Mathematics > Numerical Analysis
[Submitted on 31 Oct 2024 (v1), last revised 4 Nov 2024 (this version, v2)]
Title:Active flux methods for hyperbolic conservation laws -- flux vector splitting and bound-preservation
View PDFAbstract:The active flux (AF) method is a compact high-order finite volume method that simultaneously evolves cell averages and point values at cell interfaces. Within the method of lines framework, the existing Jacobian splitting-based point value update incorporates the upwind idea but suffers from a stagnation issue for nonlinear problems due to inaccurate estimation of the upwind direction, and also from a mesh alignment issue partially resulting from decoupled point value updates. This paper proposes to use flux vector splitting for the point value update, offering a natural and uniform remedy to those two issues. To improve robustness, this paper also develops bound-preserving (BP) AF methods for hyperbolic conservation laws. Two cases are considered: preservation of the maximum principle for the scalar case, and preservation of positive density and pressure for the compressible Euler equations. The update of the cell average is rewritten as a convex combination of the original high-order fluxes and robust low-order (local Lax-Friedrichs or Rusanov) fluxes, and the desired bounds are enforced by choosing the right amount of low-order fluxes. A similar blending strategy is used for the point value update. In addition, a shock sensor-based limiting is proposed to enhance the convex limiting for the cell average, which can suppress oscillations well. Several challenging tests are conducted to verify the robustness and effectiveness of the BP AF methods, including flow past a forward-facing step and high Mach number jets.
Submission history
From: Junming Duan Ph.D. [view email][v1] Thu, 31 Oct 2024 11:41:49 UTC (15,055 KB)
[v2] Mon, 4 Nov 2024 10:18:58 UTC (15,055 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.