Mathematics > Numerical Analysis
[Submitted on 10 Nov 2024]
Title:On the optimal choice of the illumination function in photoacoustic tomography
View PDF HTML (experimental)Abstract:This work studies the inverse problem of photoacoustic tomography (more precisely, the acoustic subproblem) as the identification of a space-dependent source parameter. The model consists of a wave equation involving a time-fractional damping term to account for power law frequency dependence of the attenuation, as relevant in ultrasonics. We solve the inverse problem in a Bayesian framework using a Maximum A Posteriori (MAP) estimate, and for this purpose derive an explicit expression for the adjoint operator. On top of this, we consider optimization of the choice of the laser excitation function, which is the time-dependent part of the source in this model, to enhance the reconstruction result. The method employs the $A$-optimality criterion for Bayesian optimal experimental design with Gaussian prior and Gaussian noise. To efficiently approximate the cost functional, we introduce an approximation scheme based on projection onto finite-dimensional subspaces. Finally, we present numerical results that illustrate the theory.
Submission history
From: Phuoc-Truong Huynh [view email][v1] Sun, 10 Nov 2024 22:02:12 UTC (175 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.