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ABSTRACT

The dynamic nature of real-world data poses several challenges
for data-driven processes in different application scenarios. For
instance, Machine Learning approaches completely rely on data
to train predictive models. However, data can dynamically evolve
over time, possibly making predictive models outdated due to
concept drift, with a consequent decrease in prediction accuracy.
To this end, concept drift detection techniques aim to detect
such changes in order to adopt countermeasures and maintain
predictive performance over time. Drift detection methods that
monitor data distribution shifts play a crucial role in detecting
changes without requiring feedback on model predictions. In this
paper, we explore the potential of profiling metadata analysis
to evaluate the impact of data evolution on model performance.
Specifically, among the several profiling metadata, we focus on
Relaxed Functional Dependencies (RFDs) and formalize the rela-
tionship between changes in metadata and performance trends
of the predictive models over time. Moreover, we define a suite
of metadata-based metrics measuring the distance between two
sets of data. To validate our approach, we compared it with other
distribution-based metrics on datasets with known and unknown
drift. Experimental results proved that the trend of the proposed
metrics is strongly correlated with the model’s performance, and
that they are also able to capture concept drift more effectively
than traditional distribution-based approaches.

1 INTRODUCTION

Machine Learning (ML) models are increasingly relied upon for a
multitude of tasks. These include personalized recommendation
systems [36], natural language processing applications, such as
virtual assistants [31] and sentiment analysis applications [9],
and for image and speech recognition tasks [1, 4]. Moreover,
ML models are deployed for more delicate and critical tasks,
where inaccurate predictions can lead to potentially severe con-
sequences. As an example, anomaly detection is crucial across
various domains, such as detecting fraud [26], monitoring busi-
ness processes [39], ensuring network security [25], monitoring
patients [38], and predicting maintenance [15]. However, as ML
models transition from the training phase to real-world deploy-
ment, they face the challenge of sustaining their effectiveness.
Initially, a model may exhibit robust performance, as it captures
patterns and relationships within the training data. As time pro-
gresses, the underlying assumptions may no longer hold, possibly
leading to wrong recommendations.

One of the main reasons for model degradation is concept
drift, a phenomenon that refers to changes in the underlying

*All authors contributed equally to this research.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

816

function that generates data. Concept drift occurs due to various
factors, including evolving user preferences, external environ-
mental changes, and other alterations in the domain dynamics.
Thus, given the vast reliance on ML models we experience nowa-
days, it is crucial to detect changes to adopt countermeasures,
such as retraining the model on a more representative, up-to-date
set of data. Many methods have been introduced over the years
to address this problem. Some of them monitor the model’s pre-
diction performance, while others analyze how data distribution
changes, without requiring feedback on the predictions. Among
these, some methods have relied on qualitative descriptors like
“abrupt” and “gradual”, which have been shown to have limita-
tions due to their dependence on arbitrary boundaries [44]. This
leads to the necessity of estimating the drift magnitude by means
of quantitative measures. However, while data distribution-based
approaches have the advantage of not requiring an analysis of
model predictions, they are more prone to false positives [5].
Moreover, existing approaches can only capture changes in the
individual attribute distributions. Thus, it could be interesting to
investigate new strategies by leveraging new types of properties
in the data that can support the evaluation of drifts.

Valuable properties could be extracted through Data Profil-
ing techniques, which enable the discovery of a wide variety of
metadata [34], including data dependencies, such as Functional
Dependencies (Fps) and Relaxed Functional Dependencies (RFDs),
which describe functional relationships among the dataset’s at-
tributes. A first connection between dependencies and the perfor-
mance of machine learning models was discussed in [29], where
these types of profiling metadata have been used to characterize
the existence of a function that provides an upper bound for
classification accuracy.

To the best of our knowledge, to estimate concept drift, there
was no attempt to analyze metadata in terms of dependencies
which can identify meaningful variations that may not be fully
captured by traditional distribution-based drift detection meth-
ods. In this work, we analyze the change of data dependencies,
collected in two consequent time instants, to quantify data shifts
in supervised machine learning settings. In fact, unlike single-
column metadata, dependencies capture the relationships be-
tween features that can be critical to model behavior. Among
the variety of data dependencies, we focus on RFDs, since they
are better suited for real-world scenarios involving data with
inaccuracies or noise.

Specifically, we defined a suite of RFD-based metrics to quan-
tify the divergence between the training data and a set of new
samples that the model has to process. Moreover, we provide
other rRFD-based metrics inspired by ML measures, with the aim
of capturing the performance trend of the monitored model. We
evaluated the proposed metrics on datasets with Known and
Unknown drift, studying how their trend is correlated to the per-
formance of the model over time. A strong correlation would
prove that analyzing the evolution of rFDs during deployment
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can provide meaningful insights about concept drift, and warn
about the necessity of retraining the model without evaluating
its predictions. We also compared the proposed metrics with
existing distribution-based measures.

To summarize, the main contributions of the proposed study
are:

o A formalization of the theoretical connection between RFD

evolution and the performance trend of ML models;

A suite of RFD-based divergence measures;

A suite of RFD-based metrics inspired by ML measures;

o An extensive evaluation process to verify the effectiveness
of the proposed measures in quantifying drifts;

e A comparative evaluation of the proposed metrics with
respect to other distribution-based methods.

The paper is organized as follows: in Section 2, we provide
an overview of concept drift detection approaches. Section 3
provides preliminary notions, while in Section 4 we formalize
the relationship between the knowledge conveyed by rRFDs and
concept drift. The proposed approach is described in Section 5.
Finally, Section 6 shows the experimental results and Section 7
provides conclusions and discusses the future directions.

2 RELATED WORK

Concept drift detection techniques typically fall into two main
categories: performance-based and data distribution-based [5].
The former relies on monitoring the model’s error rate to detect
potential drift. A well-known method in this category is the Drift
Detection Method (DDM) [18]. It continuously monitors the prob-
ability of misclassification and its associated standard deviation.
Over the years, several extensions of this approach have been
proposed. For example, Baena et al. [3] proposed the Early Drift
Detection Method (EDDM) by focusing on the distance between
errors rather than just the error rate. This approach resulted more
effective in handling gradual drifts, improving DDM especially
with slower transitions. In [14], the authors defined a method-
ology to remove older instances linked to prolonged concepts,
aiming to detect drifts earlier in the process, ultimately leading to
improved model accuracy. Other proposals focus on comparing
time windows for detecting drift [27, 32, 35].

On the other hand, data distribution-based approaches aim
to detect significant shifts between the distributions of sampled
data. In [20], the authors review distance measures for assessing
numerical data shifts, recommending the Hellinger distance [24].
For instance, Ditzler and Polikar [16] used this distance to identify
both gradual and abrupt changes across different data batches.
Their strategy averages the Hellinger distance of individual fea-
tures as drift measure and adopts an adaptive threshold to trigger
warnings. Instead, Principal Component Analysis (PCA) has been
conceived as a promising technique for high-dimensional data.
The authors of [37] proposed a method involving the creation of
a reference window filled with initial data samples. Then, PCA is
applied to extract the top k principal components (PCs), and both
reference and test window data are projected onto them. The
final change score is the maximum Kullback-Leibler divergence
among the ones of each component. This approach was extended
in a more recent work [21] by employing the Hellinger distance
since it provides a more robust absolute measure. A variant of
this measure is employed in [2], where a hybrid framework is
proposed to adapt the parameters of drift detectors with tunable
thresholds based on the characteristics of a data stream. This
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approach considers not only the model’s accuracy and distri-
butional changes but also additional information, such as the
number of observations since the last detected drift.

In addition, there exist alternative approaches, such as Dis-
criminative Drift Detector (D3) [22] and Label Dependency Drift
Detector (LD3) [23], which do not rely on labels or feedback on
predictions. D3 [22] employs a discriminative classifier to de-
tect concept drift by monitoring changes in the feature space. A
sliding window maintains the temporal order of samples, and
logistic regression is applied to distinguish between old and new
data. Concept drift is detected when the Area Under Curve (AUC)
exceeds a threshold, indicating a significant difference between
new and old data. Instead, LD3 [23] is tailored for multi-label
data streams, and aims to detect concept drift by using a label
influence ranking method, which exploits temporal relationships
between labels.

In general, performance-based approaches have the advantage
of being triggered only when the model performance is affected,
but they require quick feedback on the predictions made. Instead,
data distribution-based approaches consider only the distribu-
tions of data samples. However, since changes in distribution may
not consistently affect the model, these approaches are suscepti-
ble to false alarms [5]. Moreover, we argue that existing distance
measures may suffer a loss of effectiveness in detecting drift
when this does not affect the data distribution or other statistics,
but only the underlying relationships between features. For this
reason, the investigation of new approaches that consider other
types of information/patterns within data can be considered a
challenging research direction.

3 BACKGROUND NOTIONS

In this section, we introduce some preliminary notions underly-
ing the problem statement and the proposed approach. In particu-
lar, we first provide a formal definition of Concept Drift, and then
we introduce the definition of Relaxed Functional Dependency
(RFD).

3.1 Concept Drift

Over the years, several definitions of concept and concept drift
have been provided, leading to a lack of a standard definition. In
this section, we comply with the definitions reported by Bayram
et al. [5], representing a general and unified probabilistic view of
concept.

In a supervised ML setting, each data instance is composed of
a feature vector X and a target variable y. Formally, a concept
drift occurs if there is a change in the joint distribution P(X, y)
between two time instants 7 and 7 + w:

Pr(X,y) # Prew(X, 1) (1)

The latter can be decomposed by using the Bayesian Rule:

o P.(X|y) expresses the class-conditional probability den-
sity distribution, capturing the likelihood of encountering
specific input data given a target label. It expresses how
the features are distributed when considering a specific
outcome;

e P (y|X) is the posterior probability distribution of the tar-
get labels, capturing the likelihood of observing specific
target labels given the features. It represents the probabil-
ity of different outcomes after considering the available
input data;



o P.(X) is the probability distribution of the input data and
encapsulates the likelihood of encountering various sets
of features within a dataset;

e P.(y) is the prior probability distribution of the target
labels and expresses the likelihood of observing particular
outcomes without considering the input data.

According to which of these distributions change between 7
and 7 + w, it is possible to categorize the concept drift:

o P (y|X) # Pr+w(y|X): a variation in the posterior proba-
bility distribution that represents a change in the model’s
predictions driven by new observations. It has a direct
impact on the model’s performance and may result in the
model no longer being able to accurately predict. In this
case, two types of drift can be defined: Real concept drift,
when the change in the posterior probability might be
associated with changes in P(X), and Actual drift, when
P(X) remains unaltered.

o Pr(X) # Priw(X): a variation in the probability distribu-
tion of the input data that represents common changes in
data during the model deployment. Typically, changes in
P(X) affect model performance, since ML models struggle
to adapt to unfamiliar data [13]. This kind of drift is de-
noted as Covariate shift, but it is termed Virtual drift when
the changes do not affect the decision boundary.

® P(Y) # Pr1w(Y): a change in the prior probability distri-
bution that could impact the prediction performance, espe-
cially when there is a noteworthy alteration in the distribu-
tion of classes. This kind of drift is termed Prior-probability
shift and also comprises cases when new classes are intro-
duced or existing classes cease to exist.

To categorize concept drift, it is also possible to consider the
type of shift, which can manifest in various patterns:

o Gradual drift represents a progressive evolution from one
concept to another one over time;

o Abrupt/Sudden drift represents an immediate transition
from a concept to another one;

o Incremental drift represents a slow replacement of an old
concept by a new one in a continuous manner, without
clearly defining a boundary between them;

e Recurring drift represents a phenomenon where previously
observed patterns reoccur after a time interval.

In this paper, we investigate if analyzing data dependencies
can provide insights in quantifying concept drifts. Since changes
within data also reflect on metadata, we consider RFDs, whose
definition can be found in the following section.

3.2 Relaxed Functional Dependencies (RFDs)

Data profiling tasks enable the discovery of a wide range of meta-
data, spanning from simple statistics related to single attributes to
more complex multi-attribute metadata. Among the latter, Func-
tional Dependencies (FDs) describe integrity constraints among
relation attributes. More formally, an FD can be defined as follows:

Definition 3.1. (FD). Given a relation schema R, a Functional
Dependency (D) represents an integrity constraint that expresses
a relationship between two sets of attributes X and Y, denoted as
X — Y(Ximplies Y), with X, Y C attr(R)and XNY = 0. AnrD is
satisfied on a relation instance r of R if and only if for every pair of
tuples (1, t2), whenever t1[X] = t2[X], then ¢1[Y] = t2[Y]; where
ti[X] represents the projection of the tuple ¢; on the attribute set
X. The attribute set X = Xj, X, ..., X}, represents the Left Hand
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Side (LHS) of the Fp, whereas the set Y = Y3, Y», ..., Y% is the Right
Hand Side (RHS).

The definition of ¥D has been recently extended to address
challenges associated with inconsistent and inaccurate real-world
data, requiring the adoption of more flexible constraints, leading
to the introduction of Relaxed Functional Dependencies (RFDs).
The latter can admit a limited number of violations (RFDs relax-
ing on the extent, namely RFD.s) and/or the usage of similar-
ity/distance functions as matching operators (RFDs relaxing on
the attribute comparison, namely R¥D.s). In this paper, we lever-
age RFD,s only, and in the following, we will formally introduce
this type of dependency. A more general definition of RFD can
be found in [11].

To enable approximate matching, RFD.s leverage the concept
of similarity or distance constraint. More formally, given an in-
stance r of a relation schema R, a constraint ¢, over an attribute
A € attr(R), is a predicate 6(t;[A], t;[A])Ore, where J is a simi-
larity (or distance) function, 6 a comparison operator, and ¢ a
threshold. In particular, a specific similarity/distance function is
applied according to the nature of the attributes (e.g., absolute
difference for numerical attributes and the Levenshtein distance
[30] for textual ones).

Definition 3.2. (RFD.). Given a relation schema R, an RFD. ¢ is
denoted as Xg, — Yg,, where:
X = X1,Xo,..Xp and Y = Yy, Yo, ... Y, with X, Y
attr(R)and X NY = 0;
o &1 = Axex $ilXil(@2 = Ay,ey ¢j[Yj], resp.), with
¢i(4j, resp.) a conjunction of similarity/distance constraints
on X;(Yj,resp)andi=1,....,h(j=1,...,k resp.).

C

Given an instance r of R, we can state that r satisfies the RFD. ¢
(i.e.,, r £ @) if and only if for every pair of tuples (t1, t2) € r, if &;
is true then also ®, returns true.

For the sake of simplicity and without loss of generality, in
the following, we only consider RFD.s with a single attribute on
the RHS, i.e., Xp, — A¢2. Moreover, the following examples will
refer to constraints defined through distance functions, with a
comparison operator (<) and the associated threshold.

As an example, let us consider tuples ranging from ¢, to s
of the snippet of a used cars dataset shown in Table 1, then an
example of holding RFD. is: ¢ : Model<y, Year<1 — Price<3oo,
denoting that whenever two tuples have similar values on Model
and Year, which is the case of (ty, fs) and (2, t4), then they have a
similar Price.

One of the most important characteristics of a RFD. is its
minimality, which guarantees that the RFD, no longer holds
after either (i) increasing one or more thresholds on the LHS
constraints, (ii) removing an LHS attribute, or (iii) decreasing
the RHS threshold.

Definition 3.3 (Minimal RFD.). Given an instance r of a relation
schema R, an RFD¢ ¢: Xi<ay, - - -, Xh<a, — A<p is minimal iff:

® p: Xi<aj+eys s Xh<ap+e, — A<p does not hold on r,
whereVj =1, ,hthene; > 0,3j=1,..,hst ¢ > 0;and

® p: Xi<ap s Xi-1<a; 1> Xit1<ajy o s Xh<ay, = A<p does
not hold on r, where 3i = 1,..., h; and

® p: Xi<ays Xn<ay, = A<pgy,, does not hold on r,
where ,,1 > 0.

Since it is difficult to apriori define proper RFD.s character-
izing real-world scenarios, it is necessary to exploit discovery



Model | Year  #Owners | Price

to Hyundai 110 2016 2 6.000

- 151 Kia Picanto 2015 1 4.000
ty Renault Clio 2018 1 8.300

t3 Ford Fiesta tdci 2022 1 10.500

ty Renault Clio dCi | 2019 1 8.600

ts Fiat Panda 2019 1 8.500

te Hyundal i10 1.0 2016 1 6.250

+ t7 Renault Clio 2019 3 6.000

Table 1: A snippet of a used car dataset.

algorithms to automatically infer them from data [12, 19, 41].

This entails searching for RFD.s holding on a given dataset.

Definition 3.4 (Discovery of minimal RFD.s). Given a relational
schema R and an instance r of R, a discovery process consists of
finding the set > of all possible RFDcs ¢ : Xg, — Ay, that hold
onr (i.e., r £ X) such that V¢ € X, ¢ is also minimal. In other
words, A p € T, with p minimal with respect to ¢.

Notice that RFD. discovery algorithms deal with a problem
that in the worst case is exponential in the number of attributes,
since they have to browse a search space which considers all
possible attribute combinations. Moreover, when the distance
thresholds have to be automatically inferred the algorithm must
consider all possible dispositions of distance thresholds for each
attribute combination [10]. Nevertheless, thanks to specific prun-
ing strategies, mostly based on the minimality property, it is
possible to significantly reduce the search space, widely lowering
discovery times.

Updating RFD.s over time. The nature of real-world data is
inherently dynamic, constantly evolving over time following
inserts, deletions, and updates of data. Consequently, also RFD.s
must evolve accordingly, with respect to the type of performed
operations. In what follows, we first discuss the evolution of
RFDs after deletion operations and then after the insertion ones.
Notice that, no specific considerations need to be done for update
operations, since they can be represented as a deletion followed
by an insertion one.

Let 3 be the set of RFD.s holding at time 7, and 3’ the set of
RFDcs holding at time 7 + 1. A tuple deletion at time 7 + 1 cannot
invalidate any RFD. ¢ € X. Nevertheless, it could make a given
¢ € X no longer minimal, requiring the evaluation of one or more
generalizations of ¢, which can hold at time 7 + 1.

Definition 3.5 (Generalization of an RFD.). Given a relation
schema R, an instance r of R, and an RFD¢ ¢: Xi<q,, - - - ’thah —
A<p holding on r. An RFD. ¢ : X&Dl — Ay, is a generalization
of ¢ iff:

o ¢ Xi<ayrey s Xn<apre, = A<p-g,,, holdsonr, where
Vj=1..,h+1thene; >0,3j=1,.,h+1st ¢ >0;0r

o qol :Xlﬁal»m ,Xi_1Sai71,Xi+1Sai+1,,.‘ ’Xhﬁah 4 ASﬁ holds
onr, where 3i = 1,..., h; or

* ¢ Xicayrer s Xic1<ai g +ei1s Xil ai +eiaom s Xn<ay+ep
— Agﬂ_g}Hl holds on r, where Vj = 1...,h + 1 then ¢; > 0,
Jj=1..,h+1st. e >0,and i =1,.,h

As an example, consider the tuples ranging from ¢ to ts shown
in Table 1, and suppose that ¢; gets deleted. Thus, the RFD. ¢ :
Model<y, Year<1 — Price<sgo is still valid, but it is no longer
minimal, since ¢’ : Year<; — Price<3go holds on the updated
dataset.

On the other hand, a tuple insertion at time 7 + 1 can inval-
idate an RFD; ¢ € X, requiring the evaluation of one or more
specializations of ¢, which can hold at time 7 + 1.
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Definition 3.6 (Specialization of an RFD.). Given a relational
schema R, an instance r of R, and an RFD, ¢: X1<q, - Xp<q, —
A<p holding on r. An rFD. ¢" : Xgl — Ay, is a specialization
of ¢ iff:

® 0" Xicay—e; > Xn<ay,—e;, = A<prey,, holds onr, where
Vj=1,..,h+1thene; > 0,andJj =1,..,h+1st ¢ > 0;
or

® 0" Xi<ay > Xn<ay> Xn+1<ay,, — A<pholdsonr, where
Ji=1,...,h+1;0r

* 0" Xicaj—e s Xn<ap—ep Xhr1<ap., — A<prep,, holds
onr,whereVj=1,..,h+2thene; > 0,and 3j = 1,..,h+2
st.ej>0,and3Ji=1,..,h+1

As an example, consider the tuples ranging from # to t¢ shown
in Table 1, and suppose that tuple t7 is inserted. In this case, the
RFD. ¢ : Model<y, Year<i — Price<sgo is no longer valid, since
although (t2,t7) and (t4,t7) satisfy the constraints defined on the
LHS of ¢, they violate the RHS constraint on the attribute Price.
However, the following specialization of ¢ holds on the updated
dataset: ¢’/ : Model<4, Year<1, #Owners<; — Price<3go.

In this study, we formalize how to exploit these kind of RFD,
evolutions with the aim of detecting concept drift. The following
section will provide more details on how to characterize them.

4 RFD.S AND CONCEPT DRIFT

Considering changes in data distribution represents the most
popular concept drift detection technique that does not require
any analysis of model predictions. These approaches try to es-
tablish if more recent data comes from a different distribution
with respect to the older one, risking overlooking drifts that are
not immediately evident in the overall data distribution. This can
be due to the fact that concept drift does not always produce
changes in the statistical properties of data, but rather shifts in its
underlying relationships. To this end, we investigate whether, by
capturing the evolution of relationships through metrics based
on the analysis of RFD, evolution, it is possible to achieve any
findings for determining concept drift. As discussed in Section
3.2, RFD.s may evolve as generalizations, specializations, or may
be invalidated (i.e., they do not hold on the updated data and
are neither specialized nor generalized). These evolutions can be
evaluated to quantify the divergence between two sets of RFDs.
Let us consider the sets ¥ and 3’ of RFD.s holding on a relation
instance r of R in two given time instants 7 and 7 + 1, respectively.
The analysis of how RFD.s change between the two time instants
can be accomplished in two different perspectives: evaluating
how much . is changed with respect to 3/, and vice versa. In what
follows, we formalize the characterization of all possible changes
on the sets of holding RFD,s according to these two scenarios.

Definition 4.1 (Shift from 3. to ). To quantify the degree of
divergence between ¥ and ¥, it is necessary to evaluate each
RFD. ¢ € X to verify if ¢ is somehow related to any rRFD. ¢’ € 3.
Specifically, Vo € X:

e ¢ can also belong to ¥’;

e ¢ can be specialized by at least one ¢’ € 3’;

e ¢ can neither belong to 3’ nor be specialized by any ¢’ €
¥’, meaning that ¢ has been invalidated.

As an example, let us consider the sets of RFD.s 3 and 3’
provided in Table 2, which are discovered at time 7 and 7 + 1,
respectively. By examining the RFD,s in ¥, we can quantify the
shift as follows:

o the RFD, @2 does not change, since it also belongs to X’;



@o | Model<o, #Owners<; — Price<sgo

01 Model<;, Year<y — Price<so

@2 Year <, Price<spo — Model<, <
@3 Model<, Price<spo — Year<;

04 Model<g, #Owners<; — Year<; —_—
s Price<3po — #Owners<g

06 Year<o — #Owners<,

Lo >
@, | Model, #Owners;, Year<o, — Price<soo
@1 Year ., Price<spo — Model<,
¢, | Models,, Price<s, #Owners.;, — Year<,;
@ Price<3go — #Owners<,
A Year.s, #Owners<; — Model<,

Table 2: An example of RFD, sets holding at two time instants 7 and 7 + 1.

e 5 RFD.s are specialized in 3’. In particular, ¢y and ¢ are
specialized by ¢, ¢3 and ¢4 by ¢}, and @5 by ¢s;

e the RFD. ¢ is invalidated, since it does not belong to 3’
and there is no RFD, in X’ that specializes it.

In other words, this type of analysis allows to evaluate the
change of an older RFD. set compared to a more recent one. Con-
versely, as mentioned, it is also possible to perform an analysis
evaluating the change of a newer RFD. set compared to an older
one.

Definition 4.2 (Shift from 3’ to3). To quantify the degree of
divergence between X’ and 3, it is necessary to evaluate each
RFD; ¢’ € ¥/ to verify if ¢’ is somehow related to any RFD. ¢ € 3.
Specifically, Vo’ € 3:

e ¢’ can also belong to 3;

e ¢’ can be generalized by at least one ¢ € 3;

o ¢’ can neither belong to ¥ nor be generalized by any ¢ € X,
meaning that ¢’ is a new RFD,.

As an example, consider the sets of RFD.s ¥ and ¥’ in Table 2. By
examining the RFD¢s in 3, we can quantify its shift as follows:

e the RFD. ¢; does not change, since it also belongs to X;

® 3RFDs are generalized in 3. In particular, ¢ is generalized
by @o and ¢1; @3 by @3 and ¢4; and ¢ by ¢s;

e the RFD, qz)"1 is a new RFDg, since it does not belong to =
and there is no RFD, in ¥ that generalizes it.

From this characterization of possible changes between X and
>/, a more fine-grained analysis can be introduced by considering
further properties of generalizations and specializations. We will
present some of these characterizations in the following section.

5 THE PROPOSED APPROACH

In what follows, we describe the proposed concept drift detection
methodology. In particular, we first discuss the reason why ana-
lyzing shifts in RFD,s can provide effective support in detecting
concept drift. After a general overview of the proposed approach,
we describe it by detailing each involved step.

5.1 Exploiting RFD.s for concept drift
detection
As further contribution, we introduce an approach tailored for

supporting supervised ML models by detecting concept drift.
This is accomplished through analyses of the shift in terms of

Zo| [ | Xnl|¥ Training |—M0del—-| Deployment
g Discovery lf;';%cz N Evaluation l
¢
Initial Step .
— Drift Measures
Updating Step
—

Figure 1: A general overview of the proposed approach.
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RFD.s during the model deployment, in order to warn about
the necessity of retraining the model if the shift is severe. Since
concept drift can occur only for some of the target labels, our
approach evaluates the shift for each class, so it can provide more
detailed insights into which specific classes are affected by the
drift.

Figure 1 shows an overview of the proposed approach. As we
can see, it is based on two main steps, whose operation flows are
highlighted in two different colors (i.e., black and red arrows).
In particular, in the training phase, the model that has to be
monitored over time is trained on the available data. At the same
time, a discovery process is performed on the same data, through
which it is possible to extract the set of holding RFD,s for each
target label. In the next step, the trained model is deployed and
starts to make predictions on incoming data.

As previously discussed, the model’s performance can degrade
over time due to a drift occurring in new data. However, since
there is no knowledge about the predictions made, our approach
entails conducting periodical checks to verify whether the data at
hand has significantly changed. To accomplish this, a new RFD,
discovery process is performed on an updated dataset, which
consists of the concatenation of the training data and the new
instances predicted by the model. Then, for each class, the original
set of RFD.s holding on the training data is compared with the
updated set of RFD.s. To perform this comparison, we leverage
several RFD-based metrics that are defined later. If through these
metrics a significant shift is highlighted, it may be necessary to
retrain the model.

5.2 Collecting Meaningful RFD_s

Figure 2 shows in detail the proposed approach. By following
one of the main goals of it, sets of minimal RFD.s are collected in
different steps of the whole process, i.e., the initial and the updat-
ing one. Nevertheless, independently from them, the proposed
approach underlies three main phases for collecting meaningful
RFDs: i) Preprocessing, ii) RFD. Discovery, and iii) RFD, Filtering;
as highlighted by the yellow box in Figure 2.

5.2.1 Preprocessing. The preprocessing phase aims to prepare
the dataset in input for the rRFD, discovery. The main operations
performed in this phase are the selection of the most relevant
features, the organization of data into equivalence classes, and
the splitting of data. The first two operations aim to reduce the
number of features and the variability in the data, allowing for
RFD, discovery processes to quickly focus on the most informa-
tive features, by also avoiding data having a too fine-grained
representation. Specifically, for the first operation, we leverage
mutual information-based feature selection [28] to maintain only
the most relevant attributes for the follow-up analyses. This tech-
nique was elected as distinguished technique for its ability in
capturing any type of relationship [17], and for its robustness
to noise and data transformations, yielding effective selection of
features [33]. The second operation is applied to attributes with
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Figure 2: An overview of the initialization and updating steps underlying the proposed approach.

a high variability of values, which are arranged into equivalence
classes, ensuring that similar values are assigned to the same
class [12] and replaced with the identifier of such an equivalence
class. In the third operation, the dataset is split according to the
k target labels. Thus, the output of this step consists of k subsets,
each containing instances belonging to a specific class.

5.2.2 RFD Discovery. After the preprocessing phase, each of
the k subsets is given as input to an RFD, discovery algorithm. In
particular, for this approach, we leverage the bomino algorithm
[10], which has the peculiarity of inferring by itself the distance
constraints for each attribute. This feature is useful when the
application domain is not well known and there is uncertainty
about the distance constraints to apply. However, any other RFD.
discovery algorithm can be chosen based on the characteristics
of the application domain. The output of this phase consists of k
sets of RFDs, i.e., Ty,i=1,2,..., k, where k is the number of
target labels.

5.2.3 RFD, Filtering. For a given dataset, the presence of hold-
ing RFD.s can scale to the order of thousands or even more. In
order to perform the subsequent comparison steps, in this phase
we filter discovered dependencies, aiming at retaining, for each
target label, only its most representative RFD.s, i.e., those that dis-
tinguish it most from the others. To perform initial filtering of the
original dependencies, we remove from each set 3.y, all the RFD,s
that are also present in the other sets Zyj, with j =1,2,...,kand
i # j. According to this, we can define Ty, as:

Ty =2y \ U Zy; )
i,j=12,...k A ifj

Thus, the resulting k RFD. sets contain, for each class, only
its unique dependencies. After that, we further filter RFD.s by
leveraging the concept of minimality. In particular, for each set
¥y;, we maintain only RFD.s that are minimal with respect to
all the RFD¢s belonging to other sets X, with j # i. This en-
sures that the RFD.s of each class are unique and not related to
those discovered for the other classes. The output of this phase
consists of the updated k RFD, sets, each encapsulating the most
representative dependencies for its respective target class.

As an example, let us consider a scenario in which two target
labels are involved, namely y; and y;, respectively. Thus, suppos-
ing that after the discovery process at given time 7, the following
resulting RFD.s are provided:
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e Xy, = XU {¢7}, where
> refers to the set of RFD.s shown in Table 2 and
@7: Year<y, #Owners<; — Model<3; and
* 2y, = {7, 95, ¢}, where
@s: Model<g, Price<3o0 — #Owners<( and
@9: Year<sz — Model<y.

Notice that the RFD @7 is shared between the two sets 3, and
Zy; and that g3 € Iy, is not minimal with respect to ¢5 €
Zy;. Consequently, the sets %y, and 3y, will become 3, =

{00, @1, @2, 3, 04, 5. ¢ } and 3y, = {9} after the application
of the filtering strategy.

5.3 Evaluating Drift through RFD.s

As mentioned in Section 5.1, our approach entails the assessment
of updated data to verify whether significant changes occur also
in terms of RFD¢s. This detection serves as a trigger to retrain
the model and enhance its adaptability to changing data dynam-
ics. In particular, during the deployment, the model trained in
the previous step starts making predictions on incoming data,
and these predicted instances are incrementally integrated into
the original training dataset. Thus, the new data (comprised of
the original training data with true labels and the newly pre-
dicted instances) is reintroduced to the discovery module where
the same sequence of operations described in Section 5.2 (i.e.,
preprocessing, discovery, and RFD. filtering) is performed.

Starting from the sets of RFD.s resulting from the updated
sets of data, the drift evaluation can be performed. Specifically,
in this step, the proposed approach considers both the ¥, and
Z’yi sets of RFD.s, with i = 1,2,..., k and k the number of target
labels (see Section 5.2). Then, it consists of two main phases that
underlie the whole evaluation process: i) RFD, Comparison and
ii) Measuring; as highlighted by the green box in Figure 2.

5.3.1 RFD. Comparison. This phase takes care of comparing,
for each target label, the original and updated RFD, sets, according
to type of shifts among sets of RFD.s (see Section 4). Notice
that, in what follows we describe the comparison methodology
between two sets of RFDs, since it can be easily generalized to the
comparison of all sets of RFD¢s in Ty and Z’yi withi=1,2,...,k.
y: provides different inter-
pretations according to the direction followed during the process.
In fact, the shift of RFD¢s can be performed from >, and Z’yi
(see Definition 4.1) and vice versa (see Definition 4.2), yielding

The comparison between X, and £



Notation | Definition Metric Definition
Zy; RFDS holding on the training instances with target class y; New + ((Gen — Ge”eq) ~0.5) + (Ge"eq 0.05)
Z’yl_ RFD.s holding on the training instances and the new predicted ones with target class y; D 5,1
Imm Number of RFDs that belongs both to %, and to E’yl_ b New + (Gen — Geneg) - 0’5) +(Geneg - 0.05) + Ino
Ino Number of RFD.s in Zy; that are not present in any form in 3" y; 2 [Zy; U Z'yi |
Spec Number of RFD.s in 3y, that are specialized in 3}, Ds New + llnv
Specs Number of RFDs in %y, that are specialized in Z’yi by an RFD. with the same thresholds 12y; U2y, |
on the attributes in common New + (Ge"q +0.25) + (Gen —
Specs_, Number of RFD¢s in 2y, that are specialized in 2/‘11‘ by an RFD. with lower or equal - Geng, - Geneq) -0.5) + (Geneq -0.05)
thresholds on the attributes in common on the LHS, and higher threshold on the RHS Dy Fu. U5, ]
Specs, Number of RFD¢s in 2y; that are specialized in Z’yi by an RFDs with only an additional Yi Yi
attribute on the LHS Ds Ino +((Spec — Specelg) 'IO.S) + (Speceq - 0.05)
Speceq Number of RFDs in Xy, that are specialized in Z’y_ by an rFD, with the same attributes - Yi
Speceqe. | Number of RFD¢s in 3y, that are specialized in Z’y: by an rRFD. with the same attributes, Ds New +(Gen - 0.5) + ((Gen“qj +’Geneq¢ + Geneq@) -0.05)
with the same threshold on the RHS and lower or equal thresholds on the LHS (with at Py U 2y, |
least one lower) Inv + (Specy - 0.25) + ((Spec — Specs, —
Speceq, | Number of REDcS in 3y, that are specialized in Z’yi by an RFD, with the same attributes, — Speceq) - 0.5) +(Speceq - 0.05)
with the same thresholds on the LHS and greater or equal threshold on the RHS (with at Dy Y [
least one greater) = L
Speceqe, | Number of RFD¢s in 2y, that are specialized in Z'yi by an rFD, with the same attributes, New+1Inv+ «Genc‘] (Geneg-, + Genege +
with greater threshold on the RHS and lower or equal thresholds on the LHS (with at D + Genege,) - 0.5) + (Geneg, + Genege + Genege, ) - 0.05)
least one lower) 8 > U3
[2y; U 2y, |
New Number of R¥Ds in 3, that are not derived from any r¥pc in 3y, New +Inv+((Gen — Genc, — Geneg) - 0.5) + (Genc, - 0.25) + (Genegq -
Gen Number of RFD.s in Z'yi that are generalized in X, in any form -0.05) + ((Spec — SPECDI _ Specgq) 0.5)+ (Spech - 0.25) + (Speceq -0.05)
Genc Number of RFD.s in Z"ﬁ that are generalized in £, by an RFD. with the same thresholds Dy o US|
on the attributes in common Yi Yi
Genc_, Number of RFD.s in Z’yi that are generalized in ¥,;; by an rR¥D. with the same threshold Ino + (SPeCDl -0.1) + ((Spec — Specs, —
on the LHS and lower or equal thresholds on the RHS on the attributes in common (with - Speceq) -0.2) + (Speceq - 0.02)
at least one lower) Dy =0l
s zedin .. . wi ; yj
Genc, Number of RFD.s in Zyi that are generalized in 2,; by an RFD with only one attribute New + Ino+ Spec - 0.0) + (Gen - 0.1)
less on the LHS Dy Sy U3, |
Gen, Number of RFD,s in 2/, that are generalized in =, by an RFD. with the same attributes Ji Y
eq e c i Yi < D Ino + ((Spec — Speceg) - 0.3) + (Speceq - 0.02)
Genege Number of RFD.s in E’yl that are generalized in £,; by an RFD with the same attributes, ;]
with the same threshold on the RHS and greater or equal thresholds on the LHS (with at Table 4: rRFD-based dlvergences.
least one greater)
Geneg-, Number of RFD.s in 2,11 that are generalized in £,;; by an RFD with the same attributes, : . : .
L] N
the same thresholds on lthe LHS, and lower or equal thresholds on the RHS (with at least generahZEd n Zyl by remOVIHg attrlbutes St the LHS’
one lower) namely Genc, Genc_,, Genc,;
Gen, Number of RFD,s in 3. that are generalized in 3,
eqe c i i

Table 3: Reference table for notations.

different types of changes between the two sets of RFD.s. Never-
theless, it is possible to quantify the occurrence of specific types
of changes involved during the comparison process as shown in
Table 3.

Specifically, independently from the direction, there can be a
certain number of RFD.s that appear equal in both sets, namely
Imm. Instead, if the comparison is performed from 3y, to >’ .
then it is possible to quantify the number of RFD.s in X, that
are:

generically specialized in Z’yi, namely Spec;

specialized in Z’yi by adding attributes on the LHS, namely
Specs, Specs_,, Specs;

specialized in Z'yi by varying thresholds only, namely
Speceq, Speceq., SPeceq_, SPeCeq.,;

invalidated, i.e., neither present nor specialized in Z’yi,
namely Inv.

Notice that, details about the different criteria of specializa-
tions/generalizations are provided in Table 3.

As an example, let us consider the two sets of RFD.s ¥ and 3’
shown in Table 2, which can be denoted as Xy, and X7 since they
are associated to a single label. Thus, by performing a comparison
from %y, to X7, it is possible to say that there is just one Imm
RFDg, i.e., ¢2 and one Inv RFDg, i.e., . Moreover, among the
five Spec RFD:s: @9, 91, ¢3 @4, and @s; only the latter, compared
with (pé, satisfies the Speceq and the Speceq_, criteria since the
specialization is driven by a simple variation of the RHS threshold.
Instead, the other four RFDs all satisfy the Specs, criterion since
just one attribute is added on the LHS (i.e., ¢ and ¢; with ¢,
and @3, @4 with @}). Moreover, ¢o and @3 also satisfy Specs since
they maintain the same thresholds on common attributes when
compared with ¢; and ¢}, respectively.

On the other hand, if the comparison is performed from Z’yi
to Zy;, then it is possible to quantify the RFD.s in Z’yi that are:

o generically generalized in Sy namely Gen;
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e generalized in 3y, by varying thresholds only, namely
Geneq, Geneq_, Geneq_,, Geneq,,;

e new, i.e,, neither present nor generalized in DI namely
New.

As an example, let us consider the same sets of RFD.s involved
in the previous example. By performing a comparison from Z’yi
to Xy, it is possible to say that there is just one Imm R¥D, i.e.,
@] and one New RFD, i.e., ¢;. Moreover, among the three Gen
RFD,S: ¢, @3, ¢5; only the latter, compared with ¢s, satisfies the
Geneq and the Genegq_, criteria since the generalization is driven
by a simple variation of the RHS threshold. Instead, the other
two RFD.s all satisfy the Genc, criterion since just one attribute
does not appear on the LHS (i.e., ¢ with g and ¢y, and ¢} with
3 and @4). Moreover, g and ¢} also satisfy Genc criterion since
they maintain the same thresholds on common attributes when
compared with ¢ and ¢s3, respectively.

To summarize, many criteria can be used to evaluate the shift
between two sets of RFD.s, according to possible invalidation of
some RFD.S, the generation of new RFD.s, and/or different types
of specializations/generalizations. In particular, the latter can
allow the evaluation at different levels of granularity. Overall,
the quantitative information provided by the several comparison
criteria can be used to define different metrics to measure a
possible drift into data, which is reflected in the variations on
holding RFD.s as described in the next section.

5.3.2 Measuring. From the comparison phase, all the terms
shown in Table 3 are obtained. Starting from them, the proposed
approach can measure the shift in terms of RFD,s according to
a suite of proposed RFD-based metrics. Some of them evaluate
the magnitude of the change of 3, with respect to Z’yi, while
others consider the opposite direction, assessing the changes in
Z’yi with respect to 2y,. Specifically, we defined two categories
of metrics: the ones in the first category aim to quantify the
divergence between two sets of RFD.s, while those in the second
category are inspired by machine learning, following a confusion
matrix-based evaluation.



‘Metric True Positives ‘ False Positives ‘False Negatives
CF, Imm New Inv
CF; Imm + ZVGEGengq* G|New +(Gen — ZVGeGeneq* G) Inv
CF; (Imm + Zycecengq*G New Inov
CF, Imm New + Gen Ino
CFs Imm Inv + Spec New
CFg Imm Inv + Spec New + Gen
CF; Imm + Gen Inv + Spec New

" Genegx = {Geneg, Geneg_,, Geneg_ , Geneg,, }
Table 5: Metrics inspired by confusion matrix items.

Table 4 presents the suite of divergence metrics, which range
from simpler metrics to more refined ones. Specifically, Ds, D7,
D19, and D1 are based on the characterizations of the shift from
Ty, to Z’yi, while D; consider the shift from Z’yi to ;. Instead,
the remaining metrics consider both perspectives, providing a
single divergence value that summarizes the change in both sets.
As shown in Table 4, the proposed metrics leverage coefficients
to weight different types of RFD. evolution, assigning greater
importance to more substantial changes (e.g., invalidations and
new RFD.s) while attributing a lower contribution to moderate
ones (e.g., specializations and generalizations), aiming at accu-
rately estimating the severity of changes among the RFD. sets.
Notice that all the defined divergence metrics are normalized
with respect to the total number of RFD.s involved in the specific
evaluation.

As an example, let us consider the two sets of RFD.s ¥ and 3’
shown in Table 2, which can also be denoted as Sy, and Z’yi since
they are associated to a single label. Thus, according to Table 4,
it is possible to apply the metric D5 on the considered scenario
to measure the divergence from 2y, to X :

_ Inv + ((Spec — Speceq) X 0.5) + (Speceq X 0.05)

[Zy; |
_ 1+((5—1)%0.5)+(1X0.05) _ 1+2+0.05
= = 7

Ds

= 0.44.

The second category of metrics is inspired by the confusion
matrix, which is commonly employed for ML evaluation. In par-
ticular, we adapted the concepts of True\False Positives and
True\False Negatives to evaluate the changes among the com-
pared sets of RFD.s. Our aim is to investigate whether metrics
derived from our (re-)interpretation of the confusion matrix align
with the trends observed in the actual model.

Table 5 shows the seven metrics we defined. Specifically, some
of these interpretations (i.e., CF1, CFa, CF3, CFy) evaluate the de-
gree of change from %, to 3 ,» while others (i.e., CFs,CFg, CF7)
consider the opposite perspective, describing the change from
Z'yi to ;. To clarify this interpretation, let us consider the first
metric (i.e., CFy), through which we can identify True Positives
as the number of RFD.s that were in %, and that are still in Z’yi.
In other words, these are the RFD¢s that we expected to have and
that are correctly in Z’yi. By following the same reasoning, we
can consider False Negatives as the RFD.s that were in X, but not
in Z’yi. Instead, False Positives represent RFD.s that were not in
2y, butin X (e.g., new RFDcs). True Negatives are always equal
to zero, since they represent RFD.s not included in both 3., and
DI

Consequently, we considered the F1-Measure, Precision, and
Recall metrics computed through this adapted interpretation of
the confusion matrix. In general, lower values for Precision, Recall,
and F1-Measure indicate a larger change between the two sets
of RFD.s. This is due to the fact that False Positives and False
Negatives are associated with the possible evolutions of RFDs,
while True Positives are associated with RFD.s that do not change
or slightly evolve with respect to the original ones.
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As an example, let us consider the two sets of RFD.s % and 3’
shown in Table 2, which can also be denoted as Xy, and ¥, since
they are associated to a single label. Thus, according to Table 5, it
is possible to interpret confusion matrix items as defined by the
metric CFs5 on the considered scenario: TruePositives = Imm = 1;
FalsePositives = (Inv + Spec) = (1 +5); and FalseNegatives =
New = 1. Thus, starting from these items it is possible to compute
the Precision, the Recall, and the F1-Measure.

6 EXPERIMENTAL EVALUATION

In this section, we present the evaluation performed on the pro-
posed RFD-based metrics, aiming at demonstrating their effective-
ness in quantifying possible drifts within data. To this end, we
investigate whether the trends of the RFD-based metrics are more
correlated to the performance trend of the model with respect
to other related approaches. As a matter of fact, a higher corre-
lation would mean that the proposed metrics are better able to
capture changes within a dataset, leading to reliable insights into
whether a model’s performance is declining or not. Different sce-
narios were analyzed to demonstrate that (i) RFD-based metrics
provide more reliable estimations than baseline distances and
that (ii) RFD-based metrics also capture drifts within data when it
does not affect the value distribution but the relationships among
attributes.

6.1 Baseline approaches

To compare the proposed approach with related techniques, we
leveraged FROUROS [40], a Python library that provides a wide
variety of algorithms for drift detection. Specifically, since our
approach falls into the category of data distribution-based ap-
proaches, we considered available Data Drift measures. Among
these, we considered approaches that quantify the shift in the
data and provide a value within a bounded range, as in the case of
the proposed metrics. The first baseline method we considered is
the Hellinger distance [24], recommended by [20] and leveraged
by several approaches in the literature [16, 21]. Instead, a second
baseline method we considered is HiNormalizedComplement [42].
Since these measures quantify drift for only a single attribute, for
both we employed two aggregation strategies to obtain a single
distance between two batches of data: (i) by using the average
of all distances [16] and (ii) by using the maximum between
all distances [37]. In what follows, for the Hellinger (HiNormal-
izedComplement, resp.) distance, we refer to the first strategy
as Hemean (Himean, resp.) and to the second strategy as Hemqayx
(Himax, resp.).

6.2 Experimental settings

The experimental evaluation has been performed in two different
phases. In the first one, we considered datasets with Known Drift
to compare the effectiveness of all the considered approaches
and to determine the best metrics among the proposed ones.
Thereafter, we employ the latter on datasets with Unknown Drift
to simulate a real-world scenario. In what follows, we describe
the datasets used in our evaluation (see Table 6), by also providing
details about the evaluation process.

Datasets with known drift. The datasets considered in scenario
can be divided into two groups. The first one, namely Statistical
Drift, contains 9 configuration of the Followers dataset obtained
from a repository that allowed us to mixing up normal data and
data affected by gradual or abrupt drift over a variable number of
columns. The second group, namely Attribute-relationship Drift,



considers three classification datasets ( i.e., Recruitment, Age, and
Forest CovType) and their drifted version, which have been syntet-
ically generated by shuffling the values of their columns indepen-
dently (i.e., without mixing values between different columns).
This ensures that the distribution of each attribute remains un-
changed, while the underlying relationships between different
attributes are altered. Specifically, for each dataset we shuffled
the values of three columns (O), all columns except the target
attribute (A), and half of the columns for one portion of data
and all columns for the remaining one (®). The latter generation
method aims to simulate a more gradual drift.

Datasets with unknown drift. For this scenario, we considered 5
datasets: Bankrupt, Event Logs, Cleveland, KC2, and Heart-Statlog.
Bankrupt contains financial data collected from 1999 to 2009.
The Event Logs [43] dataset contains data used for training a
Meta-Learning system to recommend the best anomaly detection
algorithm. It is composed of 365 instances, which comprises the
168 used by the authors and other synthetic ones. The Cleveland
dataset contains data about heart diseases in patients, while the
KC2 dataset contains software metrics extracted from source
code to predict software defects. Finally, the Heart-Statlog dataset
contains medical attributes related to heart health.

As shown in Table 6, for all datasets configurations, we ran-
domly sampled a certain number of rows in order to vary the
data within each configuration. Instead, we used all samples for
smaller datasets (i.e., datasets with ID from 21 to 24). The number
of classes reported in Table 6 is referred to those appearing in
the sampled data. Notice that, although our approach can be ap-
plied on any type of data, we faced the necessity of considering
datasets with only numerical features due to the requirements of
the baseline approaches.

Evaluation Process. All the experimental sessions we performed
involved a partitioning process to split datasets into four batches,
corresponding to the 25%, 45%, 70%, and 100% of their size, re-
spectively. Thus, the first batch contains tuples from 0% to 25%,
the second one contains tuples from 25% to 45%, and so forth.
The first batch is also used for training a Random Forest model,
which is deployed for making predictions over the other batches.
For datasets with Known Drift, we sampled normal data for train-
ing and for the the first test batch, whereas we sampled drifted
data for the successive test batches. Thus, we performed the
preprocessing step on the training dataset by applying mutual
information-based feature selection to only consider the most rel-
evant features (see Sel. Features column in Table 6). Then, for each
class we performed a RFD. discovery step and filtered the most
meaningful dependencies. Thereafter, we incrementally added
tuples for each subsequent test batch, whose target attributes’
classes are those predicted by the model. Specifically, the updated
dataset was given in input to the discovery module to obtain up-
dated sets of RFD.s. Finally, we compared the original and the
updated sets of dependencies by computing the metrics described
in Section 5.

To evaluate the effectiveness of the proposed metrics, we com-
pared, for each class, the correlation of their trend with the ac-
tual performance trend of the model in terms of F1-Measure.
Notice that, for confusion matrix-based metrics, the F1-Measure
is computed and compared with the model performances. The
overall correlations on all classes are compared with the ones
achieved by the baseline approaches. For the metrics that ex-
press the divergence between X, and Zgﬁ (including the baseline
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Dataset

1 5000 2 11 Abrupt
5000 11 Abrupt
3 5000 2 11 Abrupt
4 5000 2 11 Gradual
Followers | Kaggle |5 5000 2 11 No Drift
6 5000 2 11 Abrupt
7 5000 2 11 Gradual
8 5000 2 11 Abrupt
9 5000 2 11 Gradual
10 4500 2 9 o
Age  |UCIML [11] 4500 2 9 N
12 4500 2 9 <
13 2500 2 10 o
Recruitment | Kaggle (14 2500 2 10 A
15 2500 2 10 <&
16 4000 2 12 o
CovIype |UCIML (17 4000 2 12 A
18 4000 2 12 <&
[1o] 1000 T 2 ] 9 [Unknown|
’ Bankrupt ‘ UCIML 155000 | 2 [ 9 [Unknown|
[ Event Logs [ [43] [21[ 365 [ 3 [ 20 [Unknown]
[ Cleveland [ UCI ML [22[ 303 [ 2 [ 14 [Unknown]
l KC2 [Open ML[23[ 522 [ 2 [ 9 [Unknown]
[Heart-Statlog[Open ML[24] 270 [ 2 ] 10 [Unknown|

Table 6: Details of the datasets employed in the evaluation.

approaches) we expect a negative correlation, as the model perfor-
mance should decrease when divergence increases. Conversely,
for the confusion matrix-based metrics, we expect a positive
correlation, as higher scores denote less difference among the
compared sets of RFDs.

6.3 Experimental Results

In this section, we first discuss the experimental results observed
on datasets with Known Drift, and then the ones obtained on
datasets with Unknown Drift. To conclude the section, we provide
an overall discussion of the outcomes of our study.

6.3.1 Datasets with Known Drift. Figure 3 shows the distribu-
tion of correlations obtained by each metric in the configurations
with Known Drift (IDs 1-18). These have been computed as the
average of the correlations over all classes. The metrics are or-
dered on the x-axis according to the median correlation value,
starting from the best towards the worst. Notice that, in order
to show all metrics in a single plot, we considered the inverted
correlation values for the confusion matrix-based metrics, since
as expected they shown positive values.

In general, we can observe that most of the RFD-based metrics
achieved stronger correlations than the baseline approaches. In
fact, Himean, Hemax, and Hipmgx present weaker correlations,
while Hepmeqn recorded slightly better results, outperforming
three of the proposed metrics (i.e., Dy, CFs, and CFy). All other
RFD-based divergences and confusion matrix-based metrics shown
stronger correlations, with median values better than —0.9, con-
firming the validity of both approaches in quantifying drift in
the data.

We found that the best metrics are two divergences (i.e., Ds
and D7) and two confusion matrix-based metrics (i.e., CFp and
CF3), even though the latter exhibit a larger interquartile range,
indicating more variability in the results. On the other hand, the
best divergences show a narrower interquartile range, suggesting
that they may be more consistent and reliable. This is reflected by
analyzing the average correlation obtained by these metrics: D5
and D7 have an average correlation of —0.94 and —0.93, respec-
tively, while CF3 and CF; have an average correlation of 0.87 and
0.86, respectively. Concerning the baseline approaches, the best
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Figure 4: Correlations with the models’ F1-Measure on datasets with Known Drift.
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metric was Hepmeqn, with an average correlation of —0.75, while
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Hemax achieved a slightly lower correlation (i.e., —0.73). Himean
and Hipqx performed significantly worse, with average corre-
lations of —0.62 and —0.59, respectively. Thus, among the two
aggregation strategies, averaging performed better than selecting
the maximum distance (i.e., Hemean VS Hemax and Himean Vs
Himax). This could be due to the fact that the maximum aggrega-
tion strategy is likely more sensitive to outliers, overemphasizing
single large shifts that may not impact the overall behavior of
model’s performance.

Figure 4 shows in detail the results of the individual experi-
ments for the top 4 RFD-based metrics with respect to the baseline
approaches. As described before, we divided this first phase of
experiments in two parts to evaluate two different drift scenarios.
The first row of results (IDs 1 to 9) relates to the experiments
performed on the Followers dataset. In this scenario, we expected
the baseline approaches to perform well, since the dataset con-
tains changes of the statistical properties of individual attributes,
which should represent the type of drift the baseline approaches
better detect. This expectation was confirmed by the experimen-
tal results, in which the Hellinger distance performed reason-
ably well: Heppean achieved an average correlation of —0.86 and
Hemayx a correlation of —0.85, with both metrics showing lower
correlations only for experiments with IDs 2 and 3. Despite these
good results, RFD-based metrics outperformed them. In fact, Ds
was the best metric, with an average correlation of —0.927, fol-
lowed by D7 (i.e., —0.926), CF3 (i.e., 0.91), and CF; (i.e., 0.90).
Instead, Himeqn and Hipmgy, recorded the worst results, with
correlations of —0.71 and —0.64, respectively.

The second group of experiments (IDs 10-18) is shown in the
second row of Figure 4. As discussed, we artificially introduced
drift by shuffling the column values to alter multi-column rela-
tionships. This type of drift significantly affected the performance
of baseline approaches, which were often unable to provide a
correct drift estimation. Hepeqn achieved an average correla-
tion of —0.65, while He;ngx and Himean recorded a correlation
of —0.61. Finally, Hipax obtained the worst result, with an av-
erage correlation of —0.48. Thus, the trend of these distances

825

ID 2

Correlation

Figure 5: Correlations with different ML models.

was not aligned to the FI-Measure of the model. Instead, the RFD-
based metrics showed the best results. In particular, D5 and Dy
achieved an average correlation of —0.95 and —0.94, respectively;
whereas CF3 and CF; performed slightly worse, with correla-
tions of 0.82 and 0.81, respectively. This decrease is mainly due
to the negative results obtained in the experiment with ID 11,
caused by a low correlation on one of the classes. Overall, we
can conclude that although confusion matrix-based metrics are
capable of obtaining significant results, they are less reliable than
RFD-based divergences. Among the latter, D5 and D7 proved to
be the most effective, consistently maintaining strong correla-
tions across all experiments. To evaluate the generalizability of
the results with respect to other ML models, we analyzed the
correlations obtained using Random Forest (RF), Support Vector
Classifier (SVC), Gradient Boosting Classifier (GB), and Multi-
layer Perceptron (MLP) on a sample of experiments. As shown in
Figure 5, all metrics exhibit minimal variations. In fact, although
the F1-Measure differs among models, the behavior of the latter
is similar, i.e., they remain stable with normal data and degrade
with drift-affected data.

6.3.2 Datasets with Unknown drift. Figure 6 shows the corre-
lations achieved by the top 4 RFD-based metrics on datasets with
Unknown Drift (IDs 19-24), with respect to the ones obtained by
the baseline approaches. As it can be seen, the RFD-based diver-
gences D5 and Dy achieved the strongest correlations in almost
all experiments, confirming themselves as the best metrics we
proposed, achieving an average correlation of —0.946 and —0.948,
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Figure 7: Correlations obtained by using smaller test
batches.

respectively. Concerning confusion matrix-based metrics, we ob-
served a similar behavior with respect to the previous datasets
configurations. In fact, although they achieved good correlations
in some configurations, their performances were less consistent,
leading to a lower average outcome (i.e., 0.85 for CF3 and 0.70
for CF). In particular, CF; has been affected by poor outcomes
in experiments with IDs 22 and 24.

As for the baseline approaches, the results in this scenario
diverged from those observed previously. In particular, although
Hellinger was still the most effective baseline metric, in this sce-
nario, the better aggregation strategy was selecting the highest
value. In fact, Hepmax and Himgx achieved an average correla-
tion of —0.79 and —0.74, respectively, while Hepmean and Himean
recorded a correlation of —0.70 and —0.65, respectively. The better
results of Hepgx and Hipgy might be explained by a significant
distribution change of an attribute that most influenced the model
behavior in some of the tested configurations. However, also in
this case, D5, D7, and CF3 were more accurate in quantifying
drifts with respect to all baseline approaches.

As further contribution, we investigated how correlations
change when using smaller test batches. For a subset of experi-
ments, we reorganized the test batches on the same data. Specifi-
cally, after using 25% of the data for training, we defined the first
test batch as 5% of the dataset (i.e., from 25% to 30%), and the
subsequent test batches as 10% each (e.g., from 30% to 40%, from
40% to 50%, and so froth). As shown in Figure 7, there has been
a general decrease in correlations, due to the models exhibiting
a more unstable trend. However, by comparing the correlation
with the ones in Figure 6, the overall behavior of the metrics
remains consistent, with D5 and Dy standing out as the most
reliable metrics even in this scenario.

6.3.3 Discussion. The analyzed results shown that studying
the evolution of RFDs over time can provide useful insights on
whether the monitored model is providing accurate predictions or
not. As for the divergence metrics, most of them showed a strong
negative correlation with the performance of the model, indi-
cating that their upward trend is very similar to the downward
trend of the model. Among the proposed divergences, D5 and
Dy were found to be the most robust and effective in quantifying
drifts in the data on all the analyzed scenarios. As for confusion
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Figure 8: Trend analysis.

matrix-based metrics, most of them also exhibited a rather high
correlation. This indicates that our reinterpretation of the con-
fusion matrix to represent changes in RFDs is effective, and the
trends of the F1-Measure computed on it are comparable to the
ones of the monitored model. Among the proposed confusion
matrix-based metrics, CF3 and CF» achieved the best correlations
with the models’ performance in the analyzed scenarios. How-
ever, these metrics showed more instability than divergences,
indicating that they need further refinements. One possible rea-
son for this instability is that, unlike divergence metrics, confu-
sion matrix-based metrics do not use weighting coefficients for
the different ways in which RFDs can evolve. To summarize, we
consider D5 and D7 to be the best metrics to use for quantifying
concept drift, as they consistently demonstrated strong correla-
tions with the performance of ML models. Although D5 and D7
differ slightly on how they evaluate specializations, their similar
behavior suggests that they can be used interchangeably.

Experimental results also shown that most of the proposed
metrics can provide more accurate estimates of drifts within
data than other data distribution-based measures proposed in
the literature. This is due to the fact that, although the latter
demonstrated their capability in capturing changes in the single-
column statistics of data, they did not account for changes be-
tween multi-attribute relationships. For this reason, we argue that
RFD-based metrics better reflect model performance, minimizing
the risk of false positives and false negatives when employed in
a concept drift detection system. To support this claim, Figure 8
presents illustrative examples comparing the model’s behavior
with the divergences Ds and Dy, as well as with the baseline
metrics. The trends shown are averaged across all classes and
have been z-normalized to enable a visual comparison. As it can
be seen, even though in some experiments the performance of
the model sharply dropped, the baseline metrics reported only
slight changes or no changes; whereas in some other cases, they
even tended to follow the model performance, leading to unex-
pected behaviors that make such distances unable to describe the
model degradation in such a kind of scenarios. Examples of this
behavior that can be recognized as false negative are observed in
the third test batch of experiments with IDs 2, 10, 16, and 24. On
the other hand, in some experiments baseline metrics reported
distributional changes that had not affected model performances
since the underlying relationships among the attributes possi-
bly remained unchanged. Examples of this behavior that can
be recognized as false positive are observed in the second test
batch of experiments with IDs 2, 10, 16. In contrast to baseline
metrics, RFD-based divergences were better able to describe the
trend of the model, rising in case of performance degradation
and remaining stable otherwise.

By concluding, we can state that in a real-world scenario where
a model is deployed and it is not possible to obtain feedback on
its predictions, RFD-based metrics can better provide insights into
its performance trend over time.



7 CONCLUSION AND FUTURE WORKS

The transition of learning models from the training phase to the
deployment in real-world contexts, requires to face the challenge
of sustaining the models’ effectiveness. In fact, the dynamic na-
ture of data leads to possible shifts in them, causing a plausible
decrease in the models’ performance. An important aspect in
these scenarios is to estimate the drift magnitude from data with-
out the need of feedback on the model predictions. To this end,
several approaches exploit measures to estimate the change in
the data distribution. However, these approaches may not capture
changes that occur in the relationships between attributes that
may affect the performance of the model. In this paper, we inves-
tigated the potential of profiling metadata to assess the evolution
of data over time. Specifically, we formalized the theoretical re-
lationship between changes in terms of rRFDs and performance
trends of predictive models over time. Then, we introduced two
categories of RFD-based metrics to measure the shift within data.
In particular, they are based on sets of RFD.s discovered from
data collected in different time instants, as it happens with sam-
ples involved in training and deployment phases. Moreover, we
introduced a suite of RFD-based divergences and a set of RFD
confusion matrix-based metrics inspired by well-known ML mea-
sures. To evaluate the proposed metrics, we considered several
datasets with both known and unknown drift, by also comparing
them with other distribution-based measures. Results shown that
the trend of rRFD-based metrics is strongly correlated with the
F1-Measure of the model, and that they provide more reliable
insights than the compared baseline metrics, especially in more
complex cases in which drift affects relationships between at-
tributes. Drawing from empirical evidence, we established Ds
and D7 as the most effective RFD-based metrics for accurately
assessing drift.

In the future, we would like to investigate other types of pro-
filing metadata to define a complete framework of drift metrics,
which holistically consider statistics, patterns, and properties
among data to monitor model performances. Furthermore, we
plan to further refine confusion matrix-based metrics, aiming
to improve their overall stability. While in this work we lever-
aged a static discovery algorithm, future works should employ
incremental discovery strategies [6—8] to update RFD.s over time
without reconsidering already processed data to keep RFD.s up-
dated while reducing discovery times. This requires the defining
incremental RFD discovery algorithms capable of also inferring
similarity/distance thresholds.
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