
Evaluation of Hardening Techniques for Privacy-Preserving
Record Linkage

Martin Franke

University of Leipzig

Germany

franke@informatik.uni-leipzig.de

Ziad Sehili

University of Leipzig

Germany

sehili@informatik.uni-leipzig.de

Florens Rohde

University of Leipzig

Germany

rohde@informatik.uni-leipzig.de

Erhard Rahm

University of Leipzig

Germany

rahm@informatik.uni-leipzig.de

ABSTRACT

Privacy-preserving record linkage aims at integrating person-

related data from different sources while protecting the privacy of

individuals by securely encoding and matching quasi-identifying

attributes, like names. For this purpose Bloom-filter-based en-

codings have been frequently used in both research and practical

applications. Simultaneously, however, weaknesses and attack

scenarios were identified emphasizing that Bloom filters are in

principal susceptible to cryptanalysis. To counteract such attacks,

various encoding variants and tweaks, also known as hardening

techniques, have been proposed. Usually, these techniques bear

a trade-off between privacy (security) and the linkage quality

outcome. Currently, a comprehensive evaluation of the suggested

hardening methods is not available. In this work, we will there-

fore review and categorize available Bloom-filter-based encoding

schemes and hardening techniques. We also comprehensively

evaluate the approaches in terms of privacy (security) and link-

age quality to assess their practicability and their effectiveness

in counteracting attacks.

1 INTRODUCTION

Linking records from different independent sources is an essen-

tial task in research, administration and business to facilitate

advanced data analysis [6]. In many applications, these records

are about individuals and thus contain sensitive information, e. g.,

personal, health, criminal or financial information. Due to several

laws and regulations, data holders have to protect the privacy of

individuals [33]. As a consequence, data holders have to ensure

that no sensitive or confidential information is revealed during a

linkage process.

Privacy-preserving record linkage (PPRL) addresses this prob-

lem by providing techniques for linking records referring to the

same real-world entity while protecting the privacy of these en-

tities. In contrast to traditional record linkage [6], PPRL encodes

sensitive identifying attributes, also known as quasi-identifiers,

for instance, names, date of birth or addresses, and then conduct

the linkage on the encoded attribute values.

Over the last years, numerous PPRL approaches have been

published [33]. However, many approaches are not suited for real-

world applications as they either are not able to sufficiently han-

dle dirty data, i. e., erroneous, outdated or missing values, or do

not scale to larger datasets. More recent work mainly focuses on

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

encoding techniques utilizing Bloom filters [2] as error-tolerant

and privacy-preserving method to encode records containing

sensitive information. While Bloom-filter-based encodings have

become the quasi-standard in PPRL approaches, several stud-

ies analyzed weaknesses and implemented successful attacks on

Bloom filters [7, 8, 18, 20, 21, 24]. In general, it was observed that

Bloom filters carry a non-negligible re-identification risk because

they are vulnerable to frequency-based cryptanalysis. In order to

prevent such attacks, various Bloom filter hardening techniques

were proposed [7, 25]. Such techniques aim at reducing patterns

and frequency information that can be obtained by analyzing the

frequency of individual Bloom filters or (co-occurring) 1-bits.

Previous studies on Bloom filter hardening techniques only

consider individual methods and do not analyze the effects of

combining different approaches. Moreover, many of the proposed

hardening techniques have received only limited evaluation on

small synthetic datasets making it hard to assess the possible

effects on the linkage quality.

The aim of this work is to review hardening techniques pro-

posed in the literature and to evaluate their effectiveness in terms

of achieving high privacy (security) and linkage quality.

In particular, we make the following contributions:

• We survey Bloom filter variants and hardening techniques

that have been proposed for use in PPRL scenarios to allow

secure encoding and matching of sensitive person-related

data.

• We categorize existing hardening techniques to generalize

the Bloom filter encoding process and thus highlight the

different possibilities for building tailored Bloom filter en-

codings that meet the privacy requirements of individual

application scenarios.

• We explore additional variants of hardening techniques,

in particular salting utilizing blocking approaches and

attribute-specific salting on groups of attributes.

• Wepropose and analyzemeasures that allow us to quantify

the privacy properties of different Bloom filter variants.

• We comprehensively evaluate different Bloom filter vari-

ants and hardening techniques in terms of privacy (secu-

rity) and linkage quality using two real-world datasets

containing typical errors and inconsistencies.

2 BLOOM FILTER

The use of Bloom filters [2] for PPRL has been proposed by

Schnell and colleagues [26] and has become the quasi-standard

for recent PPRL approaches in both research and real applications

[33].

Series ISSN: 2367-2005 289 10.5441/002/edbt.2021.26

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.26

2.1 Basics

A Bloom filter (BF) is a space-efficient probabilistic data structure

for representing a set 𝐸 = {𝑒1, . . . , 𝑒𝑛} of 𝑛 elements or features

and testing set membership. Therefore, a bit vector of fixed size

𝑚 is allocated and initially all bits are set to zero. A set of k hash

functions is selected where each function 𝐻1, . . . , 𝐻𝑘 outputs a

value in [0,𝑚 − 1]. To represent the set 𝐸 in the BF, each element

is (hash) mapped to the BF by using each of the 𝑘 hash functions

and setting the bits at the resulting positions to one.

To check the membership of an element, the same hash func-

tions are calculated and the bits at the resulting positions are

checked. If all bits are set to one, the element probably is in the

set. Due to collision, i. e., two or more elements may set the same

bit position for the same or different hash functions, BFs have

a false-positive probability that is fpr = (1 − 𝑒
𝑘 ·𝑛
𝑚)𝑘 [3]. On the

other hand, if at least one bit is zero, the element is definitively

not in the set.

Union and intersection of BFs with the same size and set of

hash functions can be implemented with bit-wise or and and

operations respectively. While the union operation is lossless,

i. e., the resulting BF will be equal to a BF that was build using

the union of the two sets, the intersection operation produces a

BF that may have a larger false-positive probability [3].

By using BF union and intersection, set-based similarity mea-

sures can be used to calculate the similarity of two BFs. Here the

Jaccard coefficient is frequently used as a similarity measure.

Given two BFs 𝑥,𝑦 the Jaccard coefficient is defined as

𝐽 (𝑥,𝑦) = |𝑥 ∩ 𝑦 |
|𝑥 ∪ 𝑦 | =

|𝑥 and 𝑦 |
|𝑥 or 𝑦 |

For instance, given the BFs 𝑥 = [10011001] and 𝑦 = [00011001]
the Jaccard coefficient is 3/4. The BF similarity is an approxima-

tion of the similarity of the underlying (represented) sets.

2.2 Utilization in PPRL

The main idea for utilizing BFs in PPRL scenarios is to use a BF to

represent the records attribute values, i. e., all quasi-identifying

attributes of a person that are relevant for linkage, e. g., first

name, last name and date of birth. The BFs hash functions need

to be cryptographic (one-way) hash functions that are keyed

(seeded) with a secret key S, i. e., keyed-hash message authenti-

cation codes (HMACs) like MD5 or SHA-1 [23]. For approximate

matching, the granularity of the record attributes is increased by

segmentation into features. A widely used approach is to split

the attribute values into small substrings of length q, called q-

grams, typically setting 1 ≤ 𝑞 ≤ 4. Consequently, in PPRL a BF

represents a set of attribute value segments, that we term record

(attribute) features. Thus, the number of common 1-bits of two

BFs approximates the number of common (overlapping) features

between two records.

2.2.1 Types. There are two ways of encoding records into

BFs: either one BF is built for each record attribute, which is

known as field- or attribute-level BF, or a single BF is built for

all relevant attributes, which is known as record-level BF. For

constructing record-level BFs there are two approaches: The first

approach [27] builds a single BF in which all record attributes are

hashed. The second approach [9] first constructs field-level BFs

and then selects bits from these individual BFs according to the

weight of the respective attribute. In this work, we will focus on

the first approach since it is heavily used in literature and practice

[33]. We illustrate the basic BF building process in Fig. 1. By using

Last Name

SmithJohn 1969

First Name Year of Birth

1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0

oh hn
Feature
Selection Bigrams

Hashing H1
S H2

S Hk
S. . .

Jo

Bloom
Filter

Record

Figure 1: Basic Bloom filter building process.

the first name attribute the figure shows how an attribute value

(’John’) is segmented into q-gram segments (here 𝑞 = 2), which

are then mapped to the bit vector using the 𝑘 hash functions.

Other attributes are mapped in the same way, although a different

segmentation strategy can be used. The advantage of using field-

level BFs is that individual BFs are produced allowing the use

of sophisticated matching techniques known from traditional

record linkage, e. g., classification based on attribute weights and

attribute error rates, as well as approaches for handling composite

fields, for instance, name attributes with compounds (multiple

given names). However, as we discuss in the next section, field-

level BFs fulfill much weaker privacy properties compared to

record-level BFs.

2.2.2 Privacy Properties. The privacy-preserving property of

BFs rely on the following aspects:

(1) An adversary has no information on how the record fea-

tures are obtained, e. g., selected attributes or length of

substrings (q-grams).

(2) The selected hash functions, the secret key S and thus

the hash mapping of record features to bit positions is

unknown to an adversary. In particular, the use of keyed

hash functions is essential to prevent dictionary attacks.

(3) Due to collisions multiple record features will map to a

single bit position in general. Keeping the BF size𝑚 fixed,

the more hash functions are used and the more features

are mapped to the BF, the higher will be the number of

collisions and thus the confusion.

(4) There is no coherence or positional information: Since a

BF encodes a set of record features, it is not obvious from

where features were obtained, i. e., within an attribute and

for record-level BF even from which attribute.

However, BFs are susceptible to frequency attacks as the fre-

quencies of set bit positions correspond to the frequencies of

record features. Thus, frequently (co-)occurring record features

will lead to frequently set bit positions or even to frequent BFs

in the case of field-level BFs. By using publicly available datasets

containing person-related data, e. g., telephone books, voter reg-

istration databases, social media profiles or databases about per-

sons of interests like authors, actors or politicians, an adversary

can estimate the frequencies of record features and then try to

align those frequencies to the BFs bit frequencies.

A successful re-identification of attribute values encoded in

BF is a real threat as shown by several attacks proposed in the

literature. Earlier attacks, namely [18, 20, 21, 24], often exploit

the hashing method used in [27], the double-hashing scheme,

that combines two hash functions to implement the 𝑘 BF hash

290

Table 1: Overview of surveyed Bloom filter hardening techniques.

Subject of

modification
Technique Reference Description

Bloom filter

input

Avoidance of padding [24, 25] No use of padded q-grams as BF input due to their higher frequency.

Standardization of at-

tribute lengths

[24, 25] The length of attribute values is unified to avoid exceptionally short or long values.

Hashing

mechanism

Increasing the number

of hash functions (k)

[26, 27]

Using more hash functions (k) while keeping the Bloom filter size (m) fixed will lead to more collisions and

thus a higher number of features that are mapped to each position.

Random hashing [24] Replacement for the double-hashing scheme [26] which can be exploited in attacks [24].

Attribute weighting [9, 32]

Record features are hashed with a different number of hash functions (k) depending on the weight of the

attribute from which they were obtained.

Salting [24, 27] Record features are hashed together with an additional attribute specific and/or record specific value.

Output

Bloom filter

Balancing [28] Each Bloom filter is concatenated with a negative copy of itself and then the underlying bits are permuted.

xor-folding [29] Each Bloom filter is split into halves which are then combined using the bit-wise xor-operation.

Re-hashing [25] Sliding window approach where the Bloom filter bits in each window are used to generate a new set of bits.

Rule90 [30] Each Bloom filter bit is replaced by the result of xor-ing its two neighbouring bits.

Random noise [1, 24–26, 28] Bloom filter bits are changed randomly.

Fake injections [16] Addition of artificial records and thus Bloom filters.

functions. This hashing method can easily be replaced by using

independent hash functions or other techniques as discussed in

Sec. 3.2.1. Furthermore, these attacks rely on many unrealistic

assumptions, for instance, that the encoded records are a random

sample of a resource known to the adversary [20, 24] or that

all parameters of the BF process, including used secret keys for

the hash functions, are known to the adversary [21]. However,

recent frequency-based cryptanalysis attacks, namely [7] and in

particular [8], are able to correctly re-identify attribute values

without relying on such assumptions. These attacks are the more

successful, the fewer attributes are encoded in a BF and the larger

the number of encoded records. Overall, the attacks show the

risk of re-identification when using BFs, especially field-level BFs.

In this work, we will focus only on record-level BFs.

3 BLOOM FILTER VARIANTS AND

HARDENING METHODS

In the following, we review different variations within the BF

encoding process. In general, these variations will affect both

the BFs privacy and similarity-preserving (matching) properties.

Approaches that try to achieve a more uniform frequency distri-

bution of individual BFs or set bit positions are also known as

hardening techniques as they are intended to make BF encodings

more robust against cryptanalysis. An overview of these tech-

niques is given in Tab. 1. We divide the approaches into three

categories: (A) approaches that alter the way of selecting features

from the records attributes values, (B) approaches that modify

the BFs hashing process and (C) approaches that modify already

existing BFs by changing or aggregating bits. In the following

subsections, we will describe the approaches of each category.

3.1 Record Feature Selection

We will first focus on how features are selected from the record’s

attributes. In the encoding process, at first, all attribute values

are pre-processed to bring them into the same format and to re-

duce data quality issues. After that, all linkage-relevant attributes,

i. e., the quasi-identifiers of a person, are transformed into their

respective feature set. Such features are pieces of information

that are usually obtained by segmenting the attribute values into

chunks or tokens. This is necessary because instead of a binary

decision for equality (true/false), approximate linkage is desired

resulting in similarity scores ranging from zero (completely dif-

ferent) to one (equal).

3.1.1 Standardization of Attribute Lengths. Quasi-identifiers,

such as names and addresses, show high variation and skew-

ness leading to significant differences in the length of attribute

values [11]. For instance, multiple given names, middle names

or compound surnames (e. g., ’Hans-Wilhelm Müller-Wohlfahrt’)
will lead to exceptionally long attribute values and consequently

a comparatively large amount of 1-bits in the resulting BF. The

same applies for very short names (e. g., ’Ed Lee’) resulting in

very few 1-bits in the BF. By analyzing the number of 1-bits in a

set of BFs, an adversary can gain information on the length of

encoded attribute values. To address this problem, the length of

the quasi-identifiers should be standardized by sampling, dele-

tion or stretching of the attribute values [25]. Stretching can be

implemented by concatenating short attribute values with (rarely

occurring) character sequences.

3.1.2 Segmentation Strategy. The standard segmentation strat-

egy adopted from traditional record linkage is to transform all

quasi-identifiers into their respective q-gram set. A q-gram set

is a set of all consecutive character sequences of length q that can

be built from the attribute’s string value by using a sliding win-

dow approach. For instance, setting 𝑞 = 3 the value ’Smith’ will
produce the q-gram set {Smi,mit, ith}. The idea behind building

these q-gram sets is that they allow approximate string com-

parisons by calculating the number of q-grams two sets have

in common. To directly obtain a similarity value, any set-based

similarity measure, e. g., Jaccard coefficient, can be used.

The choice of 𝑞 is important since it can affect the linkage

quality. Usually, 𝑞 is selected in the range [1..4] while most ap-

proaches setting 𝑞 = 2. In general, larger values for 𝑞 are more

sensitive to single character differences, e. g., the values ’Smith’
and ’Smyth’ will have two bigrams (𝑞 = 2), i. e., ’Sm’ and ’th’, but
zero trigrams (𝑞 = 3) in common. However, choosing a larger 𝑞

also increases to number of possible q-grams, e. g., for 𝑞 = 2 at

maximum 26
2 = 676 while for 𝑞 = 3 at maximum 26

3 = 17 576

are possible. Overall, larger values for 𝑞 tend to be less error-

tolerant and thus possibly lead to missing matches. On the other

hand, larger q’s are more distinctive and thus tend to reduce

false-positives.

As can be seen from the example above, for 𝑞 > 1 each char-

acter will contribute to multiple q-grams except the first and

last character. Thus, a common extension is to construct padded

q-grams by surrounding each attribute value with 𝑞 − 1 special

characters at the beginning and the end. For our example the

291

padded q-gram set will be {++S, +Sm, Smi,mit, ith, th-, h- -}. By
using padded q-grams strings with the same beginning and end

but variations in the middle will reach larger similarity values,

while strings with different beginning and end will produce lower

similarity values compared to standard q-grams [6]. It is impor-

tant to note, that padded q-grams are among the most frequent

q-grams and thus can ease any frequency alignment attacks.

There are several other extensions for generating q-grams,

two of which have been used in traditional record linkage, but

so far not for PPRL: positional q-grams and skip-grams [6].

Positional q-grams add the information from which position the

q-gram was obtained. For our running example, the positional

q-gram set for 𝑞 = 3 is {(Smi, 0), (mit, 1), (ith, 2)}. When deter-

mining the overlap between two positional q-gram sets, only

the q-grams at the same position or within a specific range are

considered. Positional q-grams will be more distinctive and thus

tend to reduce false-positives and even the frequency distribu-

tion. The idea of skip-grams is to not only consider consecutive

characters but to skip one or multiple characters. Depending on

the defined skip length multiple skip-gram sets can be created

and used in addition to the regular q-gram set.

So far, only a few alternatives to q-grams have been investi-

gated. In [17] and [31] the authors explore methods for handling

numerical attribute values. Besides, arbitrary substrings of indi-

vidual length or phonetic codes, such as Soundex [6], are possible

approaches that can be used for feature extraction.

3.2 Modification of the Hashing Mechanism

After transforming all quasi-identifiers in their respective feature

set, the features of each set are hashed into one record-level BF.

As discussed in Sec. 2.2.2, we do not further consider field-level

BFs due to their vulnerabilities. For PPRL several modifications of

the standard hashing process of BFs have been proposed which

we will discuss below.

3.2.1 Hash Functions. As described in Sec. 2.2, by default 𝑘

independent (cryptographic) hash functions are used in conjunc-

tion with a private key S to prevent dictionary attacks. However,

the authors of [27] proposed the usage of the so-called double-

hashing scheme. This scheme only uses two independent hash

functions 𝐺1,𝐺2 to implement the BFs 𝑘 hash functions. Each

hash function is then defined as𝐻𝑖 (𝑥) = (𝐺1 (𝑥) + (𝑖 − 1) ·𝐺2 (𝑥))
mod 𝑚,∀𝑖 ∈ {1, . . . , 𝑘}. The attacks described in [18, 24] showed

that this specific scheme can be successfully exploited. As a con-

sequence, an alternative method, called random hashing, was

proposed [24] that utilizes a pseudo-random number generator

to calculate the hash values. Therefore, the random number gen-

erator is seeded with the private keyS and the actual input of the

hash function, i. e., a certain record feature. No attacks against

this method are known at present.

3.2.2 Salting. Salting is a well-known technique in cryptog-

raphy that is often used to safeguard passwords in databases [22].

The idea is to use an additional input, called salt, for the hash

functions to flatten the frequency distribution. Already in [27]

it is mentioned that a different cryptographic secret key S𝑎 can

be used for each record attribute 𝑎. We term such kind of key

as attribute salt. By using this approach, the same feature will

be mapped to different positions if it originates from different

attributes. For instance, given the first name ’thomas’ and the

last name ’smith’ the bigram ’th’ will produce different positions.
This approach will smoothen the overall frequency distribution

and also reduce false-negatives since features from different at-

tributes will not produce common 1-bits (except due to collision).

However, the BF’s ability to match exchanged attributes, e. g.,

transposed first and middle name, is lost. If such errors occur

repeatedly this will lead to missing matches. As a compromise,

we propose to define groups of attributes, where transpositions

are expectable. Then, the same key is used for each attribute from

the same group. For instance, all name-related attributes (first

name, middle name, last name) could form a group.

Another salting variant is proposed in [24], where for each
record a specific salt is selected and then used as key for the

BFs 𝑘 hash functions. Therefore, we term such keys as record

salt, since they depend on a specific record. Record salts can

also be combined with the aforementioned attribute salts. Only

if the record salt is identical for two records, the same feature

(q-gram) will set the same bit positions in the corresponding BFs.

However, if the record salts are different, then the probability that

the same bit positions are set in the corresponding BFs is very low.

Thus, if the attributes (from which the record salts is extracted)

contain errors, this will lead to many false-negatives. For this

reason only commonly available, stable and small segments of

quasi-identifiers, such as year of birth, are suitable as salting key.

Consequently, this technique is only an option in PPRL scenarios

where the attributes used for salting are guaranteed to be of very

high quality which might be rarely the case in practice.

To reduce the aforementioned problem of salting with record-

specific keys, we propose to generate the salt by utilizing blocking

approaches. Blocking [6] is an essential technique in (privacy-

preserving) record linkage to overcome the quadratic complexity

of the linkage process since in general each record must be com-

pared to each record of another source. The idea of blocking is

to partition records into small blocks and then to compare only

records within the same block to reduce the number of record

pair comparisons. For this purpose, one or more blocking keys

are defined, where each blocking key represents a specific, poten-

tially complex criterion that records must meet to be considered

as potential matches. For example, the combination of the first

letter of the first and last name and the year of birth might be

used as a blocking key. If the attributes used for blocking con-

tain errors, then also the blocking key will be affected leading

to many false-negatives, in particular if the blocking key is very

restrictive. Hence, often multiple blocking keys are used to in-

crease the probability for records to share at least one blocking

key. However, this will lead to duplicate candidates since very

similar records will share most blocking keys. The challenge of

both, salting and blocking, is to select a key that is as specific as

possible (to increase privacy, or to reduce the number of record

pair comparisons respectively) and at the same time not prone to

errors. For record-dependent salting, only the use of attribute seg-

ments was suggested. In contrast, for blockingmore sophisticated

approaches have been considered, in particular using phonetic

codes, e. g., Soundex, or locality-sensitive hashing schemes, e. g.,

MinHash [4].

3.2.3 Dependency-based Hashing. In traditional record link-

age, sophisticated classificationmodels are used to decidewhether

a record pair represents a match or a non-match. Often these

models deploy an attribute-wise or rule-based classification con-

sidering the discriminatory power and expected error rate of

the attributes [6]. In contrast, PPRL approaches based on record-

level BFs only apply classification based on a single similarity

threshold since all attributes values are aggregated (encoded) in

292

a single BF. However, as discussed in Sec. 2.2.1, the record-level

BF variant proposed in [9] also considers the weight of attributes

by selecting more bits from the field-level BFs of attributes with

higher weights. In [32] the authors proposed an extension to the

approach of [27] to allow attribute weighting. While also only a

single BF is constructed, a different number of hash functions is

selected for different attributes according to their weights. Con-

sequently, the higher the weight of an attribute, the more hash

functions will be used and thus the more bits the attribute will

set in the BF. The idea of varying the number of hash functions

can be generalized to dependency-based hashing. For instance,

not only the weights of attributes can be considered but instead

also the frequency of input features or their position within the

attribute value (positional q-grams).

3.3 Bloom Filter Modifications

While the methods described so far modify the way BFs are

created, the following approaches are applied directly on the

obtained BFs (bit vectors).

3.3.1 Balanced Bloom Filters. Balanced BFs were proposed

in [28] for achieving a constant Hamming weight over all BFs.

A constant Hamming weight should make the elimination of

infrequent patterns more difficult. Balanced BFs are constructed

by concatenating a BF with a negative copy of itself and then

permuting the underlying bits. For instance, the BF [10011001]
will give [10011001] · [01100110] = [1001100101100110] before
applying the permutation. Since the size of the BFs is doubled,

balanced BFs will increase computing time and required memory

for BF comparisons.

3.3.2 xor-Folding. xor-folding of bit vectors is a method orig-

inating from chemo-informatics to speed up databases queries.

In [29] the authors adopted this idea for Bloom-filter-based PPRL

for preventing bit pattern attacks. To apply the xor-folding a

BF is split into halves and then the two halves are combined

by the xor-operation. For instance, the BF [11000101] will give
[1100] ⊕ [0101] = [1001]. The folding process may be repeated

several times. Since the size of the BFs is halved, xor-folding

will decrease computing time and required memory for BF com-

parisons. The initial evaluation in [29] using unrealistic datasets

with full overlap and low error-rates shows that one-time folding

does not significantly affect linkage quality. However, n-time

folding drastically increases the number of false-positives.

3.3.3 Rule90. In [30] the use of the so-called Rule90 was sug-
gested to increase the resistance of BFs against bit-pattern-based

attacks. The Rule90 is also based on the xor-operation which

is applied on the two neighboring values of each BF bit. Conse-

quently, there are 8 possible combinations (patterns), which are

listed in Tab. 2. So each bit 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1) is replaced by the

result of xor-ing the two adjacent bits at positions (𝑖 − 1) mod𝑚

and (𝑖 + 1) mod𝑚. By using the modulo function the first and

the last bit are treated as if they were adjacent. For example,

applying Rule90 to the BF [11000101] will lead to the following

patterns 111, 110, 100, 000, 001, 010, 101, 011 where the middle

bit corresponds to the bit at position 𝑖 ∈ {0,𝑚−1} of the BF. After
applying the transformation rules (Tab. 2) we obtain [01101001].

Table 2: Transformation rules for Rule90.

Pattern 111 110 101 100 011 010 001 000

New Bit Value 0 1 0 1 1 0 1 0

3.3.4 Re-hashing. The idea of re-hashing [25] is to use con-

secutive bits of a BF to generate a new bit vector. Therefore, a

window of width𝑤 bits is moved over the BF where in each step

the window slides forward 𝑠 positions (step size). At first, a new

bit vector 𝑣 of size𝑚′
is allocated. Then, the 𝑤 bits, which are

currently covered by the window, are represented as an integer

value. The integer value is then used in combination with a secret

key as input for a random number generator (RNG). With that,

𝑟 new integer values are generated with replacement, each in

the range [0,𝑚′ − 1]. Finally, the bits at these 𝑟 positions are set
to one in the bit vector 𝑣 . For example, given the BF [11000101]
and setting 𝑤 = 4, 𝑠 = 2 will lead to three windows, namely

𝑤1 = [1100],𝑤2 = [0001],𝑤3 = [0101]. By transforming the

bits in each window into an integer value we obtain the seeds

12, 1 and 5. Setting 𝑟 = 2 the RNG might generate the positions

(4, 2), (2, 5), (8, 6) for the respective seeds which finally results

in the bit vector [001011101]. The evaluation in [28] uses very

unrealistic datasets (full overlap, no errors) and shows no clear

trend. However, this technique is highly dependent on the choice

of the parameters𝑚′,𝑤, 𝑠 and 𝑟 as well as on the original BFs, in

particular the average fill factor (amount of 1-bits).

3.3.5 Random Noise. In order to make the frequency distri-

bution of BFs more uniform, random noise can be added to the

BFs [25, 28]. Trivial options are to randomly set bits to one/zero

or to flip bits (complement). Additionally, the amount of random

noise can depend on the frequency of mapped record features.

For instance, for BFs containing frequent q-grams more noise can

be added. In [1] a 𝜖-differential private BF variant, called BLoom-

and-flIP (BLIP), based on permanent randomized response is

proposed. Each bit position 𝑏𝑖 ,∀𝑖 ∈ {0, . . . ,𝑚 − 1} is assigned a

new value 𝑏 ′
𝑖
based on the probability 𝑓 such that

𝑏 ′𝑖 =


1 with probability

1

2
𝑓

0 with probability
1

2
𝑓

𝑏𝑖 with probability 1 − 𝑓 .

3.3.6 Fake Injections. Another option tomodify the frequency

distribution of BFs is to add artificial records or attribute values

[16]. By inserting random strings containing rarely occurring

q-grams the overall frequency distribution will become more

uniform making any frequency alignment less accurate. The

drawback of fake records is that they produce computational

overhead in the matching process. Moreover, it is possible that

a fake record will match with another record by chance. Thus,

after the linkage, fake records need to be winnowed.

4 BLOOM FILTER PRIVACY MEASURES

Several attacks on BFs have been described in the literature (see

Sec. 2.2.2), which show that BFs carry the risk of re-identification

of attribute values and even complete records. Currently, the

privacy of BF-based encoding schemes is mainly evaluated by

simulating attacks and inspecting their results, i. e., the more

attribute values and records can be correctly re-identified by an

attack, the lower is the assumed degree of privacy of the encod-

ing scheme. However, this way of measuring privacy strongly

depends on the used attacks, their assumptions and the used refer-

ence dataset. Besides, only a few studies investigated evaluation

measures for privacy [33]. These measures are either calculating

the probability of suspicion [32] or are based on entropy and

information gain between masked and unmasked data [28]. The

disadvantage of these measures is that they strongly depend on

293

the reference data set used. In the following, we therefore propose

privacy measures that solely depend on a BF dataset.

To evaluate the disclosure risk of BF-based encoding schemes

we propose to analyze the frequency distribution of the BF 1-bits.

As described in Sec. 2.2.2, attacks on BFs mostly try to align the

frequency of frequent (co-occuring) bit patterns to frequent (co-

occuring) record features (q-grams). Thus, the more uniform the

frequency distribution of 1-bits is, the less likely an attack will

be successful. To measure the uniformity of the bit frequency

distribution of a BF dataset 𝔅, we calculate for each BF bit posi-

tion (column) 0 ≤ 𝑖 < 𝑚 − 1 the number of 1-bits, given as c𝑖 =∑
Bf∈𝔅 Bf(𝑖), where Bf(𝑖) returns the BFs bit value at position

𝑖 . The total number of 1-bits is then b =
∑𝑚−1
𝑖=0 𝑐𝑖 =

∑
Bf∈𝔅 |Bf|

where |Bf| denotes the cardinality of a BF (number of 1-bits). We

can then calculate for each column its share of the total num-

ber of 1-bits, i. e., p𝑖 = 𝑐𝑖/𝑏. Ideally, for a perfect uniform bit

distribution, 𝑝𝑖 will be close to 𝑏/𝑚 for all 𝑖 ∈ {0,𝑚 − 1}.
In mathematics and economics there are several measures

that allow to assess the (non-) uniformity of a certain distribu-

tion. Consequently, we are adapting the most promising of these

measures to our problem. At first, we consider the Shannon en-

tropy H(𝔅) = −∑𝑚−1
𝑖=0 𝑝𝑖 · log2 (𝑝𝑖) since uniform probability

will yield maximum entropy. The maximum entropy is given

as H𝑚𝑎𝑥 (𝔅) = log
2
(𝑚). We define the normalized Shannon en-

tropy ranging from 0 (high entropy - close to uniform) to 1 (low

entropy) as

H̃ (𝔅) = 1 − 𝐻 (𝔅)
𝐻𝑚𝑎𝑥 (𝔅) (1)

Next, we consider the Gini coefficient [5, 15], which is well-

known in economics as a measure of income inequality. The Gini

coefficient can range from 0 (perfect equality – all values are the

same) to 1 (maximal inequality – one column has all 1-bits and

all others have only 0-bits) and is defined as

G(𝔅) =
∑𝑚−1
𝑖=0

∑𝑚−1
𝑗=0 |𝑐𝑖 − 𝑐 𝑗 |
2𝑚 · 𝑏 (2)

Moreover, we calculate the Jensen-Shannon divergence (JSD)

[14] which is a measure of similarity between two probability

distributions. The JSD is based on the Kullback-Leibler diver-

gence (KLD) [19], but has better properties for our application:

In contrast to the KLD, the JSD is a symmetric measure and the

square root of the JSD is a metric known as Jensen-Shannon

distance (𝐷 𝐽 𝑆) [10]. For discrete probability distributions 𝑃 and

𝑄 defined on the same probability space, the JSD is defined as

JSD(𝑃 | | 𝑄) = 1

2

KLD(𝑃 | | 𝑀) + 1

2

KLD(𝑄 | | 𝑀) where

KLD(𝑃 | | 𝑄) =
∑
𝑠∈S

𝑃 (𝑠) · log
2

(
𝑃 (𝑠)
𝑄 (𝑠)

)
and 𝑀 =

1

2

(𝑃 +𝑄) .

The JSD also provides scores between 0 (identical) to 1 (maximal

different). Since we want to measure the uniformity of the bit

frequency distribution of a BF dataset𝔅, we calculate the Jensen-

Shannon distance given as

DJS (𝔅) =
√
JSD(𝔅) (3)

where

JSD(𝔅) =1
2

(
𝑚−1∑
𝑖=0

1

𝑚
· log

2

(
1

𝑚

1

2
· (𝑝𝑖 + 1

𝑚)

))
+

1

2

(
𝑚−1∑
𝑖=0

𝑝𝑖 · log2

(
𝑝𝑖

1

2
· (𝑝𝑖 + 1

𝑚)

))

Finally, wemeasure howmany different record features (q-grams)

are mapped to each bit position, which we denote as feature

ratio (fr). The more features are mapped to each position, the

harder becomes a one-to-one assignment between bit positions

and record features which will limit the accuracy of an attack.

5 EVALUATION SETUP

Before presenting the evaluation results we describe our experi-

mental setup as well as the datasets and metrics we use.

5.1 PPRL Setup

We implement the PPRL process as a three-party protocol assum-

ing a trusted linkage unit [31]. Furthermore, we set the BF length

𝑚 = 1024. To overcome the quadratic complexity of linkage, we

use LSH-based blocking based on the Hamming distance [13].

We empirically determined the necessary parameters leading to

high efficiency and effectiveness. As a result, we set Ψ = 16 (LSH

key length) and Λ = 30 (number of LSH keys) as default. Finally,

we calculate the Jaccard coefficient to determine the similarity

of candidate record pairs. We classify every record pair with a

similarity equal or greater than 𝑡 as a match. Finally, we apply a

one-to-one matching constraint, i. e., a record of one source can

match to at maximum one record of another source, utilizing a

symmetric best match approach [12].

5.2 Datasets

For evaluation, we use two real datasets that are obtained from

the North Carolina voter registration database (NCVR) (https:

//www.ncsbe.gov/) and the Ohio voter files (OHVF) (https://www.

ohiosos.gov/). For both datasets, we select subsets of two snap-

shots at different points in time. Due to the time difference

records contain errors and inconsistencies, e. g., due to mar-

riages/divorces or moves. Please note that we do not insert artifi-

cial errors or otherwise modify the records. We only determine

how many attributes of a record have changed and use this in-

formation to construct subsets with a specific amount of records

containing errors. An overview of all relevant dataset characteris-

tics is given in Tab. 3. Each dataset consists of two subsets, 𝑆𝐴 and

𝑆𝐵 , to be linked with each other. The two subsets are associated

with two data owners (or sources) 𝐴 and 𝐵 respectively.

Table 3: Dataset characteristics

Characteristic

Dataset

N O

Type Real (NCVR) Real (OHVF)

|𝑆𝐴 | 50 000 120 000

|𝑆𝐵 | 50 000 80 000

|𝑆𝐴 ∩ 𝑆𝐵 | 10 000 40 000

Attributes

{First, middle, last} name,

year of birth (YOB), city

{First, middle, last} name,

date of birth (BD), city

|Errors|/record

0 (40 %), 1 (30 %),

2 (20 %), 3 (10 %)

0 (37.5 %), 1 (55 %),

2 (6.875 %), 3 (0.625 %)

5.3 Metrics

To assess the linkage quality we determine recall, precision and

F-measure (F1-score). Recall measures the proportion of true-

matches that have been correctly classified as matches after the

linkage process. Precision is defined as the fraction of classified

matches that are true-matches. F-measure is the harmonic mean

of recall and precision. To assess the privacy (security) of the

294

1E-09

1E-07

1E-05

0.001

0.1

Bigrams (NCVR)

R
el

. F
re

q
u

en
cy

Bigrams (N)

1E-09

1E-07

1E-05

0.001

0.1

Bigrams (OHVF)

R
el

. F
re

q
u

en
cy

Bigrams (O)

Figure 2: Relative bigram frequencies for used

datasets.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cum. share of q-grams/1-bits (ranked by #occurences)

C
u

m
. s

h
ar

e
o

f
o

cc
u

re
n

ce
s Perf. Uniform

NCVR|q=2
NCVR|q=3
N|q=2
N|q=3
BF(N)|q=2,k=25

BF(N)|q=3,k=20

(a) NCVR

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cum. share of q-grams/1-bits (ranked by #occurences)

C
u

m
. s

h
ar

e
o

f
o

cc
u

re
n

ce
s Perf. Uniform

OHVF|q=2
OHVF|q=3
O|q=2
O|q=3
BF(O)|q=2,k=25

BF(O)|q=3,k=20

(b) OHVF

Figure 3: Comparison of Lorenz curves for plaintext and Bloom filters.

different Bloom-filter-based encoding schemes, we analyze the

frequency distribution of the BF’s 1-bits in order to determine

the normalized Shannon entropy, the Gini coefficient and

the Jensen-Shannon distance (see Sec. 4). Furthermore, we

calculate the feature ratio (fr) that determines howmany record

features are mapped on average to each bit position.

5.4 Q-Gram Frequencies

Before we begin our evaluation on BFs, we analyze the plaintext

frequencies of our datasets𝑁 and𝑂 as well as the complete NCVR

and OHVF datasets. At first, we measure the relative bigram fre-

quencies as shown in Fig. 2. What can be seen in this figure is the

high dispersion of bigrams. For the complete NCVR and OHVF

the non-uniformity is a bit higher than in our datasets which is

mainly due to the larger number of infrequent bigrams. Since

our datasets are only subsets from the respective voter registra-

tions (NCVR/OHVF), some of these rare bigrams do simply not

occur in our dataset subsets. In Fig. 3 we plot the Lorenz curves

[15] for the plaintext datasets as well as BFs (see Sec. 6). These

diagrams again illustrate the high dispersion for the plaintext

values. Comparing bigrams and trigrams, it can be seen that the

non-uniformity for trigrams is even higher than for bigrams. Our

observations are confirmed by our uniformity (privacy) measures

(see Sec. 4) which we calculate for the datasets as listed in Tab. 4.

We use these values as a baseline for the BF privacy analysis. The

closer the values for a set of BFs are to these values, the more

likely a frequency alignment will be successful. On the other

hand, the larger the difference between the values for plaintext

and BFs, the better the BFs can hide the plaintext frequencies and

thus the less likely a successful frequency alignment becomes.

Comparing our three measures, it can be seen that the values

for the normalized Shannon entropy (H̃) are much lower than

the values for the Gini coefficient (𝐺) and the Jensen-Shannon

distance (𝐷JS). However, all measures clearly indicate the dif-

ferences in the frequency distribution of bigrams and trigrams.

Comparing both datasets, it can be seen that the non-uniformity

of bi- and trigrams is slightly higher for the NCVR than for the

OHVF dataset.

6 RESULTS AND DISCUSSION

In this section, we evaluate various BF variants and hardening

techniques in terms of linkage quality and privacy (security).

6.1 Hash Functions and Fill Factor

In the following, we evaluate the linkage quality outcome and

the privacy properties of basic BFs by inspecting the frequency

Table 4: Analysis of q-gram frequency distribution.

Datasets

Bigrams Trigrams
Mea-

sure

N NCVR O OHVF N NCVR O OHVF

H̃ 0.1848 0.2497 0.1670 0.2027 0.2151 0.2781 0.2142 0.2491

𝐺 0.7709 0.8728 0.7466 0.8047 0.8705 0.9425 0.8729 0.9189

𝐷JS 0.6315 0.7516 0.6107 0.6724 0.7340 0.8392 0.7362 0.8007

distribution of the BF 1-bits compared to the q-gram frequen-

cies. At first, we vary the number of hash functions (𝑘), selecting

𝑘 ∈ {15, 20, . . . , 40} and bigrams (𝑞 = 2), to adjust the fill fac-

tor (amount of 1-bits) of the BFs. The results for dataset 𝑁 are

depicted in Fig. 4. The results show, that for the high similarity

thresholds of 𝑡 = 0.8, all configurations achieve high precision

≥ 96.58%, but low recall ≤ 60.19%, leading to a max. F-measure

of 74.16%. For lower similarity thresholds (𝑡 = {0.7, 0.6}), pre-
cision is reduced drastically the more hash functions are used.

For instance, setting 𝑡 = 0.6 and 𝑘 = 15, the highest precision of

75.93 % is achieved, while for 𝑘 = 40 the precision is only 45.74 %.

In contrast, the higher the number of hash functions, the higher

the recall. For instance, setting 𝑡 = 0.6 and 𝑘 = 15, the recall is

73.28%, while for 𝑘 = 40 it increases to 78.51%. However, the

impact on precision is much higher (difference of around 34%)

than on recall (difference of around 5%). Overall, the configu-

ration with 𝑡 = 0.7 and 𝑘 = 25 achieves the best F-measure of

76.89%. However, the other configuration except those with a

fill factor over 50% (𝑘 ∈ {35, 40}) achieve only slightly less F-

measure. When averaging precision and recall for each k over

all thresholds, the configurations with 𝑘 ≤ 25 achieve a mean

F-measure of over 75 %, while for larger 𝑘 it declines from around

74 % for 𝑘 = 30 to around 71 % for 𝑘 = 40.

Next, we analyze our privacy measures, which are depicted

in Fig. 4(b). The figure shows that the more hash functions are

used (and thus the higher the fill factor of the BFs) the higher

is the avg. number of features that are mapped to each bit posi-

tion. Even for the lowest number of hash functions, on average

around 10 different bigrams are mapped to each individual bit

position. Compared to the plaintext frequencies (see Tab. 4), we

see that basic BFs have a significantly more uniform frequency

distribution than the original plaintext dataset. For instance, us-

ing 𝑘 = 25 hash functions, we obtain a Gini coefficient of 0.2443

and a Jensen-Shannon distance of 0.1891 compared to 0.7709

and 0.6315 for the unencoded dataset. Although for the Shannon

entropy also a difference is visible, i. e., from 0.1848 for plaintext

to 0.0137 for BFs setting 𝑘 = 25, the values are in general much

295

t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8
k=15 k=20 k=25 k=30 k=35 k=40

20%

30%

40%

50%

60%

70%

80%

90%

100%

F-Measure Precision Recall Fill Factor

(a) Quality

15 20 25 30 35 40
0%

10%

20%

30%

40%

50%

0
5
10
15
20
25
30
35
40
45
50

Num. hash functions (k)

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 fr
 G
 D JS

~
H

(b) Privacy

Figure 4: Evaluation of standard Bloom filters using bigrams without padding for varying number of hash functions (𝑘)

on dataset 𝑁 .

closer to zero and thus less intuitive to compare. As a conse-

quence, in the following, we will focus on the other two privacy

measures. Finally, the privacy measures indicate, that the more

hash functions are used, the more closer the 1-bit distribution

will get to uniform. However, the effect is not linear, such that

the privacy gain is continuously getting lower, in particular for

𝑘 ≥ 30.

Table 5: Comparison of Bloom filter encodings using bi-

and trigrams with and without padding for dataset 𝑁 .

q Pad. k t

Recall

[%]
Prec.

[%]
F-

Meas.

[%]

Mean

Recall

[%]

Mean

Prec.

[%]

Mean

F-Meas.

[%]

2

No

15

0.6 77.34 74.58 75.93

85.21 67.09 75.07

0.7 63.27 94.12 75.67

0.8 54.96 99.36 70.77

20

0.6 78.71 69.54 73.84

0.7 65.21 91.75 76.24

0.8 55.64 99.19 71.29

25

0.6 79.51 64.58 71.27

0.7 67.71 88.95 76.89

0.8 56.50 98.81 71.89

30

0.6 78.68 58.51 67.11

0.7 70.14 84.80 76.78

0.8 57.43 98.37 72.52

Yes

10

0.6 81.48 84.06 82.75

90.21 69.20 78.32

0.7 64.56 97.71 77.75

0.8 55.08 99.67 70.95

15

0.6 83.77 76.18 79.79

0.7 68.46 96.17 79.98

0.8 56.02 99.53 71.69

20

0.6 83.66 66.15 73.88

0.7 72.33 93.07 81.40

0.8 57.42 99.37 72.78

3

No

15

0.6 69.83 86.85 77.42

91.12 63.28 74.69

0.7 59.49 96.99 73.75

0.8 53.71 99.57 69.78

20

0.6 72.30 83.38 77.45

0.7 60.71 96.19 74.44

0.8 54.30 99.54 70.27

25

0.6 73.53 79.83 76.55

0.7 62.08 94.93 75.07

0.8 54.76 99.41 70.62

30

0.6 74.18 75.71 74.94

0.7 63.64 93.34 75.68

0.8 55.30 99.15 71.00

35

0.6 74.25 71.66 72.93

0.7 65.22 91.43 76.13

0.8 55.96 98.86 71.47

Yes

10

0.6 79.17 91.99 85.10

93.93 67.30 78.42

0.7 61.77 98.91 76.05

0.8 53.87 99.70 69.95

15

0.6 80.87 86.61 83.64

0.7 66.74 98.00 79.40

0.8 54.82 99.63 70.72

20

0.6 80.31 75.42 77.79

0.7 71.96 95.60 82.11

0.8 56.20 99.48 71.82

6.2 Choice of q and the Impact of Padding

In Tab. 5 we compare the linkage quality of BFs using different

configurations for 𝑞 ∈ {2, 3} and padding for dataset 𝑁 . Without

the use of padding the best configuration for bigrams, i. e., 𝑘 = 25

and 𝑡 = 0.7, achieves a slightly less F-measure of 76.89 % than the

best configuration for trigrams, i. e., 𝑘 = 20 and 𝑡 = 0.6, of 77.45 %.

However, considering the mean over all configurations, using

bigrams achieves a slightly higher F-measure of 75.07 % compared

to 74.69 % for trigrams. Surprisingly, using trigrams results in an

overall higher recall but lower precision if we average the results

over all configurations. Moreover, the use of padding leads to a

higher linkage quality, i. e., the best configurations for bigrams

achieves a F-measure of 82.75 % while for trigrams even 85.10 %

is attained. Averaged over all configurations, by using padding

recall is increased about 5% for bigrams and around 2.8% for

trigrams. Interestingly, also precision is increased by around

2.11 % for bigrams and around 4.02 % for trigrams. Thus, for both

bigrams and trigrams, the mean F-measure can be increased

by padding by more than 3%. We repeat the experiments on

dataset𝑂 and report the best configurations in Tab. 6. The results

Table 6: Comparison of Bloom filter encodings using bi-

and trigrams with and without padding for dataset 𝑂 .

q Padding k t Recall [%] Precision [%] F-Meas. [%]

2

No 25 0.7 68.17 88.32 76.95

Yes 10 0.6 93.99 83.17 88.25

3

No 15 0.6 72.68 82.76 77.39

Yes 10 0.6 95.49 90.14 92.74

G DJS G DJS
N O

0%

10%

20%

30%

40%

50%

60%
Bigram
Bigram+Padding
Trigram
Trigram+Padding

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJSDJS

Figure 5: Comparison of Bloom filter privacy for bigrams

and trigrams with and without using padding for datasets

𝑁 and 𝑂 .

296

No Yes

Gro
up

(FN
,LN

)

Gro
up

(FN
,MN)

Gro
up

(FN
,MN,L

N)
50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

0%

5%

10%

15%

20%

25%

0

25

50

75

100

125

150

175

200

G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

(b) Privacy - 𝑁 dataset

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

Group(DOB, M
OB)

80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

0%

5%

10%

15%

20%

25%

0

50

100

150

200

250

G

DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

Group(DOB, M
OB)

(d) Privacy -𝑂 dataset

Figure 6: Impact of attribute salting.

confirm our previous observation that trigrams with padding

lead to the highest linkage quality. Here, the best configuration

using trigrams and padding outperforms that with bigrams and

padding even slightly more than for dataset 𝑁 , i. e., F-measure

increases 2.35 % for 𝑁 and 4.49 % for 𝑂 .

Fig. 5 shows our privacy measures for the best configuration

in each group. In general, the use of bigrams leads to a less

uniform distribution of 1-bits and thus lower privacy. Also, the

use of padding leads to a higher dispersion of the BFs 1-bits.

However, even the worst configuration, namely bigrams using

padding, leads to a significantly less Gini coefficient as for the

plaintext datasets. For 𝑁 , for instance, the Gini coefficient is

reduced from 0.7709 to 0.3801 (see Tab. 4 and Fig. 3). Also the

Jensen-Shannon distance reduces drastically, e. g., for dataset 𝑁

from 0.6315 for the plaintext dataset to 0.3045 for the BF dataset

using bigrams with padding. In contrast, the use of trigrams leads

to amore even distribution of 1-bits, so that despite using padding,

a slightly more uniform frequency distribution is achieved than

with bigrams and without using padding.

To summarize, the highest linkage quality is achieved by using

padding which indeed leads to less uniform 1-bit distribution

making frequency-based cryptanalysis more likely to be suc-

cessful. However, this can be compensated by using trigrams

leading even to a slightly better linkage quality than for bigrams.

Consequently, for our following evaluation, we select the best

configuration using trigrams and padding with 𝑘 = 10 as a base-

line for our experiments.

6.3 Salting and Weighting

In this section, we evaluate the impact of methods that alter the

BFs hashing process by varying the number of hash functions

and using salting keys to modify the hash mapping.

6.3.1 Attribute Salts. Fig. 6 depicts the results for BFs where

the used hash functions are keyed (seeded) with a salt depending

on the attribute a feature belongs to. For dataset 𝑁 we observe

that using an individual salt for each attribute increases precision

from 91.99 % to 94.69 % but also decreases recall from 79.17 % to

75.26 % leading to a F-measure loss of around 1.2 %. Surprisingly,

for dataset 𝑂 precision increases from 90.14% to 93.93% while

recall remains stable. Simultaneously, the average number of

features that are mapped to each bit position increases by more

than a factor of two for both datasets (Fig. 6 (b)/(d)). Furthermore,

also the Gini coefficient and the Jensen-Shannon distance are sig-

nificantly decreased and thus indicating an additional smoothing

of the 1-bit distribution.

To be tolerant of swapped attributes, we build groups contain-

ing name-related attributes, i. e., one group for first name (FN)

and last name (LN), one for first name and middle name (MN) and

one for all three name components. Additionally, for dataset 𝑂 ,

we build a group containing day and month of birth (DOB, MOB).

For all attributes within one group, the same attribute salt is used.

For dataset 𝑁 we observe that all groups can slightly increase

F-measure, while the group (FN,MN,LN) performs best and can

increase F-measure to 84.48 %. Compared to the variant without

using attribute salts, F-measure is therefore only decreased by

0.6%. On dataset 𝑂 , all groups achieve similar results, whereby

precision and thus F-measure is always slightly lower than with-

out using groups. Accordingly, swapped attributes seem to occur

only rarely in dataset 𝑂 . Using attribute salt groups also reduce

the feature ratio and are also less effective in flattening the 1-

bit distribution. Overall, however, the use of attribute salts can

significantly reduce the dispersion of 1-bits while maintaining a

high linkage quality. Building attribute salt groups can be benefi-

cial for linkage quality, namely for applications where attribute

transpositions are likely to occur. In the following, we include

attribute salting as a baseline for our experiments, where for

dataset 𝑁 the group (FN,MN,LN) is used.

6.3.2 Impact of Attribute Weighting. In the following, we eval-

uate the impact of attribute weighting. Therefore, the number of

hash functions is varied for each attribute depending on attribute

weight. We tested several configurations and report the results in

Fig. 7. The number of hash functions for each attribute is denoted

(10
,10

,10
,10

,10
)

(14
,6,
10
,15

,5)

(14
,10

,12
,8,
4)

(15
,5,
10
,10

,5)

(15
,8,
10
,12

,4)

(15
,10

,12
,12

,4)

(15
,10

,10
,10

,5)

(15
,10

,15
,15

,5)
60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

0%

5%

10%

15%

20%

25%

0

20

40

60

80

100

120

140

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

(10,10,10,10,10)

(14,6,10,15,5)

(14,10,12,8,4)

(15,5,10,10,5)

(15,8,10,12,4)

(15,10,12,12,4)

(15,10,10,10,5)

(15,10,15,15,5)

(b) Privacy - 𝑁 dataset

(10
,10

,10
,10

,10
)

(14
,6,1

0,1
5,5

)

(14
,10

,12
,8,4

)

(15
,5,1

0,1
0,5

)

(15
,8,1

0,1
2,4

)

(15
,10

,12
,12

,4)

(15
,10

,10
,10

,5)

(15
,10

,15
,15

,5)
80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

0%

5%

10%

15%

20%

25%

0

50

100

150

200

250

300

G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

(10,10,10,10,10)

(14,6,10,15,5)

(14,10,12,8,4)

(15,5,10,10,5)

(15,8,10,12,4)

(15,10,12,12,4)

(15,10,10,10,5)

(15,10,15,15,5)

(d) Privacy -𝑂 dataset

Figure 7: Evaluation of varying number of hash functions based on attribute weights.

297

No YO
B

Sou
nd

ex(
FN

)

Sou
nd

ex(
LN

)

MinH
ash

(FN
,LN

)

MinH
ash

(FN
)

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

0%

5%

10%

15%

20%

25%

30%

0

500

1000

1500

2000

2500

3000

3500

4000
G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n fr
DJS

No
YOB

Soundex(FN)

Soundex(LN)

MinHash(FN,LN)

MinHash(FN)

(b) Privacy - 𝑁 dataset

No YO
B

Sou
nd

ex(
FN

)

Sou
nd

ex(
LN

)

MinH
ash

(FN
,LN

)

MinH
ash

(FN
)

80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

0%

5%

10%

15%

20%

25%

0

1000

2000

3000

4000

5000
G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n fr
DJS

No
YOB

Soundex(FN)

Soundex(LN)

MinHash(FN,LN)

MinHash(FN)

(d) Privacy -𝑂 dataset

Figure 8: Impact of record salting.

in the order (FN,LN,MN,YOB/BD,City). We observe that using

attribute weighting strongly affects the linkage quality. All con-

figurations that use a lower number of hash functions to map the

attribute city can significantly increase both recall and precision.

As a consequence, F-measure is improved by more than 6% to

over 91 % for dataset 𝑁 and by around 2 % to over 96 % for dataset

𝑂 . Analyzing the privacy results depicted in Fig. 7 (b)/(d), we ob-

serve that most weighting configurations can slightly increase the

feature ratio and also slightly decrease the non-uniformity of 1-

bits. By comparatively analyzing linkage quality and privacy, we

select the configuration (15,10,15,15,5) as new baseline since

it achieves the highest privacy while F-measure is only minimal

less than for (14,10,12,8,4) (dataset𝑁) and (15,10,12,12,4)
(dataset 𝑂).

6.3.3 Record Salts. We now evaluate the approach of using

a hash function salt that is individually selected for each record.
The record salt is used in addition to the attribute salt we selected

in the previous experiment. We tested several configurations

using different attributes (year of birth, first name, last name). As

Fig. 8(a)/(c) illustrate, record salts highly affect the linkage quality

outcome. If we use the person’s year of birth (YOB) as record-

specific salt for the BFs hash function, recall drops drastically

from 89.20 % (baseline) to only 63.58 % for dataset 𝑁 . Apparently,

in this dataset, this attribute is often erroneous and thus not

suitable as record salt. In contrast, applying this configuration

on dataset 𝑂 , recall is only slightly reduced while precision is

slightly increased, resulting in nearly the same F-measure. In or-

der to compensate erroneous attributes, we test two techniques

that are often utilized as blocking approaches, namely Soundex

and MinHashing that we apply on the first and/or last name

attribute. All tested approaches can slightly increase precision as

they make the hash-mapping of the record features more unique.

However, the Soundex and MinHash-based approaches also de-

crease recall, depending on the attribute(s) used. For instance,

using Soundex on last name leads to relatively low recall in both

datasets indicating many errors, e. g., due to marriages or di-

vorces. Nevertheless, with the approaches using the first name, a

similar high F-measure (loss ≤ 1%) can be achieved as with the

baseline.

Inspecting the privacy results depicted in Fig. 8 (b)/(d), we

observe that the number of features that are mapped to each

individual bit position is greatly increased by at least a factor of

10. At the same time, using record salts leads to a much more

uniform 1-bit distribution. For instance, the Gini coefficient can

be reduced from 0.1772 (baseline dataset 𝑁) and 0.1549 (baseline

dataset 𝑂) to less than 0.04 for all tested approaches. The most

uniform 1-bit distribution is achieved by using Soundex applied

on last name, which leads to a Gini coefficient of less than 0.02.

This implies that the 1-bit distribution is almost perfectly uniform

which will make any frequency-based attack very unlikely to

be successful. By analyzing privacy in relation to quality, we

conclude that for both datasets Soundex applied to the first name

performs the best and is able to achieve high linkage quality

while effectively flattening the 1-bit distribution.

6.4 Modifications

In the following, we evaluate hardening techniques that are ap-

plied directly on BFs (bit vectors).

6.4.1 Adding RandomNoise. There are several ways of adding

random noise to a BF (see Sec. 3.3.5). We compare the random-

ized response technique (RndRsp), random bit flipping (BitFlip)

and randomly setting bits to one (RndSet) with each other. We

vary the probability for changing an individual bit by setting

𝜌 = {0.01, 0.05, 0.1}. The results are depicted in Fig. 9. As ex-

pected, recall and F-measure decrease with increasing 𝜌 . While

for 𝜌 = 0.01 the loss is relatively small, it becomes significantly

large for 𝜌 = 0.1, in particular for the bit flip approach where

recall drastically drops below 20% for 𝑁 and below 40% for 𝑂 .

Interestingly, precision can be raised for all approaches and con-

figurations up to 4.7% (for 𝜌 = 0.1). Overall, the bit flipping

approach leads to the highest loss in linkage quality.

No

Rn
dR
sp
(0.
01
)

Rn
dR
sp
(0.
05
)

Rn
dR
sp
(0.
1)

Bit
Fli
p(0

.01
)

Bit
Fli
p(0

.05
)

Bit
Fli
p(0

.1)

Rn
dS
et(

0.0
1)

Rn
dS
et(

0.0
5)

Rn
dS
et(

0.1
)

0%

20%

40%

60%

80%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

No

RndRsp(0.01)

RndRsp(0.05)

RndRsp(0.1)

BitF
lip

(0.01)

BitF
lip

(0.05)

BitF
lip

(0.1)

RndSet(0
.01)

RndSet(0
.05)

RndSet(0
.1)

0%

5%

10%

15%

20%

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy - 𝑁 dataset

No

Rn
dR
sp
(0.
01
)

Rn
dR
sp
(0.
05
)

Rn
dR
sp
(0.
1)

Bit
Fli
p(0

.01
)

Bit
Fli
p(0

.05
)

Bit
Fli
p(0

.1)

Rn
dS
et(

0.0
1)

Rn
dS
et(

0.0
5)

Rn
dS
et(

0.1
)

20%

40%

60%

80%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

No

RndRsp(0.01)

RndRsp(0.05)

RndRsp(0.1)

BitF
lip

(0.01)

BitF
lip

(0.05)

BitF
lip

(0.1)

RndSet(0
.01)

RndSet(0
.05)

RndSet(0
.1)

0%

5%

10%

15%

20%

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy -𝑂 dataset

Figure 9: Evaluation of random noise approaches.

298

No
(5,
3,2

)
(6,
4,2

)
(6,
4,3

)
(6,
6,3

)
(8,
4,2

)
(8,
8,4

)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

No (5,3,2)(6,4,2)(6,4,3)(6,6,3)(8,4,2)(8,8,4)
0%

5%

10%

15%

20%

25%
G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy - 𝑁 dataset

No
(5,
3,2

)
(6,
4,2

)
(6,
4,3

)
(6,
6,3

)
(8,
4,2

)
(8,
8,4

)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

No (5,3,2)(6,4,2)(6,4,3)(6,6,3)(8,4,2)(8,8,4)
0%

5%

10%

15%

20%

25%
G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy -𝑂 dataset

Figure 10: Evaluation of re-hashing.

By analyzing the privacy results shown in Fig. 9 (b)/(d), it is ev-

ident that all random noise approaches can reduce the frequency

information only a little. Only at a high 𝜌-value of 0.1 the Gini co-

efficient can be reduced by up to 4.81 % and the Jensen-Shannon

distance up to 3.65%. Analyzing the trade-off between linkage

quality and privacy, we observe that a high value for 𝜌 leads to

an unacceptable loss in linkage quality. For lower 𝜌-values both

techniques, randomized response and randomly setting bits to

one, lead to relatively small losses in linkage quality. However,

they are not able to significantly flatten the 1-bit distribution.

Nevertheless, hardening techniques based on random noise may

impede deterministic attacks by increasing the number of unique

bit patterns.

6.4.2 Re-Hashing. To evaluate re-hashing, we tested several

configurations regarding window size𝑤 , step size 𝑠 and the num-

ber of re-hashed values 𝑟 . In Fig. 10 we report the best configu-

rations which are denoted in the order (w,s,r) setting𝑚′ =𝑚.

The results regarding linkage quality show that re-hashing in-

creases precision but in contrast drastically decreases recall. In

general, the larger the window size 𝑤 the lower the recall that

can be achieved. This effect is due to the fact that with larger

windows there is a higher probability that a bit in the window is

different for two similar BFs. This will result in another integer

value (seed) on which the re-hashed 1-bit positions are selected.

Even for the configuration with the smallest window size𝑤 = 5,

recall decreases by more than 16 % for both datasets. We could not

further decrease the window size, as with𝑤 = 4 only 16 different

bit patterns are possible, so the re-hashed values will be often the

same. This observation is confirmed by inspecting the privacy

measures illustrated in Fig. 10 (b)/(d). Surprisingly, several config-

urations, namely (5,3,2), (6,4,2) and (6,6,3), will increase
the non-uniformity of 1-bits. This is because the re-hashed val-

ues will be mapped only to a small range and thus increase the

frequencies of these bits. In contrast, the configuration (6,4,3)
and those with𝑤 = 8 can flatten the similarity distribution mod-

erately. At the same time, however, these configurations will lead

to an unacceptable low recall, e. g., for dataset 𝑁 to only 61.66 %

for (6,4,3) or even less then 50 % for (8,8,4). As illustrated by
the two configurations (8,8,4) and (8,4,4), a reduction of the

step size can increase recall since configurations with 𝑠 < 𝑤 will

lead to overlapping windows and thus a higher chance of finding

overlapping bit patterns between two BFs. However, this again

increases the unequal distribution of 1-bits. To summarize, we

observe that re-hashing will decrease linkage quality while being

not effective in increasing the uniformity of 1-bits. Therefore, we

can not recommend this method for practical applications.

6.4.3 Balanced Bloom Filter, xor-folding and Rule90. Finally,

we evaluate balanced BFs, xor-folding and applying Rule90 in

terms of linkage quality and privacy. The results are depicted

in Fig. 11. The results indicate that balancing reduces precision.

While for dataset 𝑂 precision decreases moderately by 6.93%,

for dataset 𝑁 it drops drastically by 45.19%. In contrast, recall

remains stable for dataset 𝑂 whereas it is slightly increased for

dataset 𝑂 . We found that changing our basic similarity thresh-

old from 0.6 to 0.7 can significantly improve linkage quality for

balancing. This might be due to the fact that balancing doubles

the size of the BFs. Thus, we included the starred version of bal-

ancing indicating that a different threshold was used. With this

configuration, balancing reduces F-measure only slightly for both

datasets. For dataset 𝑁 this is due to a little less precision and a

little higher recall than for the baseline. For dataset 𝑂 , however,

it is the other way around, i. e., less recall and higher precision.

xor-folding also causes a reduction in linkage quality for both

datasets. Since xor-folding halves the size of the BFs, LSH-based

blocking is affected in such a way that the amount of bits selected

for the LSH keys is comparatively large. We therefore reduced

the LSH key length from Ψ = 16 to Ψ = 10 and indicate this

configuration with a dagger (†). By using this configuration and

setting 𝑡 = 0.7, for both datasets xor-folding results in a mi-

nor loss of F-measure of less than 1 % compared to the baseline.

Primarily accountable for the high F-measure is the high preci-

sion, which is slightly increased. Furthermore, we observe that

No

Ba
lan

cin
g

Ba
lan

cin
g* XO

R
XO

R†*
Ru

le9
0

40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality - 𝑁 dataset

No

Balancing
XOR

Rule90
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy - 𝑁 dataset

No

Ba
lan

cin
g

Ba
lan

cin
g* XO

R
XO

R†*
Ru

le9
0

40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(c) Quality -𝑂 dataset

No

Balancing
XOR

Rule90
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy -𝑂 dataset

Figure 11: Evaluation of balanced Bloom filters, xor-folding and Rule90.

299

applying Rule90 also leads to a relatively high loss of recall of

around 12.5 % for datast 𝑁 and 7.6 % for dataset𝑂 . Again, Rule90

increases precision slightly thus leading to a moderate loss of

F-measure of around 5.5 % for dataset 𝑁 and 3.2 % for dataset 𝑂 .

Examining Fig. 11 (b)/(d), we can see that balancing inter-

estingly increases the dispersion of 1-bits. For dataset 𝑁 , for

instance, the Gini coefficient is increased by around 4.8% and

the Jensen-Shannon distance by around 4%. In contrast, xor-

folding and Rule90 lead to a more uniform distribution of 1-bits.

Both approaches reduce the Gini coefficient by about 10% and

the Jensen-Shannon distance by more than 7.5%. Considering

both, linkage quality and privacy, we conclude that xor-folding

performs the best by maintaining high linkage quality while

effectively flattening the 1-bit distribution.

7 CONCLUSION

Bloom filters are frequently used in both research and practice

for PPRL applications. In this paper, we reviewed and classified

various BF variants and hardening techniques that aim at making

Bloom filters more robust against cryptanalysis. Currently, no

privacy measure exists that allows comparison of different en-

coding schemes in terms of privacy (security) and is independent

of any reference dataset. We therefore proposed three privacy

measures that allow assessing the privacy properties of Bloom fil-

ter encodings. These measures are based solely on a set of Bloom

filters and do not need any reference dataset or other informa-

tion. Moreover, we comprehensively evaluated the Bloom filter

variants and hardening techniques in terms of both linkage qual-

ity and privacy. The evaluation showed that multiple hardening

techniques drastically reduce linkage quality and are thus not

applicable in real-world scenarios. However, in particular two

techniques, namely salting and xor-folding, drastically reduce

any frequency information while maintaining high linkage qual-

ity. Carefully selected Bloom filter parameters in combination

with these techniques will make any frequency-based cryptanal-

ysis very unlikely to be successful.

For future work, we aim to evaluate these approaches against

modern Bloom filter attacks described in the literature to further

verify our findings.

REFERENCES

[1] Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. 2012.

BLIP: Non-interactive Differentially-Private Similarity Computation on Bloom

filters. In Stabilization, Safety and Security of Distributed Systems. 202–216.
https://doi.org/10.1007/978-3-642-33536-5_20

[2] BurtonH. Bloom. 1970. Space/Time Trade-Offs in Hash Codingwith Allowable

Errors. CACM 13, 7 (1970), 422–426. https://doi.org/10.1145/362686.362692

[3] Andrei Broder and Michael Mitzenmacher. 2004. Network Applications of

Bloom Filters: A Survey. Internet Mathematics 1, 4 (2004), 485–509. https:

//doi.org/10.1080/15427951.2004.10129096

[4] A. Z. Broder. 1998. On the Resemblance and Containment of Documents. In

Compression and Complexity of Sequences. 21–29. https://doi.org/10.1109/

SEQUEN.1997.666900

[5] Lidia Ceriani and Paolo Verme. 2012. The Origins of the Gini Index: Extracts

from Variabilità e Mutabilità (1912) by Corrado Gini. The Journal of Economic
Inequality 10, 3 (2012), 421–443. https://doi.org/10.1007/s10888-011-9188-x

[6] Peter Christen. 2012. Data Matching: Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. https://doi.org/10.1007/

978-3-642-31164-2

[7] Peter Christen, Thilina Ranbaduge, Dinusha Vatsalan, and Rainer Schnell. 2018.

Precise and Fast Cryptanalysis for Bloom Filter Based Privacy-Preserving

Record Linkage. IEEE TKDE (2018). https://doi.org/10.1109/TKDE.2018.

2874004

[8] Peter Christen, Anushka Vidanage, Thilina Ranbaduge, and Rainer Schnell.

2018. Pattern-Mining Based Cryptanalysis of Bloom Filters for Privacy-

Preserving Record Linkage. In PAKDD. Vol. 10939. Springer, 530–542. https:

//doi.org/10.1007/978-3-319-93040-4_42

[9] Elizabeth A. Durham, Murat Kantarcioglu, Yuan Xue, Csaba Toth, Mehmet

Kuzu, and Bradley Malin. 2014. Composite Bloom Filters for Secure Record

Linkage. IEEE TKDE 26, 12 (2014), 2956–2968. https://doi.org/10.1109/TKDE.

2013.91

[10] D.M. Endres and J.E. Schindelin. 2003. A New Metric for Probability Distri-

butions. IEEE Transactions on Information Theory 49, 7 (2003), 1858–1860.

https://doi.org/10.1109/TIT.2003.813506

[11] Wendy R. Fox and Gabriel W. Lasker. 1983. The Distribution of Surname

Frequencies. Int. Statistical Review 51, 1 (1983), 81–87. https://doi.org/10.2307/

1402733

[12] Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. 2018. Post-

Processing Methods for High Quality Privacy-Preserving Record Linkage.

In Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 263–278. https://doi.org/10.1007/978-3-030-00305-0_19

[13] Martin Franke, Ziad Sehili, and Erhard Rahm. 2018. Parallel Privacy-Preserving

Record Linkage Using LSH-Based Blocking. In IoTBDS. 195–203. https://doi.

org/10.5220/0006682701950203

[14] B. Fuglede and F. Topsoe. 2004. Jensen-Shannon Divergence and Hilbert

Space Embedding. In Int. Symposium on Information Theory (ISIT). 31–. https:

//doi.org/10.1109/ISIT.2004.1365067

[15] Joseph L. Gastwirth. 1972. The Estimation of the Lorenz Curve and Gini Index.

The Review of Economics and Statistics 54, 3 (1972), 306. https://doi.org/10.

2307/1937992

[16] Alexandros Karakasidis, Vassilios S. Verykios, and Peter Christen. 2012. Fake

Injection Strategies for Private Phonetic Matching. In Data Privacy Manage-
ment and Autonomous Spontaneus Security. 9–24. https://doi.org/10.1007/

978-3-642-28879-1_2

[17] Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S. Verykios. 2018.

FEDERAL: A Framework for Distance-Aware Privacy-Preserving Record Link-

age. IEEE TKDE 30, 2 (2018), 292–304. https://doi.org/10.1109/TKDE.2017.

2761759

[18] Martin Kroll and Simone Steinmetzer. 2014. Automated Cryptanalysis of

Bloom Filter Encryptions of Health Records. German Record Linkage Center,
Working Paper Series (2014). https://doi.org/10.2139/ssrn.3530864

[19] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The
Annals of Mathematical Statistics 22, 1 (1951), 79–86. https://doi.org/10.1214/

aoms/1177729694

[20] Mehmet Kuzu, Murat Kantarcioglu, Elizabeth Durham, and Bradley Malin.

2011. A Constraint Satisfaction Cryptanalysis of Bloom Filters in Private

Record Linkage. In Privacy Enhancing Technologies. 226–245. https://doi.org/

10.1007/978-3-642-22263-4_13

[21] William Mitchell, Rinku Dewri, Ramakrishna Thurimella, and Max Roschke.

2016. A Graph Traversal Attack on Bloom Filter Based Medical Data Aggrega-

tion. Int. Journal of Big Data Intelligence (2016). https://doi.org/10.1504/IJBDI.

2017.086956

[22] Robert Morris and Ken Thompson. 1979. Password Security: A Case History.

Commun. ACM 22, 11 (1979), 594–597. https://doi.org/10.1145/359168.359172

[23] National Institute of Standards and Technology. 2008. The Keyed-Hash Message
Authentication Code (HMAC). Technical Report NIST FIPS 198-1. https:

//doi.org/10.6028/NIST.FIPS.198-1

[24] Frank Niedermeyer, Simone Steinmetzer, Martin Kroll, and Rainer Schnell.

2014. Cryptanalysis of Basic Bloom Filters Used for Privacy Preserving Record

Linkage. Journal of Privacy and Confidentiality 6, 2 (2014). https://doi.org/10.

29012/jpc.v6i2.640

[25] Rainer Schnell. 2014. Privacy Preserving Record Linkage. In Methodological
Developments in Data Linkage. 201–225.

[26] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. 2009. Privacy-Preserving

Record Linkage Using Bloom Filters. BMC Medical Informatics and Decision
Making 9, 1 (2009). https://doi.org/10.1186/1472-6947-9-41

[27] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. 2011. A Novel Error-Tolerant

Anonymous Linking Code. (2011). https://doi.org/10.2139/ssrn.3549247

[28] Rainer Schnell and Christian Borgs. 2016. Randomized Response and Balanced

Bloom Filters for Privacy Preserving Record Linkage. In IEEE ICDMW. 218–224.

https://doi.org/10.1109/ICDMW.2016.0038

[29] Rainer Schnell and Christian Borgs. 2016. XOR-Folding for Hardening Bloom

Filter-Based Encryptions for Privacy-Preserving Record Linkage. German
Record Linkage Center, Working Paper Series (2016). https://doi.org/10.2139/

ssrn.3527984

[30] Rainer Schnell and Christian Borgs. 2018. Hardening Encrypted Patient Names

Against Cryptographic Attacks Using Cellular Automata. In IEEE ICDMW.

518–522. https://doi.org/10.1109/ICDMW.2018.00082

[31] Dinusha Vatsalan and Peter Christen. 2016. Privacy-Preserving Matching

of Similar Patients. Journal of Biomedical Informatics 59 (2016), 285–298.

https://doi.org/10.1016/j.jbi.2015.12.004

[32] Dinusha Vatsalan, Peter Christen, Christine M. O’Keefe, and Vassilios S.

Verykios. 2014. An Evaluation Framework for Privacy-Preserving Record

Linkage. Journal of Privacy and Confidentiality 6, 1 (2014).

[33] Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. 2017. Privacy-

Preserving Record Linkage for Big Data: Current Approaches and Research

Challenges. In Handbook of Big Data Technologies. Springer, 851–895. https:

//doi.org/10.1007/978-3-319-49340-4_25

300

	Evaluation of Hardening Techniques for Privacy-Preserving Record LinkageMartin Franke, Ziad Sehili, Florens Rohde, Erhard Rahm

