Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2412.03312

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Machine Learning

arXiv:2412.03312 (cs)
[Submitted on 4 Dec 2024]

Title:Path-Guided Particle-based Sampling

Authors:Mingzhou Fan, Ruida Zhou, Chao Tian, Xiaoning Qian
View a PDF of the paper titled Path-Guided Particle-based Sampling, by Mingzhou Fan and 3 other authors
View PDF HTML (experimental)
Abstract:Particle-based Bayesian inference methods by sampling from a partition-free target (posterior) distribution, e.g., Stein variational gradient descent (SVGD), have attracted significant attention. We propose a path-guided particle-based sampling~(PGPS) method based on a novel Log-weighted Shrinkage (LwS) density path linking an initial distribution to the target distribution. We propose to utilize a Neural network to learn a vector field motivated by the Fokker-Planck equation of the designed density path. Particles, initiated from the initial distribution, evolve according to the ordinary differential equation defined by the vector field. The distribution of these particles is guided along a density path from the initial distribution to the target distribution. The proposed LwS density path allows for an efficient search of modes of the target distribution while canonical methods fail. We theoretically analyze the Wasserstein distance of the distribution of the PGPS-generated samples and the target distribution due to approximation and discretization errors. Practically, the proposed PGPS-LwS method demonstrates higher Bayesian inference accuracy and better calibration ability in experiments conducted on both synthetic and real-world Bayesian learning tasks, compared to baselines, such as SVGD and Langevin dynamics, etc.
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Machine Learning (stat.ML)
Cite as: arXiv:2412.03312 [cs.LG]
  (or arXiv:2412.03312v1 [cs.LG] for this version)
  https://doi.org/10.48550/arXiv.2412.03312
arXiv-issued DOI via DataCite

Submission history

From: Mingzhou Fan [view email]
[v1] Wed, 4 Dec 2024 13:44:56 UTC (4,652 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Path-Guided Particle-based Sampling, by Mingzhou Fan and 3 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.LG
< prev   |   next >
new | recent | 2024-12
Change to browse by:
cs
cs.AI
stat
stat.ML

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack