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ABSTRACT:

Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data
which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans
to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an
indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations,
simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point
clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we
propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time
map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne
VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud
sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be
processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed.
We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.

1. INTRODUCTION

The mobile mapping community has benefited from recent devel-
opments in rotating multi-beam LiDAR sensors which can give
fairly accurate range measurements of the sensing environment in
real-time and with 360o field of view (Muhammad and Lacroix,
2010) (Puente et al., 2013). With the limited range of the sen-
sors and the presence of obstacles in the environment, the user
needs to move in order to capture the full 3D model. To build the
full map from these individual scans, we need precise position
(location and attitude) with which one can transform and stack
up individual scans. With a good GNSS-INS solution available,
this is a trivial problem. In GNSS denied environments, however,
we need to seek other ways to generate navigation solutions. Si-
multaneous localization and mapping (SLAM) (Durrant-Whyte
and Bailey, 2006)(Bailey and Durrant-Whyte, 2006) using cam-
eras (Strasdat et al., 2010) or LiDAR (Zhang and Singh, 2014)
is an enabling technology to curb the error growth of IMU based
solutions in GNSS denied situations.

Iterative closest point (ICP) algorithm is used to estimate the rela-
tive orientation and translation between two arbitrary point clouds
(Besl and McKay, 1992). There are many variants of ICP: point
to point and point to plane are the two most widely used methods
(Segal et al., 2009). In point to point ICP we compute the opti-
mum translation and rotation that minimize the distance between
corresponding points from two scans; while in the point to plane
method we minimize the distance between two planes. Irrespec-
tive of the ICP flavour used, one can continuously integrate the
navigation solution by estimating relative position of the current
scan at time tn with the previous scan at tn−1; or with a meta-
map created from all the previous scans (i.e., using scans from
t0 to tn−1 by appropriately stacking each scan). The meta-map
based solution is shown to have superior performance although it
requires higher storage and computation (Nüchter et al., 2007).
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The complexity of the meta-map based algorithm is twofold. As
we keep a larger number of points in the memory, the storage
footprint linearly increases with the number of frames used to
form the meta-map. At the same time, computational complex-
ity for finding correspondence increases quadratically with the
number of points. A kd-tree (Moore, 1991) forms the heart of
ICP correspondence algorithms and it is the most computation-
ally demanding step (Greenspan and Yurick, 2003). The cost of
computation depends on the amount of data stored in the kd-tree
and the number of queries performed to find the correspondence.
In this paper, we propose two simple but effective strategies to re-
duce the burden from using a kd-tree. Our primary objective is to
have speed of operation so that SLAM can be performed in real-
time without performance degradation. The second objective is to
have the flexibility of keeping only a relevant portion of the previ-
ous map in the volatile memory. The rest can be loaded/unloaded
from/to hard disk when the user needs it.

Our first strategy is to sub-sample the 3D point cloud without
loosing any key information. In point to plane ICP, our focus
is to capture all the planes available so that the full 6DoF can
be estimated. We use the sudden changes in the range measure-
ments obtained by individual lasers of the LiDAR, which is an
indicator of laser scanning a new surface, to achieve this task. In
addition, since the point cloud obtained from scanning LiDAR is
not uniform, we performed a non-uniform sampling based on the
depth measurements from individual surfaces. The set of points
thus obtained are used for building the 3D meta-map. Our second
strategy was to reduce the number of points used in the kd-tree
by implementing a ring buffer. In that way we only kept a part
of the map in the volatile memory at any given point of time. To
further increase the speed, we developed a two layer approach
for building the meta-map. In this strategy, two maps are kept in
the memory which are maintained at a different rate and queried
differently. The first map is built and queried in every frame.
However, this map contains only a few previous frames. The sec-
ond map, which contains 10 times more points than the first one
is created at a lower frequency (such as 1 in 50 frames). If we
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have a sufficient number of points from the first map using a ra-
dius search, the second map is not queried at all. In this way we
can increase the speed so as to perform real time operations.

Leica Geosystems has recently introduced the Pegasus Backpack
system, which makes 3D map building fast and effortless1. We
use the LiDAR point cloud generated by the Pegasus backpack
to assess the performance of our algorithms. The backpack con-
tains Velodyne VLP-16 LiDAR scanners, multiple high resolu-
tion cameras and a NovAtel SPAN GNSS-INS navigation system.
We continuously integrate the SPAN data with navigation infor-
mation from the SLAM module to obtain an optimal estimate of
the backpack position irrespective of GNSS signal availability.
The total processing time taken as well as the relative accuracy
are used to assess the performance of our algorithm. From the
results one can see that even at a high data rate, the proposed
solution has excellent navigation accuracy and real time perfor-
mance characteristics.

The paper is organized as follows. In Section 2, we give a quick
introduction to SLAM algorithm and details of the proposed map
building strategies. We evaluate the performance of the new meth-
ods in terms of processing speed accuracy in section 3. Finally in
Section 4, we provide some concluding remarks.

2. PROBLEM FORMULATION

In point to plane ICP we want to minimize

Topt = argmin
T

N∑
i=1

((Tpi − qi) .ni) , (1)

where the point pi = {px, py, pz, 1}i on the body frame is trans-
formed using T such that it will minimize the error between the
plane defined by the point qi = {qx, qy, qz, 1}i and surface nor-
mal ni. T is defined as

T =

[
R t
0 1

]
(2)

where, R is the rotation matrix and t is the translation. If we
know ni and qi in advance, the cost of computation depends only
on the number of points used to solve the minimization of the
objective function. However, in practice, we have to estimate
ni for each point pi which are sampled from the same surface
at different times and sensor positions. A kd-tree or octree can
be used to find the corresponding points of current scans in the
meta-map.

There are different costs involved in building, maintaining and
querying a kd-tree. For example, the cost associated with build-
ing a kd-tree is O(n log(n)) where n is the number of points in
the data set. However, in the worst case scenario this can reach up
to O(n log2(n)) (Wald and Havran, 2006). Similarly for search
we have an average cost of O(log(n)) with a worst case cost of
O(n). Thus, the kd-tree becomes the most computationally ex-
pensive module in a SLAM pipeline. Although one could build
and incrementally update the kd-tree from frame to frame, due to
the sensor noise it is advantageous to preprocess the points in the
meta-map to improve the quality of the solution. Thus, we end
up in building the map every frame. Keeping this cost in mind,
we aim to minimize the number of points that are used to build
the kd-tree (in other words, the meta-map). We propose two ap-
proaches for this solution.

1Pegasus Website http://leica-geosystems.com

2.1 Point Cloud Sub-Sampling

Figure 1 shows the change of depth observed by an individual
laser in one single scan of 360 degree rotation. Due to the sensor
noise, we have applied a low pass filter. As discussed in (Grant
et al., 2013) one can use the first, second and third derivatives of
the measurements to detect the locations where the laser beams
switch surfaces. Since we are getting 10 frames per second, we
do not need to keep all the points from these individual surfaces.
Also, as the density of the points close to the sensor is high, we
get an over representation of such surfaces. Hence, our second
objective is to sub-sample these individual surfaces such that we
will retain a minimum number of points without compromising
the integrity of the scans. We use an inverse depth relation to
sub-sample the cloud. i.e., points are sampled more frequently
from the farthest distance and less frequently from surfaces close
to the sensor. The points thus obtained are used for building the
meta-map. To reduce the number of queries and to reduce the
nonlinear least square problem, we further subdivide these points
so that a handful of points are selected from each surface.
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Figure 1. Filtered depth measurement from an individual laser.

2.2 Meta-Map Building

Meta-scan based SLAM solutions tend to be superior, but they
come with computational costs. To reduce the costs, the first
question we wish to ask is how many frames should be used for
the meta-map building. Ideally the larger number of frames we
keep (due to the sparse scans), the better we could build a model
of the environment. This results in better normal estimation. On
the other hand, the map which we build depends on the quality
of the navigation solution. The SLAM solution, like an inertial
navigation solution, is a dead-reckoning result and it is expected
to have an error component which grows over time. This can lead
to poor map building over a longer time period, which can further
degrade the SLAM solution (due to poor normal estimation).

2.2.1 Ring Buffer To mitigate this problem, we propose to
use a simple ring buffer. The architecture of the ring buffer is
shown in Fig. 2. Each time a new frame is obtained, we will in-
crement the index pointer m (which points to a buffer inside) and
we flush the buffer or move the content to hard disk with appro-
priate tags (such as current translation and rotation information)
for future use. Once the pointer reaches a maximum value M we
reset m = 0 and repeat the process. When the kd-tree needs to
be built, the content of the individual buffers are combined; they
undergo some preprocessing operations (such as voxel grid filter-
ing); and result is used to build the kd-tree. We have found that
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selecting an appropriate value for M (such that we could store
one or two minutes of data) is sufficient to give good navigation
solution. The advantage of this strategy is that we are dealing
with significantly fewer number of points at any given time, and
the cost of storage and computation is greatly reduced.

Current buffer pointer

Storage

Buffer 1 Buffer 2 Buffer N-n Buffer N

kd-tree

Current scan

Figure 2. Architecture of ring buffer based storage.

2.2.2 Layered kd-tree Approach When sensor noise is higher,
it is advantageous to increase the number of points that are used
for surface normal estimation. Instead of keeping fixed nearest
neighbors, one can perform a radius search to obtain all of those
points satisfying the minimum distance criteria. We also note that
when the user moves away from an area which has been scanned
thoroughly, we do not have to update the meta-map every frame.
Instead, we could update it once in every N frames. To reduce the
computation cost, we split the operation into two steps as shown
in Fig. 3. The idea is to have two sets of kd-trees which are main-
tained and queried at different rates. The first kd-tree (which we
call as the primary) holds fewer number of points; say from the
last M frames of scans. This kd-tree is rebuild for every new
frame and all the feature points query the primary kd-tree first.
The secondary kd-tree is built and maintained at a lower rate and
holds much more points than the primary one. The length of the
secondary buffer N depends on the amount of data we want to
hold in memory. If the query from primary tree results in a suffi-
cient number of points, the secondary tree is not queried with the
same point. Although this approach increases the cost of queries,
in practice, most of the closer points can be searched in the pri-
mary kd-tree itself and a significant performance improvement
can be achieved.

3. RESULTS

The Pegasus Backpack (Fig. 4) generates approximately 600000
point observations every second from scanners rotating at 10Hz.
In principal this means one needs to process 60000 points in
100ms in order to make the system work in real time. In practice
however, the number of points can significantly vary depending
on the reflective surfaces present in the environment. Figure 5
shows the point cloud obtained from the Pegasus Backpack in an
indoor settings. The data from multiple scanners are transformed
to a common reference frame. The gray points represent the full
point cloud. We apply the sub-sampling technique outlined in this
paper to get the green points by first finding individual surfaces
scanned by each beam and uniformly sampling it. Such point are
are typically 10 to 15% of the full cloud. From this, we further
decimate the point selection (up to 50%) for least square com-
putation (shown in red). This reduces the computation burden
on the nearest neighbor search. We can see that we are able to
capture all the relevant surfaces from the scan.

Although our goal of SLAM augmentation is to navigate in the
absence of GNSS, in order to validate our algorithms we need

Select secondary storage size N and primary storage size M

Initialize ring buffer

Set current frame cFrame = 0 and ring buffer pointer n = 0

Fill primary buffer

increment m

if m%M == 0

Voxel grid filter points from primary buffer

Add filtered point cloud to the ring buffer in secondary storage

Initialize primary and secondary kd-trees

Rebuild primary kd-tree

voxel grid filter point cloud

Build secondary kd-tree

No

Yes

Flush the content of primary kd–tree

Figure 3. Flow chart of the proposed algorithm.

Figure 4. Pegasus Backpack.

Figure 5. Point cloud obtained from the Pegasus backpack after
mapping it to the common reference frame (grey), selected sur-
face points (green) and features (red) used for ICP.

to compare our results with a GNSS controlled solution. To do
that we selected a partial data set collected outdoors in an envi-
ronment which contains buildings, vehicles, trees and bushes in
close proximity to the user (Data Set 1). The data under test cov-
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method time (s) average error (m)
dual kd-tree 218.6 0.1562

single kd-tree with ring buffer 608.0 0.1515
all data 1020.5 0.1319

Table 1. Execution time and average mean square error.

ers a time period of 260s. With this data we were able to track
GNSS signals and we processed the control GNSS/INS solution
using NovAtel/Waypoint Inertial Explorer (IE) software. After
processing the control solution has as estimated position accu-
racy of 2cm in XY and 3cm in Z.

We ran SLAM using all of the data, a part of the data using the
ring buffer and layered kd-tree and compared its performance
against the control solution. Fig. 6 the XY plot of the trajectory is
given. We start at (0, 0) and walk towards (12.964, 29.379). One
can see that the trajectory of all the SLAM methods slowly drifts
away from the control as a function of time. This is expected
since SLAM is a dead reckoning system which accumulates er-
ror with time. However, one can see that the difference between
using the full data and the layered kd-tree are minimal. To get
a better understanding, we plot the mean square error in Fig. 7.
One could verify that difference in RMSE between the full data
and layered methods has a maximum value of 6cm. On the other
hand, one can observe from the table 1 the processing time for
the layered method is 1/4 the time compared to full data. After
obtaining the navigation solution we built the point cloud with
the full resolution which is shown in Fig. 8. From these figures,
we can see that the integrity of the map is not compromised with
the proposed solution.

To further assess the performance of the proposed methods, we
use a longer data set (Data Set 2), which contains sections of tall
trees, bushes, skyscrapers and corridors. This data set includes a
GNSS outage which results in a larger inertial drift from the con-
ventional GNSS-INS processing. The overall length of the data is
1140s. As in the previous data set, we start our walk from (0, 0)
and walk towards (18.343, 4.315). In Figs. 9 and 10, the naviga-
tion solution from GNSS/INS (shown in red) can be seen to differ
from the final SLAM solution. It can be inferred by plotting the
inconsistencies in the point cloud and the changes in erroneous
height measurements while travelling over a flat surfaces that the
initial GNSS/INS solution drifts in accuracy over time as a result
of the missing GNSS updates. We use the double layered kd-tree
approach to run ICP SLAM on this data set and the results are
shown in blue in these figures. The overall time taken to process
this data set with our method is 1030 seconds. The point cloud
generated is shown in Fig. 11. From all these analysis, we can
conclude that as the SLAM processing time is less than the col-
lection time, our proposed method is suitable for real-time opera-
tion without compromising the quality of the navigation solution
or the 3D map built.

4. CONCLUSION

In this paper, we propose methods to increase the speed of ICP
based SLAM. We proposed two strategies: (1) to sample the point
cloud from all the possible plane segments and (2) to use a novel
method to store and retrieve spatial data using a layered kd-tree
approach. By using the point cloud collected by Pegasus back-
pack, we showed that the proposed method has real-time pro-
cessing capabilities with excellent performance characteristics.
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Figure 6. XY plot of the trajectory along with the ground truth
which is obtained from GNSS/INS for Data Set 1. The new
SLAM method has a maximum difference of 6cm to the control.
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Figure 7. Mean square difference to control for Data Set 1.
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Figure 8. Full point cloud obtained using the layered kd-tree and sub-sampling approach with data set 1.
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LL: Isometric View of Point Cloud LR: Cross-Section Showing Building Outlines
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Figure 11. Point cloud generated using data set 2.

UL: Initial Point Cloud without SLAM Aiding UR: Final Point Cloud with SLAM/INS Trajectory
Bottom: Isometric View of Final Point Cloud
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Nüchter, A., Lingemann, K., Hertzberg, J. and Surmann, H.,
2007. 6d slam3d mapping outdoor environments. Journal of Field
Robotics 24(8-9), pp. 699–722.
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