Computer Science > Robotics
[Submitted on 2 Dec 2024]
Title:Vision-based Tactile Image Generation via Contact Condition-guided Diffusion Model
View PDFAbstract:Vision-based tactile sensors, through high-resolution optical measurements, can effectively perceive the geometric shape of objects and the force information during the contact process, thus helping robots acquire higher-dimensional tactile data. Vision-based tactile sensor simulation supports the acquisition and understanding of tactile information without physical sensors by accurately capturing and analyzing contact behavior and physical properties. However, the complexity of contact dynamics and lighting modeling limits the accurate reproduction of real sensor responses in simulations, making it difficult to meet the needs of different sensor setups and affecting the reliability and effectiveness of strategy transfer to practical applications. In this letter, we propose a contact-condition guided diffusion model that maps RGB images of objects and contact force data to high-fidelity, detail-rich vision-based tactile sensor images. Evaluations show that the three-channel tactile images generated by this method achieve a 60.58% reduction in mean squared error and a 38.1% reduction in marker displacement error compared to existing approaches based on lighting model and mechanical model, validating the effectiveness of our approach. The method is successfully applied to various types of tactile vision sensors and can effectively generate corresponding tactile images under complex loads. Additionally, it demonstrates outstanding reconstruction of fine texture features of objects in a Montessori tactile board texture generation task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.