Computer Science > Digital Libraries
[Submitted on 4 Nov 2024 (v1), last revised 3 Mar 2025 (this version, v2)]
Title:Evaluating the quality of published medical research with ChatGPT
View PDFAbstract:Estimating the quality of published research is important for evaluations of departments, researchers, and job candidates. Citation-based indicators sometimes support these tasks, but do not work for new articles and have low or moderate accuracy. Previous research has shown that ChatGPT can estimate the quality of research articles, with its scores correlating positively with an expert scores proxy in all fields, and often more strongly than citation-based indicators, except for clinical medicine. ChatGPT scores may therefore replace citation-based indicators for some applications. This article investigates the clinical medicine anomaly with the largest dataset yet and a more detailed analysis. The results showed that ChatGPT 4o-mini scores for articles submitted to the UK's Research Excellence Framework (REF) 2021 Unit of Assessment (UoA) 1 Clinical Medicine correlated positively (r=0.134, n=9872) with departmental mean REF scores, against a theoretical maximum correlation of r=0.226. ChatGPT 4o and 3.5 turbo also gave positive correlations. At the departmental level, mean ChatGPT scores correlated more strongly with departmental mean REF scores (r=0.395, n=31). For the 100 journals with the most articles in UoA 1, their mean ChatGPT score correlated strongly with their REF score (r=0.495) but negatively with their citation rate (r=-0.148). Journal and departmental anomalies in these results point to ChatGPT being ineffective at assessing the quality of research in prestigious medical journals or research directly affecting human health, or both. Nevertheless, the results give evidence of ChatGPT's ability to assess research quality overall for Clinical Medicine, where it might replace citation-based indicators for new research.
Submission history
From: Mike Thelwall Prof [view email][v1] Mon, 4 Nov 2024 10:24:36 UTC (528 KB)
[v2] Mon, 3 Mar 2025 15:46:33 UTC (552 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.