Article in volume
Authors:
Title:
Optimal adjacent vertex-distinguishing edge-colorings of circulant graphs
PDFSource:
Discussiones Mathematicae Graph Theory 44(4) (2024) 1341-1359
Received: 2023-01-03 , Revised: 2023-04-20 , Accepted: 2023-04-20 , Available online: 2023-07-27 , https://doi.org/10.7151/dmgt.2508
Abstract:
A $k$-proper edge-coloring of a graph $G$ is called adjacent
vertex-distinguishing if any two adjacent vertices are distinguished by the
set of colors appearing in the edges incident to each vertex. The smallest value
$k$ for which $G$ admits such coloring is denoted by $\chi^\prime _a(G)$. We
prove that $\chi^\prime_a(G)=2R+1$ for most circulant graphs $C_n([ [1,R] ])$.
Keywords:
proper edge-coloring, circulant graph, distinguishing vertices, adjacent vertex-distinguishing, chromatic number
References:
- M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Ann. Discrete Math. 52 (1992) 1–9.
https://doi.org/10.1016/S0167-5060(08)70896-3 - S. Akbari, H. Bidkhori and N. Nosrati, r-strong edge colorings of graphs, Discrete Math. 306 (2006) 3005–3010.
https://doi.org/10.1016/j.disc.2004.12.027 - P.N. Balister, E. Györi, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21(1) (2007) 237.
https://doi.org/10.1137/S0895480102414107 - P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95–109.
https://doi.org/10.1002/jgt.10076 - J.L. Baril, H. Kheddouci and O. Togni, Vertex distinguishing egde-and total-colorings of Cartesian and other product graphs, Ars Combin. 107 (2012) 109–127.
- J.L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes and hypercubes, Australas. J. Combin. 35 (2006) 89–102.
- C. Bazgan, A. Harkat-Benhamdine, Hao Li and M. Woźniak, On the vertex-distinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75 (1999) 288–301.
https://doi.org/10.1006/jctb.1998.1884 - A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 73–82.
https://doi.org/10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C - G.J. Chang, M. Montassier, A. Pecher and A. Raspaud, Strong chromatic index of planar graphs with large girth, Discuss. Math. Graph Theory 34 (2014) 723–733.
https://doi.org/10.7151/dmgt.1763 - O. Favaron, H. Li and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. 159 (1996) 103–109.
https://doi.org/10.1016/0012-365X(95)00102-3 - J.L. Fouquet and J.L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combin. 16(A) (1983) 141–150.
- J.L. Fouquet and J.L. Jolivet, Strong edge-colorings of cubic planar graphs, Progress in Graph Theory, Academic Press, Toronto (1984) 247–264.
- H. Hatami, $\delta + 300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246–256.
https://doi.org/10.1016/j.jctb.2005.04.002 - H. Hocquard and M. Montassier, Adjacent vertex-distinguishing edge coloring of graphs with maximum degree $\Delta$, J. Comb. Optim. 26 (2013) 152–160.
https://doi.org/10.1007/s10878-011-9444-9 - M. Mockovčiaková and R. Soták, Arbitrarily large difference between d-strong chromatic index and its trivial lower bound, Discrete Math. 313 (2013) 2000–2006.
https://doi.org/10.1016/j.disc.2013.01.026 - T. Wang and X. Zhao, Odd graph and its applications to the strong edge coloring, Appl. Math. Comput. 325 (2018) 246–251.
https://doi.org/https://doi.org/10.1016/j.amc.2017.11.057 - W. Wang and Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471–485.
https://doi.org/10.1007/s10878-008-9178-5 - Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623–626.
https://doi.org/10.1016/S0893-9659(02)80015-5
Close