Computer Science > Information Retrieval
[Submitted on 13 Nov 2024]
Title:Rethinking negative sampling in content-based news recommendation
View PDF HTML (experimental)Abstract:News recommender systems are hindered by the brief lifespan of articles, as they undergo rapid relevance decay. Recent studies have demonstrated the potential of content-based neural techniques in tackling this problem. However, these models often involve complex neural architectures and often lack consideration for negative examples. In this study, we posit that the careful sampling of negative examples has a big impact on the model's outcome. We devise a negative sampling technique that not only improves the accuracy of the model but also facilitates the decentralization of the recommendation system. The experimental results obtained using the MIND dataset demonstrate that the accuracy of the method under consideration can compete with that of State-of-the-Art models. The utilization of the sampling technique is essential in reducing model complexity and accelerating the training process, while maintaining a high level of accuracy. Finally, we discuss how decentralized models can help improve privacy and scalability.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.