Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 7 Nov 2024 (v1), last revised 11 Dec 2024 (this version, v2)]
Title:Discretized Gaussian Representation for Tomographic Reconstruction
View PDF HTML (experimental)Abstract:Computed Tomography (CT) is a widely used imaging technique that provides detailed cross-sectional views of objects. Over the past decade, Deep Learning-based Reconstruction (DLR) methods have led efforts to enhance image quality and reduce noise, yet they often require large amounts of data and are computationally intensive. Inspired by recent advancements in scene reconstruction, some approaches have adapted NeRF and 3D Gaussian Splatting (3DGS) techniques for CT reconstruction. However, these methods are not ideal for direct 3D volume reconstruction. In this paper, we reconsider the representation of CT reconstruction and propose a novel Discretized Gaussian Representation (DGR) specifically designed for CT. Unlike the popular 3D Gaussian Splatting, our representation directly reconstructs the 3D volume using a set of discretized Gaussian functions in an end-to-end manner. Additionally, we introduce a Fast Volume Reconstruction technique that efficiently aggregates the contributions of these Gaussians into a discretized volume. Extensive experiments on both real-world and synthetic datasets demonstrate the effectiveness of our method in improving reconstruction quality and computational efficiency. Our code has been provided for review purposes and will be made publicly available upon acceptance.
Submission history
From: Shaokai Wu [view email][v1] Thu, 7 Nov 2024 16:32:29 UTC (19,894 KB)
[v2] Wed, 11 Dec 2024 17:40:32 UTC (11,016 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.