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Abstract

Forming effective coalitions is a major research
challenge in AI and multi-agent systems (MAS).
Thus, coalitional games, including Coalition Struc-
ture Generation (CSG), have been attracting con-
siderable attention from the AI research commu-
nity. Traditionally, the input of a coalitional game
is a black-box function called a characteristic func-
tion. A range of previous studies have found that
many problems in coalitional games tend to be
computationally intractable when the input is a
black-box function. Recently, several concise rep-
resentation schemes for a characteristic function
have been proposed. Although these schemes are
effective for reducing the representation size, most
problems remain computationally intractable.

In this paper, we develop a new concise representa-
tion scheme based on the idea of agent types. Intu-
itively, a type represents a set of agents, which are
recognized as having the same contribution. This
representation can be exponentially more concise
than existing concise representation schemes. Fur-
thermore, this idea can be used in conjunction with
existing schemes to further reduce the representa-
tion size. Moreover, we show that most of the prob-
lems in coalitional games, including CSG, can be
solved in polynomial time in the number of agents,
assuming the number of possible types is fixed.

1 Introduction

Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). A coalition of agents can
sometimes accomplish things that individual agents cannot or
can do things more efficiently. There are two major research
topics in coalitional games. The first topic involves partition-
ing a set of agents into coalitions so that the sum of the re-
wards of all coalitions is maximized. This problem is called
the Coalition Structure Generation problem (CSG) [Sand-
holm et al., 1999; Rahwan and Jennings, 2008]. The second
topic involves how to divide the value of the coalition among
agents. The theory of coalitional games provides a number
of solution concepts, such as the core, the Shapley value, and
the nucleolus.

A range of previous studies have found that many prob-
lems in coalitional games, including CSG, tend to be compu-
tationally intractable. Traditionally, the input of a coalitional
game is a black-box function called a characteristic function,
which takes a coalition as an input and returns the value of
the coalition (or a coalition structure as a whole). Recently,
several concise representation schemes for a characteristic
function have been proposed, e.g., synergy coalition group
(SCG) [Conitzer and Sandholm, 2006] and marginal contri-
bution nets (MC-nets) [Ieong and Shoham, 2005]. These
schemes represent a characteristic function as a set of rules
rather than as a single black-box function and can effectively
reduce the representation size. However, most problems are
still computationally intractable (Table 1).

In this paper, we develop a new concise representation
scheme for a characteristic function, which is based on the
idea of agent types. Intuitively, a type represents a set of
agents, which are recognized as having the same contribu-
tion. Most of the hardness results in Table 1 are obtained
by assuming that all agents are different types. In practice,
however, in many MAS application problems, while the num-
ber of agents grows, the number of different types of agents
remains small. This type-based representation can be expo-
nentially more concise than existing concise representation
schemes. Furthermore, this idea can be used in conjunction
with existing schemes, i.e., SCG and MC-nets, for further
reducing the representation size. We show that most of the
problems in coalitional games, including CSG, can be solved
in polynomial time in the number of participating agents, as-
suming the number of possible types t is fixed (Table 2).

Let us introduce a motivating example that can be formal-
ized as coalitional games with agent types. Consider a prob-
lem of forming rescue groups in a disaster area. There ex-
ists a set of participating agents and each agent has following
different capabilities: providing medical treatment, driving a
vehicle, acting as a firefighter, etc. We can regard the capa-
bility of an agent as the agent type. In the problem, while
the number of agents grows, we can assume that the number
of agent types is fixed. Thus, we can use type-based char-
acteristic function representations to compactly represent this
problem.

We can also consider our type-based representation pro-
vides an approximation method. Even if the capabilities of
agents are not exactly the same, as long as they are similar,
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Table 1: Computational complexities of coalition formation problems and CSG using conventional representations 1[Conitzer
and Sandholm, 2006] 2[Ieong and Shoham, 2005] 3[Rahwan and Jennings, 2008] 4[Ohta et al., 2009]

Conventional representation schemes

Characteristic function SCG MC-nets

Core non-empty exponential NP-complete1 co-NP-hard2

Core membership exponential linear1,5 co-NP-complete2

The Shapley value exponential O(22n)6 linear2,5

CSG O(3n)3 NP-hard4 NP-hard4

Table 2: Computational complexities of coalition formation problems and CSG using type-based representations
Type-based representation schemes

Characteristic function SCG MC-nets
Core non-empty polynomial (Theorem 2) polynomial (Theorem 6) polynomial (Theorem 10)

Core membership O(nt) (Theorem 2) O(n2t) (Theorem 6) O(n2t) (Theorem 10)

The Shapley value O(nt) (Theorem 3) O(n2t) (Theorem 7) O(|R| · n2t) (Theorem 11)

CSG O(n2t) (Theorem 4) O(n2t) (Theorem 8) O(n2t) (Theorem 12)

we can consider that their types are the same and assume each
member of that type has the same capability (e.g., the average
of members). Then, by using our type-based representation,
we can obtain an approximate solution efficiently.

Our idea of using agent types is inspired by the recent in-
novative work of [Shrot et al., 2010]. They assume that a
game is already represented in some concise representation,
e.g., SCG. More precisely, they consider the cases where a
game is represented as a graphical representation [Deng and
Papadimitriou, 1994], a coalition resource game [Wooldridge
and Dunne, 2006], or SCG. The goal of their work is first to
identify agent types and then to efficiently solve problems in
coalitional games by utilizing the knowledge of agent types.
For example, they show that when the characteristic function
is represented as an SCG and types of agents are determined,
computing the Shapley value and determining whether the
core is non-empty can be done in polynomial time in the
number of agents. However, this approach becomes infeasi-
ble when a standard characteristic function representation is
used, since there exists no efficient way for identifying agent
types.

In contrast to their study, we assume that agent types are
explicitly used for describing a characteristic function in the
first place. Also, we consider a wider range of problems
including CSG. As a result, the overlap between our work
and [Shrot et al., 2010] is very small. In Table 2, only two
entries, i.e., Core non-empty and the Shapley value for SCG,
might be considered as somewhat overlapping, while other
topics are not discussed in [Shrot et al., 2010].

1.1 Related Works

Several other works than [Shrot et al., 2010] have also exam-
ined the concept of agent types to represent agent capabilities.
Bachrach and Rosenschein [2008] introduce coalitional skill
games, where the capability of an agent is characterized by its
skills. We can consider such skills correspond to agent types.
However, they do not assume that the possible types/skills
of an agent are fixed (even if the number of skills is fixed,

the combinations of skills are exponential). Thus, their algo-
rithms and complexity results are quite different from ours.
Chalkiadakis et al. [2009] consider another representation
scheme that can represent any characteristic function, as well
as ours. However, they examine the complexity of coalition
formation problems only in simple games, where the value of
a characteristic function is either 0 or 1, while we consider
general games, where the value can be arbitrary determined.

Furthermore, the literature of weighted voting games
[Bachrach and Elkind, 2008; Elkind and Pasechnik, 2009] as-
sumes that the possible types of an agent are bounded. In this
game, each agents has a weight and the value of a coalition
is determined by the sum of their weights. The value of a
coalition is 1 if the total weights exceeds a certain quota, and
0 otherwise. Their works are very similar to our works if we
regard each agent’s weight as the agent type. They showed
that the core-related coalition formation problems and com-
puting the Shapley value and the nucleolus become more
tractable when the number of weights is bounded. However,
as well as [Chalkiadakis et al., 2009], they concentrate on
only simple games and their type-based representation by us-
ing a weight is a subclass of our proposed one where all types
are classified by a cardinal utility. Thus, we believe that this
paper has significant new contributions since it can handle
general characteristic functions.

2 Model

2.1 Coalitional Games and Coalition Structure
Generation

Let A = {1, 2, . . . , n} be a set of all agents. The value of a
coalition S is given by a characteristic function v. A charac-
teristic function v : 2A → R assigns a value to each set of

5These problems can be solved in linear time in the input size.
6This bound is not tight. Examining a tight bound is an open

problem.
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agents (coalition) S ⊆ A. We assume that each coalition’s
value is non-negative.

Let x = (x1, x2, . . . , xn) be a payoff vector. A solution
concept assigns to each coalitional game a set of reasonable
payoff vectors. Two of the best-known ones are the core and
the Shapley value.

Definition 1. The core is the set of all payoff vectors x, which
satisfy the feasibility condition:

∑
i∈A xi = v(A), and the

non-blocking condition: ∀S ⊆ A,
∑

i∈S xi ≥ v(S).

If there exists a blocking coalition S such that
∑

i∈S xi <
v(S) holds, then the agents in S have an incentive to collec-
tively deviate from the grand coalition and divide v(S) them-
selves. In general, the core can be empty or contain a large
set of payoff vectors.

Definition 2. The Shapley value of agent i, φi, is defined as:

φi =
∑

S⊆A\{i}
|S|!(n−|S|−1)!

n! (v(S ∪ {i})− v(S)).

One intuitive interpretation of the Shapley value is that it
averages an agent’s marginal contribution over all possible
orders in which the agent may join the coalition.

A coalition structure CS is a partition of A, into disjoint,
exhaustive coalitions. More precisely, CS = {S1, S2, . . . }
satisfies the following conditions: ∀i, j (i �= j), Si ∩ Sj =
φ,

⋃
Si∈CS Si = A. In other words, in CS, each agent be-

longs to exactly one coalition, and some agents may be alone
in their coalitions.

The value of a coalition structure CS, denoted as V (CS),
is given by: V (CS) =

∑
Si∈CS v(Si). An optimal coalition

structure CS∗ is a coalition structure that satisfies the fol-
lowing condition: ∀CS, V (CS∗) ≥ V (CS). We say a char-
acteristic function is super-additive, if for any disjoint sets
Si, Sj, v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds. If the character-
istic function is super-additive, solving CSG becomes trivial,
i.e., the grand coalition is optimal. In this paper, we assume a
characteristic function can be non-super-additive.

Example 1. Let there be four agents a, b, c, and d. The
characteristic function is given as follows:

v({a}) = 3, v({b}) = 3, v({c}) = 2,
v({d}) = 2, v({a, b}) = 6, v({a, c}) = 5,
v({a, d}) = 5, v({b, c}) = 5, v({b, d}) = 5,
v({c, d}) = 2, v({a, b, c}) = 8, v({a, b, d}) = 8,
v({a, c, d}) = 5, v({b, c, d}) = 5, v({a, b, c, d}) = 5.

In this case, there exist multiple optimal CSs. For example,
{{a, b, c}, {d}} and {{a, b, d}, {c}} are optimal CSs, and the
value of these CSs is 10.

2.2 Agent Types

Shrot et al. [2010] introduced the idea of using agent types to
reduce the computational complexity of coalition formation
problems. If two agents have the same type, their marginal
contributions are the same. They introduced two different no-
tions of agent types, i.e., strategic types and representational
types. The former defines types based on the strategic power
of the agents, and the latter defines them based on the repre-
sentation of the game.

Strategic types are defined based on the marginal contribu-
tion of each agent, i.e., if two agents are strategically equiva-
lent, they belong to the same (strategic) type.

Definition 3 (Definition 2.1 in [Shrot et al., 2010]). Agents
i, j ∈ A are strategically equivalent if for any coalition S,
such that i, j /∈ S : v(S ∪ {i}) = v(S ∪ {j}).

The notion called representational type is introduced to
check the equivalence of agents more conveniently based on a
concise representation. Agents are representationally equiva-
lent if they only differ in their identifier. If two agents are rep-
resentationally equivalent, they are also strategically equiva-
lent, but not vice versa.

Shrot et al. [2010] examined the computational complex-
ity for determining strategic or representational types for
several concise representations [Deng and Papadimitriou,
1994; Wooldridge and Dunne, 2006; Conitzer and Sandholm,
2006]. They further showed that if the number of types is
fixed in these representations, most intractable problems in
coalitional games become polynomial.

3 Type-based Characteristic Function

Representation

Shrot et al. assume that a game is already represented in some
concise representation. The goal of their work is to identify
agent types and to solve problems in coalitional games by
efficiently utilizing agent types.

In this paper, we propose an alternate approach. We as-
sume the person who is describing a game has some prior
information about the equivalence of agents. Then the person
will describe the game by explicitly using the information of
the agent types of which he/she is aware. We need another no-
tion of agent types. This is because (i) the information of the
person can be partial and he/she is not necessarily aware of
all strategic equivalence, and (ii) the equivalence that he/she
is aware of is representation-independent. Therefore, we in-
troduce another notion called recognizable types.

Definition 4. Agents i, j ∈ A are recognizably equivalent if
the person who is describing the game (either by a character-
istic function or by a concise representation) knows that for
any coalition S, such that i, j /∈ S : v(S∪{i}) = v(S∪{j}).

From this definition, if two agents are recognizably equiva-
lent, they are also strategically equivalent, but not vice versa.
Furthermore, assuming appropriate representation is chosen,
if two agents are recognizably equivalent, they are very likely
to be representationally equivalent.

Let T = {1, 2, . . . , t} be the set of all recognizable types
and ni

A be the number of agents of type i ∈ T in the set of
all agents A. Also, nA = 〈n1

A, n
2
A, . . . , n

t
A〉 denotes a vector,

where each element represents the number of agents of each
type in A.

We represent a characteristic function as follows:

Definition 5. For a coalition S, the coalition type of S is a
vector nS = 〈n1

S , n
2
S , . . . , n

t
S〉, where each ni

S is the number
of type i agents in S. We denote the set of all possible coali-
tion types as At = {〈n1, n2, . . . , nt〉 | 0 ≤ ni ≤ ni

A}. A
type-based characteristic function is defined as vt : A

t → R.

From the definition of recognizable equivalence, ∀S and
its type nS , v(S) = vt(nS) holds.

Theorem 1. A type-based characteristic function requires
O(nt) space.
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Proof. It is clear from the fact that |At| = (n1
A + 1)× . . .×

(nt
A + 1) < nt.

Example 2. Let agents a, b be type 1 and agents c, d be
type 2 in Example 1. A type-based characteristic function
representation for Example 1 is given as follows:

vt(〈1, 0〉) = 3, vt(〈0, 1〉) = 2, vt(〈1, 1〉) = 5,
vt(〈2, 0〉) = 6, vt(〈0, 2〉) = 2, vt(〈2, 1〉) = 8,
vt(〈1, 2〉) = 5, vt(〈2, 2〉) = 5.

For example, the type of coalition S = {a, b, c} is 〈2, 1〉 be-
cause S contains two agents of type 1 and one agent of type 2.
Thus, v(S) = 8. Here, the type-based representation defines
the value for each of eight possible coalition types, while the
standard representation needs to specify the value for each of
fifteen possible coalitions. In general, a type-based represen-
tation is exponentially more concise than a standard repre-
sentation.

We say a payoff vector is symmetric if all agents with the
same type receive an identical amount. We can restrict our at-
tention to symmetric payoff vectors without loss of generality
(Lemma 3.2 in [Shrot et al., 2010]). From these definitions,
we obtain the following theorems about the coalition forma-
tion problems of the core and the Shapley value.

Theorem 2. If the number of agent types t is fixed, by us-
ing a type-based characteristic function, determining whether
the core is non-empty can be done in polynomial time in the
number of agents n. Also, determining whether a symmetric
payoff vector x is in the core can be done in O(nt) time.

Theorem 3. By using a type-based characteristic function
representation, computing the Shapley value of any agent can
be done in O(nt) time.

For space reasons, we omit the proofs. These results come
from the fact that the number of possible coalition types |At|
is at most O(nt).

4 Coalition Structure Generation with Agent

Types

In this section, we develop an algorithm for the CSG prob-
lem based on knapsack problems [Kellerer et al., 2004]. A
multidimensional unbounded knapsack problem (MUKP) is
the knapsack problem, where the knapsack has multidimen-
sional constraint and multiple copies exist for each item. For
each item j, we denote the profit as pj , the weight of the i-
th constraint as wij , and the number of copies packed in the
knapsack as qj . A MUKP with m items and t constraints of
knapsack c1, . . . , ct is formalized as follows:

maximize
∑

j pjqj
subject to

∑
j wijqj ≤ ci, i = 1, . . . , t

qj ≥ 0, j = 1, . . . ,m.

Theorem 4. By using a type-based characteristic function
representation, finding an optimal coalition structure can be
done in O(n2t) time.

Proof. We show that a CSG problem with m = |At| coali-
tion types and t possible agent types can be formalized as a

MUKP with m items and t constraints. Let us assume that
one possible coalition type nSj

∈ At corresponds to item
j, where its value pj is equal to vt(nSj

) and its weight for

the i-th constraint is equal to ni
Sj

. The capacity constraint of

knapsack ci is determined by ni
A.

Let zj[d1] . . . [dt] be the optimal solution value for
the knapsack problem (CSG) with j coalition types
{nS1

, . . . , nSj
} and a capacity constraint of knapsack ci =

di, ∀i ∈ T . If zj−1[d1] . . . [dt] is known for all capacity val-

ues 0 ≤ di ≤ ni
A, ∀i ∈ T , then we can include another

coalition type nSj
and compute the corresponding solutions

zj [d1] . . . [dt] using the following recursive formula:

zj[d1][d2] . . . [dt] =

max

⎧⎪⎨
⎪⎩
zj[d1 − n1

Sj
][d2 − n2

Sj
] . . . [dt − nt

Sj
] + vt(nSj

)

(if ∀i ∈ T, di ≥ ni
Sj
)

zj−1[d1][d2] . . . [dt].

We can construct a dynamic programming based algorithm
from this recursive formula, which takes O(nt × |At|) =
O(n2t) steps (see Section 9.3.2 in [Kellerer et al., 2004]).
Thus, for any fixed t, finding an optimal coalition structure
can be done in O(n2t) time.

A similar argument has been done for the winner determi-
nation problem in combinatorial auctions with a fixed num-
ber of types of items [Tennenholtz, 2000]. In fact, a CSG
problem can be mapped into that problem by assuming each
coalition type corresponds to a bid and that each type of agent
corresponds to a type of item.

5 Combining with Concise Representation

Schemes

5.1 Type-based SCG

We first show the original definition of SCG [Conitzer and
Sandholm, 2006].

Definition 6. An SCG consists of a set of pairs of the form:
(S, v(S)). For any coalition S, the value of the characteristic
function is: v(S) = max{

∑
Si∈pS

v(Si)}, where pS is a par-

tition of S, i.e., all Si are disjoint and ∪Si∈pS
Si = S, and for

all the Si, (Si, v(Si)) ∈ SCG. To avoid senseless cases that
have no feasible partitions, we require that ({a}, 0) ∈ SCG
whenever {a} does not receive a value elsewhere in SCG.

Using this original definition, we can represent only super-
additive characteristic functions. To allow for characteris-
tic functions that are not super-additive, Ohta et al. [2009]

slightly modify the definition, i.e., they add the following
requirement for partition pS : ∀p′S ⊆ pS , where |p′S | ≥
2, (∪Si∈p′

S
Si, v(∪Si∈p′

S
Si)) is not an element of SCG. We

refer to this modified definition as a standard SCG.

Next, we introduce the definition of a type-based SCG.

Definition 7. A type-based SCG consists of a set of pairs of
the form: (nS , vt(nS)). For any coalition type nS , the value
of the characteristic function is defined in a similar way as a
standard SCG.
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Theorem 5. A type-based SCG can represent any character-
istic function represented in a standard SCG using at most
the same amount of space and is exponentially more concise
than a standard SCG for certain games.

We omit the proofs due to space limitations. Intuitively, the
worst case occurs when the recognizable types of all agents
are different. Also, when all agents have an identical type,
the value of a characteristic function is determined only by
the number of agents in a coalition. Then the required size of
a type-based SCG becomes O(n), but the size of a standard
SCG can be exponential.

Example 3. A type-based SCG for Example 1 is given as
follows:

(〈1, 0〉, 3), (〈0, 1〉, 2), (〈0, 2〉, 2), (〈2, 2〉, 5).

In this case, vt(〈2, 1〉) = vt(〈1, 0〉)+vt(〈1, 0〉)+vt(〈0, 1〉) =
8. Here, the type-based SCG defines the value of four coali-
tion types, while the type-based characteristic function repre-
sentation needs to describe eight possible coalition types.

As discussed in [Conitzer and Sandholm, 2006], core-
related coalition formation problems remain hard in a stan-
dard SCG, because determining the value of the grand coali-
tion is hard. If the value of the grand coalition is given explic-
itly, these problems become tractable. By using a type-based
SCG, we can obtain the value of the grand coalition using a
method similar to the DP-based algorithm described in The-
orem 4. As a result, the following theorem holds.

Theorem 6. If the number of agent types t is fixed, by us-
ing a type-based SCG representation, determining whether
the core is non-empty can be done in polynomial time in the
number of agents n. Also, determining whether a symmetric
payoff vector x is in the core can be done in O(n2t) time.

Unfortunately, as far as the authors are aware, there is no
efficient way to compute Shapley values using SCG-based
representations. However, we can use a naive translation ap-
proach, which can be done in polynomial time.

Theorem 7. If the number of agent types t is fixed, by using a
type-based SCG representation, computing the Shapley value
can be done in O(n2t) time.

We can use the DP-based algorithm described in Theo-
rem 4 for finding an optimal coalition structure. The only
difference is that we need to consider coalition types that are
explicitly represented in a type-based SCG.

Theorem 8. By using a type-based SCG representation, find-
ing an optimal coalition structure can be done in O(n2t) time.

5.2 Type-based MC-nets

We first show the original definition of MC-nets [Ieong and
Shoham, 2005].

Definition 8. An MC-net consists of a set of rules R. Each
rule r ∈ R is of the form: (Pr , Nr) → vr, where Pr ⊆
A,Nr ⊆ A,Pr ∩Nr = ∅, vr ∈ R. vr can be either positive
or negative. We say that rule r is applicable to coalition S if
Pr ⊆ S and Nr ∩ S = ∅, i.e., S contains all agents in Pr

(positive literals) but no agent in Nr (negative literals). For a
coalition S, v(S) is given as

∑
r∈RS

vr, where RS is the set
of rules applicable to S.

Next, we introduce the definition of type-based MC-nets.

Definition 9. A type-based MC-net consists of a set of rules
R. Each rule r ∈ R is of the form: (Lr, Ur) → vr, where
Lr = 〈l1r , l

2
r , . . . , l

t
r〉 and Ur = 〈u1

r, u
2
r, . . . , u

t
r〉. Each lir

(and ui
r) represents the lower (upper) bound of the number

of i-th type agents in a coalition so that this rule becomes
effective. We say that rule r is applicable to coalition S if
∀i ∈ T, lir ≤ ni

S ≤ ui
r. For a coalition S, v(S) is given as∑

r∈RS
vr, where RS is the set of rules applicable to S.

Theorem 9. A type-based MC-net can represent any char-
acteristic function represented in a standard MC-net using
at most the same amount of space and is exponentially more
concise than a standard MC-net for certain games.

For space reasons, we omit the proofs. We can prove these
theorems using a similar argument described in Theorem 5.

Example 4. A type-based MC-net for Example 1 is given as
follows:

r1 : (〈1, 0〉, 〈1, 2〉) → 3, r2 : (〈2, 0〉, 〈2, 1〉) → 6,
r3 : (〈0, 1〉, 〈2, 2〉) → 2, r4 : (〈2, 2〉, 〈2, 2〉) → 3.

In this case, r2 and r3 are applicable to coalition type 〈2, 1〉,
but r1 and r4 are not. Thus, vt(〈2, 1〉) is equal to 6 + 2 =
8. Here, the type-based MC-net consists of four rules, while
the type-based characteristic function representation needs to
specify the value of eight possible coalition types.

Unfortunately, there is no efficient way to solve core-
related coalition formation problems using MC-net-based
representations. However, we can use a naive translation ap-
proach, which can be done in polynomial time.

Theorem 10. If the number of agent types t is fixed, by us-
ing a type-based MC-net representation, determining whether
the core is non-empty can be done in polynomial time in the
number of agents n. Also, determining whether a symmetric
payoff vector x is in the core can be done in O(n2t) time.

In contrast to core-related coalition formation problems,
the standard MC-net representation is suitable for computing
Shapley values. This is also true for our type-based MC-net
representation, i.e., the following theorem holds.

Theorem 11. If the number of agent types t is fixed, by using
a type-based MC-net representation, computing the Shapley
value of any agent can be done in O(|R| · n2t) time.

Proof. To compute the Shapley value of an agent, we can
compute its Shapley value for each rule and use the summa-
tion of these values (see Proposition 5 in [Ieong and Shoham,
2005]). Furthermore, we can decompose a rule into multiple
rules, where each decomposed rule has a form: (〈y1, . . . , yt〉,
〈y1, . . . , yt〉) → v, i.e., the rule is applicable to exactly one
coalition type. The Shapley value of type i agent for rule r
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(denoted as φi,r) is computed by the following procedure:

φi,r =
v

n!
(f+

i (y1, . . . , yt)− f−i (y1, . . . , yt)),

f+
i (y1, . . . , yt) ={

0 if yi = 0,

Πj �=i n
j

A
Cyj

· ni
A
−1Cyi−1 · (sy − 1)!(n− sy)! otherwise.

f−i (y1, . . . , yt) ={
0 if yi = ni

A,

Πj �=i n
j
A
Cyj

· ni
A−1Cyi

· (sy)!(n− sy − 1)! otherwise.

where sy =
∑
j∈T

yj, n =
∑
j∈T

nj
A.

Here, f+
i (y1, . . . , yt) represents the number of orderings

where the marginal contribution of one type i agent is v,
and f−i (y1, . . . , yt) represents the number of orderings where
the marginal contribution of one type i agent is −v. Thus,
v
n! (f

+
i (y1, . . . , yt) − f−i (y1, . . . , yt)) represents the Shapley

value of type i agent for this rule. Using this procedure, the
required time for computing the Shapley value of an agent
becomes O(|R| · n2t).

Although Ohta et al. [2009] proposed an efficient method
for solving CSG problems based on the standard MC-net,
we cannot apply this method straightforwardly. Neverthe-
less, we can still rely on a naive approach that translates
a type-based MC-net representation into the corresponding
type-based characteristic function representation.

Theorem 12. If the number of agent types t is fixed, by us-
ing a type-based MC-net representation, finding an optimal
coalition structure can be done in O(n2t) time.

6 Experimental Evaluations

In this section, we experimentally evaluate the performance
of our proposed methods. We concentrate on methods for
type-based SCG, since we can control the input size of a prob-
lem instance. In addition, the DP-based algorithm is also used
in other representations. All tests were run on a Core 2 Quad
Q9650 3GHz processor with 16GB RAM. The test machine
runs Windows 7 Enterprise x64 Edition.

Let us consider a type-based SCG problem instance, where
n agents have one of five different types (t = 5). We vary n
from 10 to 100 and set the number of elements in a type-
based SCG to n, (i.e., equal to the number of agents). We
generate each element using a decay distribution as follows.
Initially, the required number of agents in each type is set to
zero. First, we randomly choose one type and increment the
required number of agents in the type by one. Then, we re-
peatedly choose a type randomly and increment its required
number of agents with probability α, until a type is not cho-
sen or the required number of agents exceeds the limit. We
choose the value of that coalition between 1 and 10 × n uni-
formly at random and use α = 0.55. In this way, we gener-
ated 50 problem instances for each n.

We translate each generated problem instance represented
by type-based SCG into an equivalent problem instance rep-
resented by standard SCG. The number of elements in the

100

101

102

103

104

105

106

 10  20  30  40  50  60  70  80  90  100

tim
e 

[m
s]

number of agents

DP-based algorithm
CPLEX

Figure 1: Computation time

standard SCG grows exponentially compared to that in the
type-based SCG. When the number of elements in the type-
based SCG representation exceeds 40, we cannot translate the
problem instances due to insufficient memory. This result il-
lustrates that the type-based representation is exponentially
more concise than the standard representation.

We investigate the computation time of our DP-based al-
gorithm. For comparison, we show the results of the MIP
formulation in Ohta et al. [2009], which uses a standard SCG
representation. To obtain this result, we used CPLEX version
12.1, a general-purpose mixed integer programming package.

Figure 1 illustrates the average computation times for solv-
ing the generated problem instances by our DP-based algo-
rithm using the type-based SCG (DP) and by CPLEX in the
MIP formulation using the standard SCG (CPLEX). The x-
axis indicates the number of agents, and the y-axis shows
the average computation times. When n ≤ 20, CPLEX is
faster than DP, while DP eventually outperforms CPLEX for
n > 20. CPLEX can reduce the search space efficiently when
the input size is relatively small. However, the input size for
CPLEX grows exponentially. Thus, its computation time in-
creases very rapidly. When n > 40, even generating problem
instances becomes infeasible. On the other hand, the com-
putation time for DP grows more slowly than the exponen-
tial rate. This result corresponds to the theoretical complex-
ity presented in Theorem 8, i.e., finding an optimal coalition
structure can be done in O(n2t) time. As shown in this result,
the type-based SCG enables us to solve a CSG problem in-
stance with up to 100 agents in a reasonable amount of time.

7 Conclusion

In this paper, we developed a new concise representation
scheme for a characteristic function, which is based on the
idea of agent types. The type-based representation can be ex-
ponentially more concise than existing concise representation
schemes. Furthermore, this idea can be used in conjunction
with existing schemes, i.e., MC-nets and SCG, for further re-
ducing the representation size. We showed that most prob-
lems in coalitional games, including CSG, can be solved in
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polynomial time in the number of agents, assuming the num-
ber of types t is fixed. We also experimentally showed that a
type-based SCG enables us to solve a CSG problem instance
with up to 100 agents in a reasonable amount of time. Our
idea of using agent types is inspired by the recent work of
[Shrot et al., 2010]. However, in contrast to their study, our
work introduced the idea of describing a characteristic func-
tion explicitly using agent types in the first place, and consid-
ered a wider range of problems in coalitional games including
CSG.

In future works, we first would like to examine the com-
plexity of other solution concepts in coalitional games with
or without coalition structures, such as the nucleolus, ker-
nel, and core with coalition structures. Second, we would
like to investigate our representation in conjunction with a
graph-based concise representation scheme, e.g. [Deng and
Papadimitriou, 1994; Kalai and Zemel, 1982; Bachrach et al.,
2008; Aziz et al., 2009; Ueda et al., 2010]. For example,
Shrot et al. showed that utilizing agent types makes various
problems in coalitional games tractable when a characteristic
function is represented graphically by the formalization used
in [Deng and Papadimitriou, 1994]. Thus, we guess that our
scheme also would work well, by assuming that a graphical
structure describes a relationship between agent types, rather
than a relationship between agents themselves.
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