Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2412.03068

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Machine Learning

arXiv:2412.03068 (cs)
[Submitted on 4 Dec 2024]

Title:UTSD: Unified Time Series Diffusion Model

Authors:Xiangkai Ma, Xiaobin Hong, Wenzhong Li, Sanglu Lu
View a PDF of the paper titled UTSD: Unified Time Series Diffusion Model, by Xiangkai Ma and 3 other authors
View PDF HTML (experimental)
Abstract:Transformer-based architectures have achieved unprecedented success in time series analysis. However, facing the challenge of across-domain modeling, existing studies utilize statistical prior as prompt engineering fails under the huge distribution shift among various domains. In this paper, a Unified Time Series Diffusion (UTSD) model is established for the first time to model the multi-domain probability distribution, utilizing the powerful probability distribution modeling ability of Diffusion. Unlike the autoregressive models that capture the conditional probabilities of the prediction horizon to the historical sequence, we use a diffusion denoising process to model the mixture distribution of the cross-domain data and generate the prediction sequence for the target domain directly utilizing conditional sampling. The proposed UTSD contains three pivotal designs: (1) The condition network captures the multi-scale fluctuation patterns from the observation sequence, which are utilized as context representations to guide the denoising network to generate the prediction sequence; (2) Adapter-based fine-tuning strategy, the multi-domain universal representation learned in the pretraining stage is utilized for downstream tasks in target domains; (3) The diffusion and denoising process on the actual sequence space, combined with the improved classifier free guidance as the conditional generation strategy, greatly improves the stability and accuracy of the downstream task. We conduct extensive experiments on mainstream benchmarks, and the pre-trained UTSD outperforms existing foundation models on all data domains, exhibiting superior zero-shot generalization ability. After training from scratch, UTSD achieves comparable performance against domain-specific proprietary models. The empirical results validate the potential of UTSD as a time series foundational model.
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as: arXiv:2412.03068 [cs.LG]
  (or arXiv:2412.03068v1 [cs.LG] for this version)
  https://doi.org/10.48550/arXiv.2412.03068
arXiv-issued DOI via DataCite

Submission history

From: Xiangkai Ma [view email]
[v1] Wed, 4 Dec 2024 06:42:55 UTC (4,982 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled UTSD: Unified Time Series Diffusion Model, by Xiangkai Ma and 3 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.LG
< prev   |   next >
new | recent | 2024-12
Change to browse by:
cs
cs.AI

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack