Computer Science > Machine Learning
[Submitted on 27 Nov 2024 (v1), last revised 28 Nov 2024 (this version, v2)]
Title:Metric-DST: Mitigating Selection Bias Through Diversity-Guided Semi-Supervised Metric Learning
View PDF HTML (experimental)Abstract:Selection bias poses a critical challenge for fairness in machine learning, as models trained on data that is less representative of the population might exhibit undesirable behavior for underrepresented profiles. Semi-supervised learning strategies like self-training can mitigate selection bias by incorporating unlabeled data into model training to gain further insight into the distribution of the population. However, conventional self-training seeks to include high-confidence data samples, which may reinforce existing model bias and compromise effectiveness. We propose Metric-DST, a diversity-guided self-training strategy that leverages metric learning and its implicit embedding space to counter confidence-based bias through the inclusion of more diverse samples. Metric-DST learned more robust models in the presence of selection bias for generated and real-world datasets with induced bias, as well as a molecular biology prediction task with intrinsic bias. The Metric-DST learning strategy offers a flexible and widely applicable solution to mitigate selection bias and enhance fairness of machine learning models.
Submission history
From: Joana Gonçalves [view email][v1] Wed, 27 Nov 2024 15:29:42 UTC (4,752 KB)
[v2] Thu, 28 Nov 2024 08:34:30 UTC (4,752 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.