Computer Science > Sound
[Submitted on 23 Feb 2025 (v1), last revised 17 Jun 2025 (this version, v2)]
Title:Target Speaker Extraction through Comparing Noisy Positive and Negative Audio Enrollments
View PDF HTML (experimental)Abstract:Target speaker extraction focuses on isolating a specific speaker's voice from an audio mixture containing multiple speakers. To provide information about the target speaker's identity, prior works have utilized clean audio samples as conditioning inputs. However, such clean audio examples are not always readily available. For instance, obtaining a clean recording of a stranger's voice at a cocktail party without leaving the noisy environment is generally infeasible. Limited prior research has explored extracting the target speaker's characteristics from noisy enrollments, which may contain overlapping speech from interfering speakers. In this work, we explore a novel enrollment strategy that encodes target speaker information from the noisy enrollment by comparing segments where the target speaker is talking (Positive Enrollments) with segments where the target speaker is silent (Negative Enrollments). Experiments show the effectiveness of our model architecture, which achieves over 2.1 dB higher SI-SNRi compared to prior works in extracting the monaural speech from the mixture of two speakers. Additionally, the proposed two-stage training strategy accelerates convergence, reducing the number of optimization steps required to reach 3 dB SNR by 60\%. Overall, our method achieves state-of-the-art performance in the monaural target speaker extraction conditioned on noisy enrollments.
Submission history
From: Shitong Xu [view email][v1] Sun, 23 Feb 2025 15:33:44 UTC (5,159 KB)
[v2] Tue, 17 Jun 2025 06:10:07 UTC (778 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.