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Abstract. Technologies for Ambient Assisted Living (AAL) combine
new Information and Communication Technologies (ICT) to improve and
increase the quality of life of the elderly. The SenseCam visual lifelog-
ging device is now used not only to support memory recall, but also by
research groups in other fields in order to investigate human lifestyle. Re-
cent and continuing work in Dublin City University’s SCI-SYM centre
has been an application and evaluation of a novel approach, namely use
of the cross correlation matrix and Maximum Overlap Discrete Wavelet
Transform (MODWT) to analyse SenseCam lifelog data streams. By ex-
amination of the eigenspectrum, we show that these approaches enable
detection of key sources or major events in the time SenseCam recording,
with MODWT also providing useful insight on details of major events.
In this paper, we analyse the data collected from the EvAAL (Evalu-
ating AAL System Through Competitive Benchmarking) competition.
The results confirmed our previous findings [1,2]. We believe using this
highlight key episodes to identify the boundaries can be used to develop
automatic classifiers for visual lifelogs to infer different lifestyle charac-
teristics.

Key words: Ambient Assisted Living; SenseCam; time series methods;
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1 Introduction

Recently, the numbers of elderly people in developed counties has been increas-
ing dramatically. Ambient Assisted Living (AAL) combines new Information and
Communication Technologies (ICT) with the aim of improving the quality of life
and health of the older population. EvAAL is an international competition aimed
at the evaluation and assessment of Ambient Assisted Living systems, compo-
nents, services and platforms !. In order to evaluate each competing system, the
EvAAL competition applies a set of evaluation criteria such as performance, user
acceptance, recognition delay, installation complexity and integrability to AAL

! http://evaal.aaloa.org
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systems in order to evaluate and rank AAL applications [3]. In EvAAL 2012,
Dublin City University (SCI-SYM) centre used the SenseCam lifelog device to
track the activity and recognition in the competition scenario. In this paper, we
introduce a time series approach to analyse and evaluate the SenseCam lifelog
data, collected for the EvVAAL competition.

Developed by Microsoft Research in Cambridge, UK, SenseCam [4] is a small,
wearable camera that, along with other sensor data recorded, takes images auto-
matically, in order to document the events of the user’s day. It can be periodically
reviewed by the user to refresh and strengthen memory of an event. Besides a
camera, the SenseCam also contains several electronic sensors. including those
which record light-intensity and light-colour, a passive infrared (body heat) de-
tector, a temperature sensor, and a multiple-axis accelerometer for monitoring
changes in movement in the X, Y, Z directions of the user’s environment. The
device takes pictures at VGA resolution, (480x640 pixels), and stores these as
compressed JPEG files on internal flash memory (1Gb). It can collect a large
amount of data, even over a short period of time. Since SenseCam typically takes
a picture every 30 seconds, thousands of images are captured per day. Experi-
ence shows that the SenseCam can be an effective memory-aid device [5, 6], as
it helps users to improve retention of an experience. SenseCam is now used to
not only support memory recall, but also by research groups [7] in other fields
to investigate human lifestyle. The challenge is to manage, organize and analyse
these large image collections in order to automatically highlight key episodes in
the wearer’s life.

In terms of this analysis, we note that in recent years, the role of the largest
Eigenvalue of a cross-correlation matrix over small windows of time, has been
studied extensively, e.g. for financial series [8-11], electroencephalographic (EEG)
recordings [12,13], magnetoencephalographic (MEG) recordings [14] and a va-
riety of other multivariate data. In this paper, we apply the same approach to
analyse SenseCam lifelog data streams. We aim to apply the multiscaled cross-
correlation matrix technique to study the dynamics of the SenseCam images,
where this time series should exhibit atypical or non-stationary characteristics,
symptomatic of “Distinct Significant Events” in the data. We can use such high-
lighted key episodes to identify the boundaries between different daily events.
These might include the wearer working in the office, walking outside, shopping
etc. We found that different distinct events or activities can be detected at dif-
ferent scales [1,2]. In this context, we expected analysis of data collected from
EvAAL to confirm previous findings.

This paper is organized as follow: in Section 2, we review the methods to be
used in the paper, in Section 3 we describe the data used, while Section 4 details
the results obtained. Finally the conclusion is followed by details of future work
to be preformed.
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2 Methods

Our previous research [1] has shown that SenseCam image time series reflect
strong long-range correlation, indicating that the time series is not a random
walk 2, but is cyclical, with continuous low levels of background information
picked up constantly by the device. In this section, we first use equal-time cross-
Correlation Matrices to characterise dynamical changes in non-stationary mul-
tivariate SenseCam time-series. The Maximum Overlap Discrete Wavelet Trans-
form (MODWT) is then used to calculate equal-time Correlation Matrices over
different time scales. This enables exploration of details of the Eigenvalue spec-
trum and in particular, examination of whether specific events show evidence of
distinct signatures at different time scales.

2.1 Correlation Dynamics

The equal-time cross-correlation matrix can be used to characterise dynamical
changes in non-stationary multivariate time series.

Given pixels G;(t), of a collection of images, we normalize G; within each
window in order to standardize the different pixels for the images as follows:

Gi(t) — Gi(t)

9(i)

(1)

gi(t) =

where o;) is the standard deviation of G; for image numbers i=1,...,N, and G;
is the time average of G; over a time window of size T'. Then the equal-time
cross-correlation matrix may be expressed in terms of g;(t)

Cij = (gi(t)g; (1)) (2)

The elements of C;; are limited to the domain -1< C;; <1, where C;; =
1 defines perfect positive correlation, C;; = -1 corresponds to perfect negative
correlation and C;; = 0 corresponds to no correlation. In matrix notation, the
correlation matrix is expressed as C' = %GGt, where G is an N X T matrix
with elements g;;.

The Eigenvalues \; and eigenvectors v; of the correlation matrix C' are found
from the Eigenvalue equation Cv; = A\;u; and then ordered according to size,
such that \; < Ao < ... < Ay. Given that the sum of the diagonal elements
of a matrix (the Trace) remains constant under linear transformation, >, \;
must always equal the trace of the original correlation matrix. Hence, if some
eigenvalues increase then others must decrease, to compensate, and vice versa
(Eigenvalue Repulsion).

2 A random walk is a mathematical formalization of a path that consists of a succession
of random steps.
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2.2 Wavelet Multiscale analysis

The Maximum Overlap Discrete Wavelet Transform (MODWT) [15-18], is a
linear filter that transforms a series into coefficients related to variations over a
set of scales. It produces a set of time-dependent wavelet and scaling coefficients
with basis vectors associated with a location ¢ and a unitless scale ;=271 for
each decomposition level j=1,...,Jy. Unlike the DWT, the MODWT, has a high
level of redundancy. However, it is non-orthogonal and can handle any sample
size N, whereas the DWT restricts the sample size to a multiple of 2/. MODWT
retains downsampled 3 values at each level of the decomposition that would be
discarded by the DWT. This reduces the tendency for larger errors at lower
frequencies when calculating frequency dependent variance and correlations, as
more data are available.

Decomposing a signal, using the MODWT to J levels, theoretically involves
the application of J pairs of filters. The filtering operation at the j** level consists
of applying a rescaled father wavelet to yield a set of detail coefficients

L;—1
Dj, = Z Bjafe— (3)
1=0
and a rescaled mother wavelet to yield a set of scaling coefficients
i1
Sie = bjifii (4)
1=0
for all times t = ...,—1,0,1, ..., where f is the function to be decomposed

5, and father, éj7t—2—7, wavelets for the j*
level are a set of scale-dependent localized differencing and averaging operators
and can be regarded as rescaled versions of the originals.

The wavelet variance v f(T]) is defined as the expected value of D2 1 if we con-
sider only the non-boundary coefficients. An unbiased estimator of the wavelet
variance is formed by removing all coefficients that are affected by boundary
conditions and is given by

[19]. The rescaled mother, @, =2

1 =
VJ%(TJ) M Z D]l (5)
t=L;—

where Dj,l is a rescaled father wavelet, which yields a set of scaling coefficients,

M; = N — L; 4+ 1 is the number of non-boundary coefficients at the jth level.
The wavelet covariance between functions f(t) and g(t) is similarly defined

to be the covariance of the wavelet coefficients at a given scale. The unbiased

3 Downsampling or decimation of the wavelet coefficients retains half of the number
of coefficients that were retained at the previous scale. Downsampling is applied in
the Discrete Wavelet Transform
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estimator of the wavelet covariance at the j** scale is given by
LN~ pr e
_ AF() Pt
vig(Ti) = M, Z Dj,l D;'],l (6)
t=L;—1

The MODWT estimate of the wavelet cross-correlation between functions
f(t) and g(t) may be calculated using the wavelet covariance and the square
root of the wavelet variance of the functions at each scale j. The MODWT
estimator, of the wavelet correlation is thus given by

Vfg(Tj) (7)

o1 = ()

where vy, (7;) is the covariance between f(t) and g(t) at scale j, v (7;) is the
variance of f(t) at scale j and v4(7;) is the variance of g(t) at scale j.

The multiscaled cross-correlation matrix technique is adopted in order to help
highlight non-stationary events at various different granularities (in SenseCam
lifelog data streams), which could be of importance.

3 Data

In this study, the data were generated from the EvAAL competition. In 2012
EvAAL, the activity recognition track took place in CIAmI Living Lab located on
the industrial park, Valencia, Spain. The CIAmI Living Lab is an approximately
90 m? infrastructure that simulates the real environment of a citizen’s home
combined with provision of Information and Communication Technologies (ICT)
massively distributed across the physical space, but as invisible as possible to the
people occupying it as shown (Figure 1). In this work, the data are collected by
one user (the actor), wearing the SenseCam over two experiments. Total duration
of collection was approximately 13 minutes, forming a total lifelog collection of
66 images, with average capture time of 5 images per minute. As the data capture
time was limited, the SenseCam camera capture rate was changed in order to
generate as many images as possible during the competition. Figure 2 shows
some examples of SenseCam images.

4 Results

4.1 Eigenvalue Dynamics

From our previous studies [1, 2], we selected the least asymmetric (LA) wavelet,
(known as the Symmlet, [19]), which exhibits near symmetry about the filter
midpoint. LA filters are defined in even widths and the optimal filter width is
dependent on the characteristics of the signal and the length of the data series.
The j' level equivalent filter coefficients have a width L; = (29 — 1)(L — 1) +
1, where L is the width of the j = 1 base filter. In practice the filters for
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Indoor view

Outdoor view

Fig. 2. Example of SenseCam Images
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j > 1 are not explicitly constructed because the detail and scaling coefficients
can be calculated, using an algorithm that involves the j = 1 filters operating
recurrently on the j** level scaling coefficients, to generate the j+ 1 level scaling
and detail coefficients [20]. The filter width chosen for this study was the Haar
4 since this enables accurate calculation of wavelet correlations to the 5 scale,
which is appropriate given the length of data series available. Although the
MODWT can accommodate any level, Jy, the largest level, is chosen in practice,
so as to prevent decomposition at scales longer than the total length of the data
series, hence the choice of the 5#[20], while still containing enough detail to
capture subtle changes in the signal.

Before examining the image time series in detail, it is important to introduce
the gray scale pizel values concept. In a gray scale image, a pixel with a value
of 0 is completely black and a pixel with a value of 255 is completely white.
The images captured from SenseCam are coloured and in order to simplify the
calculation, the images are converted to gray-scale images.

To reduce the size of the calculation, we first adopted an averaging method
to decrease image size from 480x640 pixels to 3x4 pixels. We analysed the equal-
time cross-correlation dynamics between each image pixels using a sliding win-
dow 12 images. This window was chosen such that @ = % = 1.25, thus ensuring
that the data would be close to non-stationary in each sliding window (Dif-
ferent values of @) were examined, with little variation in the results). First,
the MODWT of each image pixels was calculated within each window and the
correlation matrix between pixels at each scale found. The eigenvalues of the
correlation matrix in each window were determined, and eigenvalue time series
were normalised in time. During the experiment, SenseCam captured five images
every minute, so we can measure wavelet eigenvalue dynamics in time (minutes).
These results are shown in Figure 3 and discussed below.

Eigenvalue Dynamics at various wavelet scales In financial data, it has
been known for some time that the largest eigenvalue (A1) contains information
on risk associated with the particular assets of which the covariance matrix
is comprised, (i.e. the ‘market’ factor) [20,21]. Similarly we would expect the
largest eigenvalue here to present information from the image that reflects the
largest change in the SenseCam recording. We also wish to ascertain whether the
sub-dominant eigenvalues Ao, Az, etc hold further information on the key sources
or major events and what information these contribute in addition A; to the
images. The dynamics of the largest eigenvalue and changes of ratio eigenvalues
were examined by the MODWT analysis.

We have studied the largest eigenvalue \; time series for a window size of 12
images to try identify the position and nature of peak sources or major events
from the real images generated from SenseCam.

In Figure 3, the dynamics of the series for the largest eigenvalue were ex-
amined from the MODWT analysis. The technique gives a clear picture of the
movements in the image time series by reconstructing them using each wavelet

4 The 5" level equivalent filter coefficients have a width 27
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Fig. 3. (a) The Largest Eigenvalue A; dynamics original data, (b) 30 seconds scale, (c)
1 minute scale, (d) 1.5 minutes, (e) 3 minutes and (f) 6.5 minutes.

Table 1. Activity Trait Analysis

Activities Wavelet Scales
From Outdoor to Indoor ar1&e1 & f1
From Standing to Lying az2&ds
From Bending to Walking az&es
From Walking to Sitting bi1&co
From Indoor to Outdoor ba&cy
From Falling to Standing up c3&edy
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Fig. 5. (a) The ratio of A1 /A3 dynamics original data, (b) 30 seconds scale, (c) 1 minute
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component. The MODWT captured the particular features markedly apparent
at specified scales. A number of features from the image are reproduced and
can be examined by studying these eigenvalue series. Table 1 shows the different
features found at various scales, suggesting that the correlation matrix captured
different major events with different time horizons. For example, the user moving
from walking to sitting in the living room. When the user is sitting at the table,
the camera captures the light on the ceiling. Thus, the lights and unchanged
‘seated position’ contribute higher pixel values in these sequences of images.
These changes are captured by wavelet scale 1, 2 (peaks b1&c2) and correspond
to a 30 seconds and 1 minute period. These peaks at different (representative)
timescale(s) should help us to identify major events or activities in the data.
By examining the dynamics of the largest eigenvalue, we can see that changes
in lights, strong sunshine and the subject seating position unchanged over an
extended period, contribute to high pixel values in a sequence of images. This
confirmed our previous findings. This typical case was always marked by a peak
in the SenseCam signal. Similarly it can be seen that the other major events in
Table 1 correspond to eigenvalue signal fluctuations visible elsewhere in Figure 3,
for example the subject moving from indoors to outdoors, changing light levels,
the subject changing position from sitting to moving, movement increase etc.
Above, we have shown that the largest eigenvalue A; contains information on
major events captured by the SenseCam. Here, we wish to ascertain whether the
subdominant eigenvalues (A2, Ag) hold further information on the key sources
or major events and these information contribute additionally to the images.
For Figure 4 and 5, we see the Ay and A3 have some variations compared with
Figure 3. This would seem to imply that the second and third largest eigenvalue
carries additional information to describe the images. But both eigenvalues don’t
contribute in large part to the major events for SenseCam, but do appear to carry
information for events surrounding the major ones, e.g. possible lead-in, lead-out

[2].

5 Conclusions and Future Work

In this paper, we employed initially a time series method in order to highlight
key episodes in identification of the boundaries on classification of event type
in SenseCam data streams. The Maximum Overlap Discrete Wavelet Transform
(MODWT), involving calculation of equal-time correlation matrices over differ-
ent time scales, was used to investigate the largest eigenvalue and the changes
in the sub-dominant eigenvalue ratio spectrums, (Figure 3, with the different
features, found at various scales, shown in Table 1). This suggests that the corre-
lation matrix for different information captured by the SenseCam can be filtered
by different time horizons. These consistently occurring peaks should help us to
identify major events captured by the SenseCam. By examining the behaviour
of the largest eigenvalue and the change in the eigenvalue ratios over time, the
eigenvalue ratio analysis confirmed that the largest eigenvalue carries most of the
major event information, whereas subsequent eigenvalues could carry informa-
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tion on supporting or lead in/ lead out events. On analysing major events, (with
a sliding window set to 12 images), we identified light level as an important event
delineator during static periods of image sequence. It is possible to identify the
time series fluctuation caused by single type change, e.g. with the environment
mostly constant, but with the subject movement increased. It is also possible
to confirm that the largest time series effects are due to ‘grouped’ or combined
changes, e.g. when the subject’s environment is totally changed including light
level, introduction of other people and so on. The change in eigenvalue ratios
obtained using MODWT provides results in good agreement with those found
for the largest eigenvalues. This indicates that the MODWT method may prove
a powerful tool for examination of the layered nature of the captured SenseCam
data at different time scales. Although the data sets, generated from EvAAL
competition were quite limited, some confirmation of some confirmation of our
initial findings was obtained, only with a far more challenging dataset; after all
the length of the datastream collected during the EvAAL competition didn’t
permit the extent of multiresolution analysis possible for our earlier work [1, 2]
was obtained.

In future, investigation of the value of other data sources towards activity
recognition would be indicated. The accelerometer could be as an important
option in this respect, as has been shown in [22,23]. Motion of the SenseCam
is calculated using the 3-axis accelerometer data captured by the device. By
analysing acceleration data, we can easily combine contributes from the three
different axes by using standard algebra (v X2 + Y2 + Z?2). Inference of contex-
tual information about common daily activities such as sitting, walking, driving
and lying should then be possible from these data also. The combination of the
accelerometer and image sensor datastreams together may enable more accurate
event boundary identification for life logging data. Larger values for movement
indicate that the associated image is quite likely to represent a boundary be-
tween different events or activities such as walking from home to work, walking
from the office to lunch, walking from home to the shops, etc. So that combining
sensor information may help to classify SenseCam images into more meaningful
activities. Possible methods include employing different such algorithms as SVM
(Support Vector Machines) for example. Activity recognition is a core require-
ment for Ambient Assisted Living systems.

6 Acknowledgements

NL would like to acknowledge generous support from the Sci-Sym Centre Small
Scale Research Fund.

References

1. N. Li, M. Crane and H. J. Ruskin: Automatically detecting “significant events”
on sensecam. ERCIM News (87) (2011)



10.

11.

12.

13.

14.

15.

16.

17.

Visual Experience for Recognising Human Activities 13

N. Li, M. Crane, H. J. Ruskin and C. Gurrin: Multiscaled Cross-Correlation Dy-
namics on SenseCam Lifelogged Images. MMM 2013. Part I, LNCS, vol. 7732, pp.
490-501. Springer, Heidelberg (2013)

S. Chessa, F. Furfari, F. Potorti, P. Barsocchi, M-R. Tazari and R. Wichert: Eval-
uating AAL System Through competitive Benchmarking (EvAAL) - Technical
Aspects of The First Competition Partnerships for Social Innovation in Europe,
Proceedings of the AAL Forum (2011) 617-623

S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth,
N. Kapur and K. Wood: SenseCam: A Retrospective Memory Aid, In UbiComp:
8th International Conference on Ubiquitous Computing, volume 4602 of LNCS,
California, USA, (2006) 177-193.

R. Harper, D. Randall, N. Smyth, C. Evans, L. Heledd and R. Moore.: Thanks for
the Memory, In HCI 2007-Proceedings of the 21st BCS HCI Group Conference,
Lancaster, U.K., (2007) 39-42

R. Harper, D. Randall, N. Smyth, C. Evans, L. Heledd and R. Moore.: The Past
is a Different Place: They Do Things Differently There, In Designing Interactive
Systems, Cape Town, South Africa, (2008) 271-280

A. R. Doherty and A. F. Smeaton: Automatically segmenting lifelog data into
events, in WIAMIS: 9th International Workshop on Images Analysis for Multime-
dia Interactive Services, IEEE Computer Society, Washington, DC, USA, (2008)
20-23

V. Plerou, P. Gopikrishnan, B. Rosenow, L.A. Nunes Amaral and H.E. Stanley.:
Universal and non-uiversal properties of cross-correlations in financial time series,
Phys. Rev. Lett. 83(7) (1999) 1471-1474

S. Sharifi, M. Crane, A. Shamie and H.J. Ruskin: Random matrix theory for
portfolio optimization: A stability approach, Physica A 335 (3-4) (2004) 629-643
T. Conlon, H.J. Ruskin and M. Crane.: Random matrix theory and fund of funds
portfolio optimisation, Physica A 382 (2) (2007) 565-576

T. Conlon, H.J. Ruskin and M. Crane: Wavelet multiscale analysis for Hedge
Funds: Scaling and Strategies, Physica A (2008) 5197-5204

K. Schindler, H. Leung, C. E. Elger and K. Lehnertz.: Assessing seizure dynamics
by analysing the correlation structure of multichannel intracranial EEG, Brain 130
(2007) 65-77

K. Schindler, C.E. Elger and K. Lehnertz: Increasing synchronization may promote
seizure termination: Evidence from status epilepticus, Clin, Neurophysiol. 118 (9)
(2007) 1955-1968

J. Kwapien, S. Drozda and A.A. Ionannides: Temporal correlations versus noise
in the correlation matrix formalism: An example of the brain auditory response,
Phys. Rev. E 62 (2000) 5557-5564

C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley and A.L. Golder-
berger.: On the mosaic organization of DNA sequences, Phys. Rev. E 49 (1994)
1685-1689

J.A.O. Matos, S.M.A. Gama, H.J. Ruskin, A.A. Sharkasi and M. Crane: An econo-
physics approach to the Portuguese Stock Index-PSI-20, Physica A 342 (2004)
665-676

S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K.
Peng, M. Simons and H.E. Stanley: Long-range correlation properties of coding
and noncoding DNA sequences: GenBank analysis, Phys. Rev. E 51 (1995) 5084-
5001



14

18

19.

20.

21.

22.

23.

Visual Experience for Recognising Human Activities

C. Heneghan and G. McDarby: Establishing the relation between detrended fluc-
tuation analysis and power spectral density analysis for stochastic processes, Phys.
Rev. E 62 (2000) 6103-6110

C.S. Burrus, R.A. Gopinath and H. Gao: Introduction to wavelets and wavelets
transforms, Prentice Hall, (1997)

D.B. Percival and A.T. Walden: Wavelet methods for time series analysis, Cam-
bridge University press, (2000)

A. Sharkasi, M. Crane, H.J. Ruskin and J.A. Matos: The reaction of stock markets
to crashes and events: A comparison study between emerging and mature markets
using wavelet transforms, Physica A 368, (2006) 511-521

C. O Conaire, N. O’Connor, A. F. Smeaton and G.J.F. Jones: Organising a Daily
Visual Diary Using Multi-Feature Clustering, SPIE Electronic Imaging- Multime-
dia Content Access: Algorithms and Systems. San Jose, California, USA, (2007)
A. R. Doherty, A. F. Smeaton, L. Keansub and E. Daniel: Multimodal segmen-
tation of lifelog data. In: RIAO 2007 - Large-Scale Semantic Access to Content
(Text, Image, Video and Sound), 30 May - 1 June 2007, Pittsburgh, PA, USA.
(2007) 21-38



