Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Dec 2024 (v1), last revised 17 Jan 2025 (this version, v3)]
Title:Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models
View PDF HTML (experimental)Abstract:Large Vision-Language Models (LVLMs) have achieved remarkable success in a wide range of multimodal tasks by integrating pre-trained vision encoders and large language models. However, current LVLMs primarily rely on visual features extracted from the final layers of the vision encoder, overlooking the complementary information available in shallower layers. While recent approaches have explored the use of multilayer visual features in LVLMs, they tend to be task-agnostic and fail to examine the dependencies of hierarchical visual features on specific tasks. To address these gaps, we systematically investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories. Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance. Building on these insights, we propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions, without increasing the number of visual tokens. Extensive evaluations demonstrate the superior performance of our method. Additionally, an in-depth analysis of the aggregator's behavior highlights the dominance of mid-to-high-level features in semantic-rich tasks and the critical role of low-level features in fine-grained perception.
Submission history
From: Yi Zheng [view email][v1] Thu, 26 Dec 2024 05:41:31 UTC (1,760 KB)
[v2] Thu, 16 Jan 2025 12:06:35 UTC (1,760 KB)
[v3] Fri, 17 Jan 2025 06:33:23 UTC (1,760 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.