Computer Science > Cryptography and Security
[Submitted on 12 Nov 2024]
Title:SCORE: Syntactic Code Representations for Static Script Malware Detection
View PDF HTML (experimental)Abstract:As businesses increasingly adopt cloud technologies, they also need to be aware of new security challenges, such as server-side script attacks, to ensure the integrity of their systems and data. These scripts can steal data, compromise credentials, and disrupt operations. Unlike executables with standardized formats (e.g., ELF, PE), scripts are plaintext files with diverse syntax, making them harder to detect using traditional methods. As a result, more sophisticated approaches are needed to protect cloud infrastructures from these evolving threats. In this paper, we propose novel feature extraction and deep learning (DL)-based approaches for static script malware detection, targeting server-side threats. We extract features from plain-text code using two techniques: syntactic code highlighting (SCH) and abstract syntax tree (AST) construction. SCH leverages complex regexes to parse syntactic elements of code, such as keywords, variable names, etc. ASTs generate a hierarchical representation of a program's syntactic structure. We then propose a sequential and a graph-based model that exploits these feature representations to detect script malware. We evaluate our approach on more than 400K server-side scripts in Bash, Python and Perl. We use a balanced dataset of 90K scripts for training, validation, and testing, with the remaining from 400K reserved for further analysis. Experiments show that our method achieves a true positive rate (TPR) up to 81% higher than leading signature-based antivirus solutions, while maintaining a low false positive rate (FPR) of 0.17%. Moreover, our approach outperforms various neural network-based detectors, demonstrating its effectiveness in learning code maliciousness for accurate detection of script malware.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.