Computer Science > Cryptography and Security
[Submitted on 16 Feb 2025]
Title:HawkEye: Statically and Accurately Profiling the Communication Cost of Models in Multi-party Learning
View PDF HTML (experimental)Abstract:Multi-party computation (MPC) based machine learning, referred to as multi-party learning (MPL), has become an important technology for utilizing data from multiple parties with privacy preservation. In recent years, in order to apply MPL in more practical scenarios, various MPC-friendly models have been proposedto reduce the extraordinary communication overhead of MPL. Within the optimization of MPC-friendly models, a critical element to tackle the challenge is profiling the communication cost of models. However, the current solutions mainly depend on manually establishing the profiles to identify communication bottlenecks of models, often involving burdensome human efforts in a monotonous procedure.
In this paper, we propose HawkEye, a static model communication cost profiling framework, which enables model designers to get the accurate communication cost of models in MPL frameworks without dynamically running the secure model training or inference processes on a specific MPL framework. Firstly, to profile the communication cost of models with complex structures, we propose a static communication cost profiling method based on a prefix structure that records the function calling chain during the static analysis. Secondly, HawkEye employs an automatic differentiation library to assist model designers in profiling the communication cost of models in PyTorch. Finally, we compare the static profiling results of HawkEye against the profiling results obtained through dynamically running secure model training and inference processes on five popular MPL frameworks, CryptFlow2, CrypTen, Delphi, Cheetah, and SecretFlow-SEMI2K. The experimental results show that HawkEye can accurately profile the model communication cost without dynamic profiling.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.