignore_builtin_innodb, 89
slave server, 141
slow query log, 142
slow shutdown, 142
snapshot, 142
source code, 65
space ID, 142
spin, 142
SQL, 142
SSD, 9, 142
startup, 143
statement-based replication, 143
statistics, 143
stemming, 143
stopword, 143
storage engine, 143
strict mode, 52, 144
sublist, 144
supremum record, 144
surrogate key, 144
synthetic key, 144
system tablespace, 144

T
table, 145
table lock, 145
table scan, 46
table type, 146
tablespace, 146
tablespace dictionary, 146
temporary table, 146
temporary tablespace, 146
text collection, 147
thread, 147
torn page, 147
TPS, 147

156

transaction, 147
transaction ID, 147
transportable tablespace, 147
troubleshooting, 147
truncate, 147
TRUNCATE TABLE, 51
tuple, 148
two-phase commit, 148

U
undo, 148
undo log, 148
undo tablespace, 148
unique constraint, 148
unique index, 148
unique key, 149
upgrading

converting compressed tables, 72
dynamic plugin, 71
static plugin, 71

V
victim, 149

W
wait, 149
warm backup, 149
warm up, 149
Windows, 149
workload, 150
write combining, 150

X
XA, 150

Y
young, 150

	InnoDB Plugin 1.0 for MySQL 5.1 User's Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to the InnoDB Plugin
	1.1 Overview
	1.2 Features of the InnoDB Plugin
	1.3 Obtaining and Installing the InnoDB Plugin
	1.4 Viewing the InnoDB Plugin Version Number
	1.5 Operational Restrictions

	Chapter 2 Fast Index Creation in the InnoDB Storage Engine
	2.1 Overview of Fast Index Creation
	2.2 Examples
	2.3 Implementation
	2.4 Concurrency Considerations
	2.5 Crash Recovery
	2.6 Limitations

	Chapter 3 InnoDB Data Compression
	3.1 Overview of Table Compression
	3.2 Enabling Compression for a Table
	3.2.1 Configuration Parameters for Compression
	3.2.2 SQL Compression Syntax Warnings and Errors

	3.3 Tuning InnoDB Compression
	3.3.1 When to Use Compression
	3.3.1.1 Data Characteristics and Compression
	3.3.1.2 Compression and Application and Schema Design
	Compressing in the Database
	Compressing in the Application
	Hybrid Approach

	3.3.1.3 Workload Characteristics and Compression
	3.3.1.4 Configuration Characteristics and Compression
	3.3.1.5 Choosing the Compressed Page Size

	3.3.2 Monitoring Compression at Runtime

	3.4 How Compression Works in InnoDB
	3.4.1 Compression Algorithms
	3.4.2 InnoDB Data Storage and Compression
	3.4.2.1 Compression of B-Tree Pages
	3.4.2.2 Compressing BLOB, VARCHAR and TEXT Columns

	3.4.3 Compression and the InnoDB Buffer Pool
	3.4.4 Compression and the InnoDB Log Files

	Chapter 4 InnoDB File-Format Management
	4.1 Overview of InnoDB File Formats
	4.2 Named File Formats
	4.3 Enabling File Formats
	4.4 File Format Compatibility
	4.4.1 Startup File Format Compatibility Checking
	4.4.2 Table-Access File Format Compatibility Checking

	4.5 Identifying the File Format in Use
	4.6 Downgrading the File Format
	4.7 Future InnoDB File Formats

	Chapter 5 InnoDB Row Storage and Row Formats
	5.1 Storage of Variable-Length Columns
	5.2 COMPACT and REDUNDANT Row Formats
	5.3 DYNAMIC Row Format
	5.4 Specifying a Table's Row Format

	Chapter 6 InnoDB INFORMATION_SCHEMA Tables
	6.1 Overview of InnoDB Support in INFORMATION_SCHEMA
	6.2 Information Schema Tables about Compression
	6.2.1 INNODB_CMP and INNODB_CMP_RESET
	6.2.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	6.2.3 Using the Compression Information Schema Tables

	6.3 Information Schema Tables about Transactions
	6.3.1 INNODB_TRX
	6.3.2 INNODB_LOCKS
	6.3.3 INNODB_LOCK_WAITS
	6.3.4 Using the Transaction Information Schema Tables

	6.4 Notes on Locking in InnoDB
	6.4.1 Understanding InnoDB Locking
	6.4.2 Rapidly Changing Internal Data
	6.4.3 Possible Inconsistency with PROCESSLIST

	Chapter 7 Performance and Scalability Enhancements
	7.1 Overview
	7.2 Faster Locking for Improved Scalability
	7.3 Using Operating System Memory Allocators
	7.4 Controlling InnoDB Insert Buffering
	7.5 Controlling Adaptive Hash Indexing
	7.6 Changes Regarding Thread Concurrency
	7.7 Changes in the Read Ahead Algorithm
	7.8 Multiple Background I/O Threads
	7.9 Group Commit
	7.10 Controlling the Master Thread I/O Rate
	7.11 Controlling the Flushing Rate of Dirty Pages
	7.12 Using the PAUSE instruction in InnoDB spin loops
	7.13 Control of Spin Lock Polling
	7.14 Making Buffer Cache Scan Resistant
	7.14.1 Guidelines for innodb_old_blocks_pct and innodb_old_blocks_time

	7.15 Improvements to Crash Recovery Performance

	Chapter 8 Changes for Flexibility, Ease of Use and Reliability
	8.1 Overview
	8.2 Enabling New File Formats
	8.3 Dynamic Control of System Configuration Parameters
	8.3.1 Dynamically Changing innodb_file_per_table
	8.3.2 Dynamically Changing innodb_stats_on_metadata
	8.3.3 Dynamically Changing innodb_lock_wait_timeout
	8.3.4 Dynamically Changing innodb_adaptive_hash_index

	8.4 TRUNCATE TABLE Reclaims Space
	8.5 InnoDB Strict Mode
	8.6 Controlling Optimizer Statistics Estimation
	8.7 Better Error Handling when Dropping Indexes
	8.8 More Compact Output of SHOW ENGINE INNODB MUTEX
	8.9 More Read Ahead Statistics

	Chapter 9 Installing the InnoDB Plugin
	9.1 Overview of Installing the InnoDB Plugin
	9.2 Checking for Compatible Version Levels
	9.3 Installing the Precompiled InnoDB Plugin as a Shared Library
	9.3.1 Installing the InnoDB Plugin as a Shared Library on Unix or Linux
	9.3.1.1 Errors When Installing the InnoDB Plugin on Unix or Linux

	9.3.2 Installing the Binary InnoDB Plugin as a Shared Library on Microsoft Windows
	9.3.3 Errors When Installing the InnoDB Plugin on Microsoft Windows

	9.4 Building the InnoDB Plugin from Source Code
	9.4.1 Building the InnoDB Plugin on Linux or Unix
	9.4.2 Building the InnoDB Plugin on Microsoft Windows

	9.5 Configuring the InnoDB Plugin
	9.6 Frequently Asked Questions about Plugin Installation
	9.6.1 Should I use the InnoDB-supplied plugin or the one that is included with MySQL 5.1.38 or higher?
	9.6.2 Why doesn't the MySQL service on Windows start after the replacement?
	9.6.3 The Plugin is installed... now what?
	9.6.4 Once the Plugin is installed, is it permanent?

	Chapter 10 Upgrading the InnoDB Plugin
	10.1 Upgrading the Dynamic InnoDB Plugin
	10.2 Upgrading a Statically Built InnoDB Plugin
	10.3 Converting Compressed Tables Created Before Version 1.0.2

	Chapter 11 Downgrading from the InnoDB Plugin
	11.1 Overview
	11.2 The Built-in InnoDB, the Plugin and File Formats
	11.3 How to Downgrade
	11.3.1 Converting Tables
	11.3.2 Adjusting the Configuration
	11.3.3 Uninstalling a Dynamic Library
	11.3.4 Uninstalling a Statically Built InnoDB Plugin

	11.4 Possible Problems
	11.4.1 Accessing COMPRESSED or DYNAMIC Tables
	11.4.2 Issues with UNDO and REDO
	11.4.3 Issues with the Doublewrite Buffer
	11.4.4 Issues with the Insert Buffer

	Chapter 12 InnoDB Plugin Change History
	12.1 Changes in InnoDB Plugin 1.0.9 and Higher
	12.2 Changes in InnoDB Plugin 1.0.8 (May, 2010)
	12.3 Changes in InnoDB Plugin 1.0.7 (April, 2010)
	12.4 Changes in InnoDB Plugin 1.0.6 (November 27, 2009)
	12.5 Changes in InnoDB Plugin 1.0.5 (November 18, 2009)
	12.6 Changes in InnoDB Plugin 1.0.4 (August 11, 2009)
	12.7 Changes in InnoDB Plugin 1.0.3 (March 11, 2009)
	12.8 Changes in InnoDB Plugin 1.0.2 (December 1, 2008)
	12.9 Changes in InnoDB Plugin 1.0.1 (May 8, 2008)
	12.10 Changes in InnoDB Plugin 1.0.0 (April 15, 2008)

	Appendix A Third-Party Software
	A.1 Performance Patches from Google
	A.2 Multiple Background I/O Threads Patch from Percona
	A.3 Performance Patches from Sun Microsystems

	Appendix B Using the InnoDB Plugin with MySQL 5.1.30 or Earlier
	Appendix C List of Parameters Changed in the InnoDB Plugin 1.0
	C.1 New Parameters
	C.2 Deprecated Parameters
	C.3 Parameters with New Defaults

	InnoDB Glossary
	Index

