Computer Science > Cryptography and Security
[Submitted on 22 Feb 2025 (v1), last revised 28 Jul 2025 (this version, v2)]
Title:Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
View PDF HTML (experimental)Abstract:Conversational agents are increasingly woven into individuals' personal lives, yet users often underestimate the privacy risks associated with them. The moment users share information with these agents-such as large language models (LLMs)-their private information becomes vulnerable to exposure. In this paper, we characterize the notion of contextual privacy for user interactions with LLM-based Conversational Agents (LCAs). It aims to minimize privacy risks by ensuring that users (sender) disclose only information that is both relevant and necessary for achieving their intended goals when interacting with LCAs (untrusted receivers). Through a formative design user study, we observe how even "privacy-conscious" users inadvertently reveal sensitive information through indirect disclosures. Based on insights from this study, we propose a locally deployable framework that operates between users and LCAs, identifying and reformulating out-of-context information in user prompts. Our evaluation using examples from ShareGPT shows that lightweight models can effectively implement this framework, achieving strong gains in contextual privacy while preserving the user's intended interaction goals. Notably, about 76% of participants in our human evaluation preferred the reformulated prompts over the original ones, validating the usability and effectiveness of contextual privacy in our proposed framework. We opensource the code at this https URL.
Submission history
From: Ivoline Ngong [view email][v1] Sat, 22 Feb 2025 09:05:39 UTC (1,056 KB)
[v2] Mon, 28 Jul 2025 02:41:49 UTC (1,054 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.